

Streaming Systems
The What, Where, When, and How of Large-Scale

Data Processing

Tyler Akidau, Slava Chernyak, and Reuven Lax

1

Streaming Systems
by Tyler Akidau, Slava Chernyak, and Reuven Lax

Copyright © 2018 Tyler Akidau, Slava Chernyak, and Reuven Lax. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Rachel Roumeliotis and Jeff Bleiel

Production Editor: Nicholas Adams

Copyeditor: Octal Publishing, Inc.

Proofreader: Kim Cofer

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

August 2018: First Edition

Revision History for the First Edition

2018-07-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491983874 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Streaming Systems, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

2

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491983874

While the publisher and the authors have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-98387-4

[LSI]

3

Preface Or: What Are You
Getting Yourself Into Here?

Hello adventurous reader, welcome to our book! At this point, I assume that
you’re either interested in learning more about the wonders of stream
processing or hoping to spend a few hours reading about the glory of the
majestic brown trout. Either way, I salute you! That said, those of you in the
latter bucket who don’t also have an advanced understanding of computer
science should consider how prepared you are to deal with disappointment
before forging ahead; caveat piscator, and all that.

To set the tone for this book from the get go, I wanted to give you a heads up
about a couple of things. First, this book is a little strange in that we have
multiple authors, but we’re not pretending that we somehow all speak and
write in the same voice like we’re weird identical triplets who happened to be
born to different sets of parents. Because as interesting as that sounds, the end
result would actually be less enjoyable to read. Instead, we’ve opted to each
write in our own voices, and we’ve granted the book just enough self-
awareness to be able to make reference to each of us where appropriate, but
not so much self-awareness that it resents us for making it only into a book
and not something cooler like a robot dinosaur with a Scottish accent.

As far as voices go, there are three you’ll come across:
Tyler

That would be me. If you haven’t explicitly been told someone else is
speaking, you can assume that it’s me, because we added the other authors
somewhat late in the game, and I was basically like, “hells no” when I
thought about going back and updating everything I’d already written. I’m
the technical lead for the Data Processing Languages ands Systems group
at Google, responsible for Google Cloud Dataflow, Google’s Apache
Beam efforts, as well as Google-internal data processing systems such as
Flume, MillWheel, and MapReduce. I’m also a founding Apache Beam
PMC member.

1

2

4

Figure P-1. The cover that could have been...

Slava
Slava was a long-time member of the MillWheel team at Google, and later
an original member of the Windmill team that built MillWheel’s
successor, the heretofore unnamed system that powers the Streaming
Engine in Google Cloud Dataflow. Slava is the foremost expert on
watermarks and time semantics in stream processing systems the world
over, period. You might find it unsurprising then that he’s the author of
Chapter 3, Watermarks.

Reuven

5

Reuven is at the bottom of this list because he has more experience with
stream processing than both Slava and me combined and would thus crush
us if he were placed any higher. Reuven has created or led the creation of
nearly all of the interesting systems-level magic in Google’s general-
purpose stream processing engines, including applying an untold amount
of attention to detail in providing high-throughput, low-latency, exactly-
once semantics in a system that nevertheless utilizes fine-grained
checkpointing. You might find it unsurprising that he’s the author of
Chapter 5, Exactly-Once and Side Effects. He also happens to be an
Apache Beam PMC member.

Navigating This Book
Now that you know who you’ll be hearing from, the next logical step would
be to find out what you’ll be hearing about, which brings us to the second
thing I wanted to mention. There are conceptually two major parts to this
book, each with four chapters, and each followed up by a chapter that stands
relatively independently on its own.

The fun begins with Part I, The Beam Model (Chapters 1–4), which focuses
on the high-level batch plus streaming data processing model originally
developed for Google Cloud Dataflow, later donated to the Apache Software
Foundation as Apache Beam, and also now seen in whole or in part across
most other systems in the industry. It’s composed of four chapters:

Chapter 1, Streaming 101, which covers the basics of stream
processing, establishing some terminology, discussing the
capabilities of streaming systems, distinguishing between two
important domains of time (processing time and event time), and
finally looking at some common data processing patterns.

Chapter 2, The What, Where, When, and How of Data Processing,
which covers in detail the core concepts of robust stream processing
over out-of-order data, each analyzed within the context of a concrete
running example and with animated diagrams to highlight the
dimension of time.

Chapter 3, Watermarks (written by Slava), which provides a deep
survey of temporal progress metrics, how they are created, and how
they propagate through pipelines. It ends by examining the details of

6

two real-world watermark implementations.

Chapter 4, Advanced Windowing, which picks up where Chapter 2
left off, diving into some advanced windowing and triggering
concepts like processing-time windows, sessions, and continuation
triggers.

Between Parts I and II, providing an interlude as timely as the details
contained therein are important, stands Chapter 5, Exactly-Once and Side
Effects (written by Reuven). In it, he enumerates the challenges of providing
end-to-end exactly-once (or effectively-once) processing semantics and walks
through the implementation details of three different approaches to exactly-
once processing: Apache Flink, Apache Spark, and Google Cloud Dataflow.

Next begins Part II, Streams and Tables (Chapters 6–9), which dives deeper
into the conceptual and investigates the lower-level “streams and tables” way
of thinking about stream processing, recently popularized by some upstanding
citizens in the Apache Kafka community but, of course, invented decades ago
by folks in the database community, because wasn’t everything? It too is
composed of four chapters:

Chapter 6, Streams and Tables, which introduces the basic idea of
streams and tables, analyzes the classic MapReduce approach
through a streams-and-tables lens, and then constructs a theory of
streams and tables sufficiently general to encompass the full breadth
of the Beam Model (and beyond).

Chapter 7, The Practicalities of Persistent State, which considers the
motivations for persistent state in streaming pipelines, looks at two
common types of implicit state, and then analyzes a practical use
case (advertising attribution) to inform the necessary characteristics
of a general state management mechanism.

Chapter 8, Streaming SQL, which investigates the meaning of
streaming within the context of relational algebra and SQL, contrasts
the inherent stream and table biases within the Beam Model and
classic SQL as they exist today, and proposes a set of possible paths
forward toward incorporating robust streaming semantics in SQL.

Chapter 9, Streaming Joins, which surveys a variety of different join
types, analyzes their behavior within the context of streaming, and
finally looks in detail at a useful but ill-supported streaming join use

7

case: temporal validity windows.

Finally, closing out the book is Chapter 10, The Evolution of Large-Scale
Data Processing, which strolls through a focused history of the MapReduce
lineage of data processing systems, examining some of the important
contributions that have evolved streaming systems into what they are today.

Takeaways
As a final bit of guidance, if you were to ask me to describe the things I most
want readers to take away from this book, I would say this:

The single most important thing you can learn from this book is the
theory of streams and tables and how they relate to one another.
Everything else builds on top of that. No, we won’t get to this topic
until Chapter 6. That’s okay; it’s worth the wait, and you’ll be better
prepared to appreciate its awesomeness by then.

Time-varying relations are a revelation. They are stream processing
incarnate: an embodiment of everything streaming systems are built
to achieve and a powerful connection to the familiar tools we all
know and love from the world of batch. We won’t learn about them
until Chapter 8, but again, the journey there will help you appreciate
them all the more.

A well-written distributed streaming engine is a magical thing. This
arguably goes for distributed systems in general, but as you learn
more about how these systems are built to provide the semantics they
do (in particular, the case studies from Chapters 3 and 5), it becomes
all the more apparent just how much heavy lifting they’re doing for
you.

LaTeX/Tikz is an amazing tool for making diagrams, animated or
otherwise. A horrible, crusty tool with sharp edges and tetanus, but
an incredible tool nonetheless. I hope the clarity the animated
diagrams in this book bring to the complex topics we discuss will
inspire more people to give LaTeX/Tikz a try (in “Figures”, we
provide for a link to the full source for the animations from this
book).

Conventions Used in This Book

8

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Online Resources
There are a handful of associated online resources to aid in your enjoyment of
this book.

Figures
All the of the figures in this book are available in digital form on the book’s
website. This is particularly useful for the animated figures, only a few frames

9

of which appear (comic-book style) in the non-Safari formats of the book:

Online index: http://www.streamingbook.net/figures

Specific figures may be referenced at URLs of the form:

http://www.streamingbook.net/fig/<FIGURE-NUMBER>

For example, for Figure 2-5: http://www.streamingbook.net/fig/2-5

The animated figures themselves are LaTeX/Tikz drawings, rendered first to
PDF, then converted to animated GIFs via ImageMagick. For the more
intrepid among you, full source code and instructions for rendering the
animations (from this book, the “Streaming 101” and “Streaming 102” blog
posts, and the original Dataflow Model paper) are available on GitHub at
http://github.com/takidau/animations. Be warned that this is roughly 14,000
lines of LaTeX/Tikz code that grew very organically, with no intent of ever
being read and used by others. In other words, it’s a messy, intertwined web
of archaic incantations; turn back now or abandon all hope ye who enter here,
for there be dragons.

Code Snippets
Although this book is largely conceptual, there are are number of code and
psuedo-code snippets used throughout to help illustrate points. Code for the
more functional core Beam Model concepts from Chapters 2 and 4, as well as
the more imperative state and timers concepts in Chapter 7, is available online
at http://github.com/takidau/streamingbook. Since understanding semantics is
the main goal, the code is provided primarily as Beam PTransform/DoFn
implementations and accompanying unit tests. There is also a single
standalone pipeline implementation to illustrate the delta between a unit test
and a real pipeline. The code layout is as follows:
src/main/java/net/streamingbook/BeamModel.java

Beam PTransform implementations of Examples 2-1 through 2-9 and
Example 4-3, each with an additional method returning the expected
output when executed over the example datasets from those chapters.

src/test/java/net/streamingbook/BeamModelTest.java

Unit tests verifying the example PTransforms in BeamModel.java via
generated datasets matching those in the book.

src/main/java/net/streamingbook/Example2_1.java

10

http://www.streamingbook.net/figures
http://www.streamingbook.net/fig/2-5
http://oreil.ly/1p1AKux
http://oreil.ly/1TV7YGU
http://bit.ly/2sXgVJ3
http://github.com/takidau/animations
http://github.com/takidau/streamingbook
https://github.com/takidau/streamingbook/blob/master/src/main/java/net/streamingbook/BeamModel.java
https://github.com/takidau/streamingbook/blob/master/src/test/java/net/streamingbook/BeamModelTest.java
https://github.com/takidau/streamingbook/blob/master/src/main/java/net/streamingbook/Example2_1.java

Standalone version of the Example 2-1 pipeline that can be run locally or
using a distributed Beam runner.

src/main/java/net/streamingbook/inputs.csv
Sample input file for Example2_1.java containing the dataset from the
book.

src/main/java/net/streamingbook/StateAndTimers.java
Beam code implementing the conversion attribution example from
Chapter 7 using Beam’s state and timers primitives.

src/test/java/net/streamingbook/StateAndTimersTest.java

Unit test verifying the conversion attribution DoFns from
StateAndTimers.java.

src/main/java/net/streamingbook/ValidityWindows.java
Temporal validity windows implementation.

src/main/java/net/streamingbook/Utils.java
Shared utility methods.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Streaming Systems by
Tyler Akidau, Slava Chernyak, and Reuven Lax (O’Reilly). Copyright 2018
O’Reilly Media, Inc., 978-1-491-98387-4.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
11

https://github.com/takidau/streamingbook/blob/master/src/main/java/net/streamingbook/inputs.csv
https://github.com/takidau/streamingbook/blob/master/src/main/java/net/streamingbook/StateAndTimers.java
https://github.com/takidau/streamingbook/blob/master/src/test/java/net/streamingbook/StateAndTimersTest.java
https://github.com/takidau/streamingbook/blob/master/src/main/java/net/streamingbook/ValidityWindows.java
https://github.com/takidau/streamingbook/blob/master/src/main/java/net/streamingbook/Utils.java
mailto:permissions@oreilly.com

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among
others.

For more information, please visit http://www.oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/streaming-
systems.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

12

http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/streaming-systems
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Last, but certainly not least: many people are awesome, and we would like to
acknowledge a specific subset of them here for their help in creating this
tome.

The content in this book distills the work of an untold number of extremely
smart individuals across Google, the industry, and academia at large. We owe
them all a sincere expression of gratitude and regret that we could not
possibly list them all here, even if we tried, which we will not.

Among our colleagues at Google, much credit goes to everyone in the
DataPLS team (and its various ancestor teams: Flume, MillWheel,
MapReduce, et al.), who’ve helped bring so many of these ideas to life over
the years. In particular, we’d like to thank:

Paul Nordstrom and the rest of the MillWheel team from the Golden
Age of MillWheel: Alex Amato, Alex Balikov, Kaya Bekiroğlu, Josh
Haberman, Tim Hollingsworth, Ilya Maykov, Sam McVeety, Daniel
Mills, and Sam Whittle for envisioning and building such a
comprehensive, robust, and scalable set of low-level primitives on
top of which we were later able to construct the higher-level models
discussed in this book. Without their vision and skill, the world of
massive-scale stream processing would look very different.

Craig Chambers, Frances Perry, Robert Bradshaw, Ashish Raniwala,
and the rest of the Flume team of yore for envisioning and creating
the expressive and powerful data processing foundation that we were
later able to unify with the world of streaming.

Sam McVeety for lead authoring the original MillWheel paper,
which put our amazing little project on the map for the very first
time.

Grzegorz Czajkowski for repeatedly supporting our evangelization
efforts, even as competing deadlines and priorities loomed.

Looking more broadly, a huge amount of credit is due to everyone in the
Apache Beam, Calcite, Kafka, Flink, Spark, and Storm communities. Each
and every one of these projects has contributed materially to advancing the

13

http://www.youtube.com/oreillymedia

state of the art in stream processing for the world at large over the past
decade. Thank you.

To shower gratitude a bit more specifically, we would also like to thank:

Martin Kleppmann, for leading the charge in advocating for the
streams-and-tables way of thinking, and also for investing a huge
amount of time providing piles of insightful technical and editorial
input on the drafts of every chapter in this book. All this in addition
to being an inspiration and all-around great guy.

Julian Hyde, for his insightful vision and infectious passion for
streaming SQL.

Jay Kreps, for fighting the good fight against Lambda Architecture
tyranny; it was your original “Questioning the Lambda Architecture”
post that got Tyler pumped enough to go out and join the fray, as
well.

Stephan Ewen, Kostas Tzoumas, Fabian Hueske, Aljoscha Krettek,
Robert Metzger, Kostas Kloudas, Jamie Grier, Max Michels, and the
rest of the data Artisans extended family, past and present, for always
pushing the envelope of what’s possible in stream processing, and
doing so in a consistently open and collaborative way. The world of
streaming is a much better place thanks to all of you.

Jesse Anderson, for his diligent reviews and for all the hugs. If you
see Jesse, give him a big hug for me.

Danny Yuan, Sid Anand, Wes Reisz, and the amazing QCon
developer conference, for giving us our first opportunity to talk
publicly within the industry about our work, at QCon San Francisco
2014.

Ben Lorica at O’Reilly and the iconic Strata Data Conference, for
being repeatedly supportive of our efforts to evangelize stream
processing, be it online, in print, or in person.

The entire Apache Beam community, and in particular our fellow
committers, for helping push forward the Beam vision: Ahmet Altay,
Amit Sela, Aviem Zur, Ben Chambers, Griselda Cuevas, Chamikara
Jayalath, Davor Bonaci, Dan Halperin, Etienne Chauchot, Frances
Perry, Ismaël Mejía, Jason Kuster, Jean-Baptiste Onofré, Jesse

14

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Anderson, Eugene Kirpichov, Josh Wills, Kenneth Knowles, Luke
Cwik, Jingsong Lee, Manu Zhang, Melissa Pashniak, Mingmin Xu,
Max Michels, Pablo Estrada, Pei He, Robert Bradshaw, Stephan
Ewen, Stas Levin, Thomas Groh, Thomas Weise, and James Xu.

No acknowledgments section would be complete without a nod to the
otherwise faceless cohort of tireless reviewers whose insightful comments
helped turn garbage into awesomeness: Jesse Anderson, Grzegorz
Czajkowski, Marián Dvorský, Stephan Ewen, Rafael J. Fernández-
Moctezuma, Martin Kleppmann, Kenneth Knowles, Sam McVeety, Mosha
Pasumansky, Frances Perry, Jelena Pjesivac-Grbovic, Jeff Shute, and William
Vambenepe. You are the Mr. Fusion to our DeLorean Time Machine. That
had a nicer ring to it in my head—see, this is what I’m talking about.

And of course, a big thanks to our authoring and production support team:

Marie Beaugureau, our original editor, for all of her help and support
in getting this project off the ground and her everlasting patience
with my persistent desire to subvert editorial norms. We miss you!

Jeff Bleiel, our editor 2.0, for taking over the reins and helping us
land this monster of a project and his everlasting patience with our
inability to meet even the most modest of deadlines. We made it!

Bob Russell, our copy editor, for reading our book more closely than
anyone should ever have to. I tip my hat to your masterful command
of grammar, punctuation, vocabulary, and Adobe Acrobat
annotations.

Nick Adams, our intrepid production editor, for helping tame a mess
of totally sketchy HTMLBook code into a print-worthy thing of
beauty and for not getting mad at me when I asked him to manually
ignore Bob’s many, many individual suggestions to switch our usage
of the term “data” from plural to singular. You’ve managed to make
this book look even better than I’d hoped for, thank you.

Ellen Troutman-Zaig, our indexer, for somehow weaving a tangled
web of offhand references into a useful and comprehensive index. I
stand in awe at your attention to detail.

Rebecca Panzer, our illustrator, for beautifying our static diagrams
and for assuring Nick that I didn’t need to spend more weekends

15

figuring out how to refactor my animated LaTeX diagrams to have
larger fonts. Phew x2!

Kim Cofer, our proofreader, for pointing out how sloppy and
inconsistent we were so others wouldn’t have to.

Tyler would like to thank:

My coauthors, Reuven Lax and Slava Chernyak, for bringing their
ideas and chapters to life in ways I never could have.

George Bradford Emerson II, for the Sean Connery inspiration.
That’s my favorite joke in the book and we haven’t even gotten to
the first chapter yet. It’s all downhill from here, folks.

Rob Schlender, for the amazing bottle of scotch he’s going to buy me
shortly before robots take over the world. Here’s to going down in
style!

My uncle, Randy Bowen, for making sure I discovered just how
much I love computers and, in particular, that homemade POV-Ray
2.x floppy disk that opened up a whole new world for me.

My parents, David and Marty Dauwalder, without whose dedication
and unbelievable perseverance none of this would have ever been
possible. You’re the best parents ever, for reals!

Dr. David L. Vlasuk, without whom I simply wouldn’t be here today.
Thanks for everything, Dr. V.

My wonderful family, Shaina, Romi, and Ione Akidau for their
unwavering support in completing this levianthantine effort, despite
the many nights and weekends we spent apart as a result. I love you
always.

My faithful writing partner, Kiyoshi: even though you only slept and
barked at postal carriers the entire time we worked on the book
together, you did so flawlessly and seemingly without effort. You are
a credit to your species.

Slava would like to thank:

Josh Haberman, Sam Whittle, and Daniel Mills for being codesigners
and cocreators of watermarks in MillWheel and subsequently

16

Streaming Dataflow as well as many other parts of these systems.
Systems as complex as these are never designed in a vacuum, and
without all of the thoughts and hard work that each of you put in, we
would not be here today.

Stephan Ewen of data Artisans for helping shape my thoughts and
understanding of the watermark implementation in Apache Flink.

Reuven would like to thank:

Paul Nordstrom for his vision, Sam Whittle, Sam McVeety, Slava
Chernyak, Josh Haberman, Daniel Mills, Kaya Bekiroğlu, Alex
Balikov, Tim Hollingsworth, Alex Amato, and Ilya Maykov for all
their efforts in building the original MillWheel system and writing
the subsequent paper.

Stephan Ewen of data Artisans for his help reviewing the chapter on
exactly-once semantics, and valuable feedback on the inner workings
of Apache Flink.

Lastly, we would all like to thank you, glorious reader, for being willing to
spend real money on this book to hear us prattle on about the cool stuff we get
to build and play with. It’s been a joy writing it all down, and we’ve done our
best to make sure you’ll get your money’s worth. If for some reason you
don’t like it...well hopefully you bought the print edition so you can at least
throw it across the room in disgust before you sell it at a used bookstore.
Watch out for the cat.

 Which incidentally is what we requested our animal book cover be, but
O’Reilly felt it wouldn’t translate well into line art. I respectfully disagree,
but a brown trout is a fair compromise.

 Or DataPLS, pronounced Datapals—get it?

 Or don’t. I actually don’t like cats.

3

1

2

3

17

Part I. The Beam Model

18

Chapter 1. Streaming 101

Streaming data processing is a big deal in big data these days, and for good
reasons; among them are the following:

Businesses crave ever-more timely insights into their data, and
switching to streaming is a good way to achieve lower latency

The massive, unbounded datasets that are increasingly common in
modern business are more easily tamed using a system designed for
such never-ending volumes of data.

Processing data as they arrive spreads workloads out more evenly
over time, yielding more consistent and predictable consumption of
resources.

Despite this business-driven surge of interest in streaming, streaming systems
long remained relatively immature compared to their batch brethren. It’s only
recently that the tide has swung conclusively in the other direction. In my
more bumptious moments, I hope that might be in small part due to the solid
dose of goading I originally served up in my “Streaming 101” and “Streaming
102” blog posts (on which the first few chapters of this book are rather
obviously based). But in reality, there’s also just a lot of industry interest in
seeing streaming systems mature and a lot of smart and active folks out there
who enjoy building them.

Even though the battle for general streaming advocacy has been, in my
opinion, effectively won, I’m still going to present my original arguments
from “Streaming 101” more or less unaltered. For one, they’re still very
applicable today, even if much of industry has begun to heed the battle cry.
And for two, there are a lot of folks out there who still haven’t gotten the
memo; this book is an extended attempt at getting these points across.

To begin, I cover some important background information that will help
frame the rest of the topics I want to discuss. I do this in three specific
sections:
Terminology

To talk precisely about complex topics requires precise definitions of
terms. For some terms that have overloaded interpretations in current use,

19

http://oreil.ly/1p1AKux
http://oreil.ly/1TV7YGU

I’ll try to nail down exactly what I mean when I say them.

Capabilities
I remark on the oft-perceived shortcomings of streaming systems. I also
propose the frame of mind that I believe data processing system builders
need to adopt in order to address the needs of modern data consumers
going forward.

Time domains
I introduce the two primary domains of time that are relevant in data
processing, show how they relate, and point out some of the difficulties
these two domains impose.

Terminology: What Is Streaming?
Before going any further, I’d like to get one thing out of the way: what is
streaming? The term streaming is used today to mean a variety of different
things (and for simplicity I’ve been using it somewhat loosely up until now),
which can lead to misunderstandings about what streaming really is or what
streaming systems are actually capable of. As a result, I would prefer to
define the term somewhat precisely.

The crux of the problem is that many things that ought to be described by
what they are (unbounded data processing, approximate results, etc.), have
come to be described colloquially by how they historically have been
accomplished (i.e., via streaming execution engines). This lack of precision in
terminology clouds what streaming really means, and in some cases it
burdens streaming systems themselves with the implication that their
capabilities are limited to characteristics historically described as “streaming,”
such as approximate or speculative results.

Given that well-designed streaming systems are just as capable (technically
more so) of producing correct, consistent, repeatable results as any existing
batch engine, I prefer to isolate the term “streaming” to a very specific
meaning:
Streaming system

A type of data processing engine that is designed with infinite datasets in
mind.

If I want to talk about low-latency, approximate, or speculative results, I use

1

20

those specific words rather than imprecisely calling them “streaming.”

Precise terms are also useful when discussing the different types of data one
might encounter. From my perspective, there are two important (and
orthogonal) dimensions that define the shape of a given dataset: cardinality
and constitution.

The cardinality of a dataset dictates its size, with the most salient aspect of
cardinality being whether a given dataset is finite or infinite. Here are the two
terms I prefer to use for describing the coarse cardinality in a dataset:
Bounded data

A type of dataset that is finite in size.

Unbounded data
A type of dataset that is infinite in size (at least theoretically).

Cardinality is important because the unbounded nature of infinite datasets
imposes additional burdens on data processing frameworks that consume
them. More on this in the next section.

The constitution of a dataset, on the other hand, dictates its physical
manifestation. As a result, the constitution defines the ways one can interact
with the data in question. We won’t get around to deeply examining
constitutions until Chapter 6, but to give you a brief sense of things, there are
two primary constitutions of importance:
Table

A holistic view of a dataset at a specific point in time. SQL systems have
traditionally dealt in tables.

Stream
An element-by-element view of the evolution of a dataset over time. The
MapReduce lineage of data processing systems have traditionally dealt in
streams.

We look quite deeply at the relationship between streams and tables in
Chapters 6, 8, and 9, and in Chapter 8 we also learn about the unifying
underlying concept of time-varying relations that ties them together. But until
then, we deal primarily in streams because that’s the constitution pipeline
developers directly interact with in most data processing systems today (both
batch and streaming). It’s also the constitution that most naturally embodies
the challenges that are unique to stream processing.

2

21

On the Greatly Exaggerated Limitations of Streaming
On that note, let’s next talk a bit about what streaming systems can and can’t
do, with an emphasis on can. One of the biggest things I want to get across in
this chapter is just how capable a well-designed streaming system can be.
Streaming systems have historically been relegated to a somewhat niche
market of providing low-latency, inaccurate, or speculative results, often in
conjunction with a more capable batch system to provide eventually correct
results; in other words, the Lambda Architecture.

For those of you not already familiar with the Lambda Architecture, the basic
idea is that you run a streaming system alongside a batch system, both
performing essentially the same calculation. The streaming system gives you
low-latency, inaccurate results (either because of the use of an approximation
algorithm, or because the streaming system itself does not provide
correctness), and some time later a batch system rolls along and provides you
with correct output. Originally proposed by Twitter’s Nathan Marz (creator of
Storm), it ended up being quite successful because it was, in fact, a fantastic
idea for the time; streaming engines were a bit of a letdown in the correctness
department, and batch engines were as inherently unwieldy as you’d expect,
so Lambda gave you a way to have your proverbial cake and eat it too.
Unfortunately, maintaining a Lambda system is a hassle: you need to build,
provision, and maintain two independent versions of your pipeline and then
also somehow merge the results from the two pipelines at the end.

As someone who spent years working on a strongly consistent streaming
engine, I also found the entire principle of the Lambda Architecture a bit
unsavory. Unsurprisingly, I was a huge fan of Jay Kreps’ “Questioning the
Lambda Architecture” post when it came out. Here was one of the first highly
visible statements against the necessity of dual-mode execution. Delightful.
Kreps addressed the issue of repeatability in the context of using a replayable
system like Kafka as the streaming interconnect, and went so far as to propose
the Kappa Architecture, which basically means running a single pipeline
using a well-designed system that’s appropriately built for the job at hand.
I’m not convinced that notion requires its own Greek letter name, but I fully
support the idea in principle.

Quite honestly, I’d take things a step further. I would argue that well-designed
streaming systems actually provide a strict superset of batch functionality.
Modulo perhaps an efficiency delta, there should be no need for batch
systems as they exist today. And kudos to the Apache Flink folks for taking

22

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://storm.apache.org
https://oreil.ly/2LSEdqz
http://flink.apache.org

this idea to heart and building a system that’s all-streaming-all-the-time under
the covers, even in “batch” mode; I love it.

BATCH AND STREAMING EFFICIENCY DIFFERENCES
One which I propose is not an inherent limitation of streaming systems,
but simply a consequence of design choices made in most streaming
systems thus far. The efficiency delta between batch and streaming is
largely the result of the increased bundling and more efficient shuffle
transports found in batch systems. Modern batch systems go to great
lengths to implement sophisticated optimizations that allow for remarkable
levels of throughput using surprisingly modest compute resources. There’s
no reason the types of clever insights that make batch systems the
efficiency heavyweights they are today couldn’t be incorporated into a
system designed for unbounded data, providing users flexible choice
between what we typically consider to be high-latency, higher-efficiency
“batch” processing and low-latency, lower-efficiency “streaming”
processing. This is effectively what we’ve done at Google with Cloud
Dataflow by providing both batch and streaming runners under the same
unified model. In our case, we use separate runners because we happen to
have two independently designed systems optimized for their specific use
cases. Long term, from an engineering perspective, I’d love to see us
merge the two into a single system that incorporates the best parts of both
while still maintaining the flexibility of choosing an appropriate efficiency
level. But that’s not what we have today. And honestly, thanks to the
unified Dataflow Model, it’s not even strictly necessary; so it may well
never happen.

The corollary of all this is that broad maturation of streaming systems
combined with robust frameworks for unbounded data processing will in time
allow for the relegation of the Lambda Architecture to the antiquity of big
data history where it belongs. I believe the time has come to make this a
reality. Because to do so—that is, to beat batch at its own game—you really
only need two things:
Correctness

This gets you parity with batch. At the core, correctness boils down to
consistent storage. Streaming systems need a method for checkpointing
persistent state over time (something Kreps has talked about in his “Why

23

https://oreil.ly/2l8asqf

local state is a fundamental primitive in stream processing” post), and it
must be well designed enough to remain consistent in light of machine
failures. When Spark Streaming first appeared in the public big data scene
a few years ago, it was a beacon of consistency in an otherwise dark
streaming world. Thankfully, things have improved substantially since
then, but it is remarkable how many streaming systems still try to get by
without strong consistency.

To reiterate—because this point is important: strong consistency is
required for exactly-once processing, which is required for correctness,
which is a requirement for any system that’s going to have a chance at
meeting or exceeding the capabilities of batch systems. Unless you just
truly don’t care about your results, I implore you to shun any streaming
system that doesn’t provide strongly consistent state. Batch systems don’t
require you to verify ahead of time if they are capable of producing
correct answers; don’t waste your time on streaming systems that can’t
meet that same bar.

If you’re curious to learn more about what it takes to get strong
consistency in a streaming system, I recommend you check out the
MillWheel, Spark Streaming, and Flink snapshotting papers. All three
spend a significant amount of time discussing consistency. Reuven will
dive into consistency guarantees in Chapter 5, and if you still find
yourself craving more, there’s a large amount of quality information on
this topic in the literature and elsewhere.

Tools for reasoning about time
This gets you beyond batch. Good tools for reasoning about time are
essential for dealing with unbounded, unordered data of varying event-
time skew. An increasing number of modern datasets exhibit these
characteristics, and existing batch systems (as well as many streaming
systems) lack the necessary tools to cope with the difficulties they impose
(though this is now rapidly changing, even as I write this). We will spend
the bulk of this book explaining and focusing on various facets of this
point.

To begin with, we get a basic understanding of the important concept of
time domains, after which we take a deeper look at what I mean by
unbounded, unordered data of varying event-time skew. We then spend
the rest of this chapter looking at common approaches to bounded and
unbounded data processing, using both batch and streaming systems.

3

24

http://bit.ly/2Muob70
http://bit.ly/2Mrq8Be
http://bit.ly/2t4DGK0

Event Time Versus Processing Time
To speak cogently about unbounded data processing requires a clear
understanding of the domains of time involved. Within any data processing
system, there are typically two domains of time that we care about:
Event time

This is the time at which events actually occurred.

Processing time
This is the time at which events are observed in the system.

Not all use cases care about event times (and if yours doesn’t, hooray! your
life is easier), but many do. Examples include characterizing user behavior
over time, most billing applications, and many types of anomaly detection, to
name a few.

In an ideal world, event time and processing time would always be equal,
with events being processed immediately as they occur. Reality is not so kind,
however, and the skew between event time and processing time is not only
nonzero, but often a highly variable function of the characteristics of the
underlying input sources, execution engine, and hardware. Things that can
affect the level of skew include the following:

Shared resource limitations, like network congestion, network
partitions, or shared CPU in a nondedicated environment

Software causes such as distributed system logic, contention, and so
on

Features of the data themselves, like key distribution, variance in
throughput, or variance in disorder (i.e., a plane full of people taking
their phones out of airplane mode after having used them offline for
the entire flight)

As a result, if you plot the progress of event time and processing time in any
real-world system, you typically end up with something that looks a bit like
the red line in Figure 1-1.

25

Figure 1-1. Time-domain mapping. The x-axis represents event-time completeness in the system; that is,
the time X in event time up to which all data with event times less than X have been observed. The y-
axis represents the progress of processing time; that is, normal clock time as observed by the data

processing system as it executes.

In Figure 1-1, the black dashed line with slope of 1 represents the ideal, where
processing time and event time are exactly equal; the red line represents
reality. In this example, the system lags a bit at the beginning of processing
time, veers closer toward the ideal in the middle, and then lags again a bit
toward the end. At first glance, there are two types of skew visible in this
diagram, each in different time domains:
Processing time

The vertical distance between the ideal and the red line is the lag in the
processing-time domain. That distance tells you how much delay is
observed (in processing time) between when the events for a given time
occurred and when they were processed. This is the perhaps the more
natural and intuitive of the two skews.

4

26

Event time
The horizontal distance between the ideal and the red line is the amount of
event-time skew in the pipeline at that moment. It tells you how far
behind the ideal (in event time) the pipeline is currently.

In reality, processing-time lag and event-time skew at any given point in time
are identical; they’re just two ways of looking at the same thing. The
important takeaway regarding lag/skew is this: Because the overall mapping
between event time and processing time is not static (i.e., the lag/skew can
vary arbitrarily over time), this means that you cannot analyze your data
solely within the context of when they are observed by your pipeline if you
care about their event times (i.e., when the events actually occurred).
Unfortunately, this is the way many systems designed for unbounded data
have historically operated. To cope with the infinite nature of unbounded
datasets, these systems typically provide some notion of windowing the
incoming data. We discuss windowing in great depth a bit later, but it
essentially means chopping up a dataset into finite pieces along temporal
boundaries. If you care about correctness and are interested in analyzing your
data in the context of their event times, you cannot define those temporal
boundaries using processing time (i.e., processing-time windowing), as many
systems do; with no consistent correlation between processing time and event
time, some of your event-time data are going to end up in the wrong
processing-time windows (due to the inherent lag in distributed systems, the
online/offline nature of many types of input sources, etc.), throwing
correctness out the window, as it were. We look at this problem in more detail
in a number of examples in the sections that follow, as well as the remainder
of the book.

Unfortunately, the picture isn’t exactly rosy when windowing by event time,
either. In the context of unbounded data, disorder and variable skew induce a
completeness problem for event-time windows: lacking a predictable
mapping between processing time and event time, how can you determine
when you’ve observed all of the data for a given event time X? For many real-
world data sources, you simply can’t. But the vast majority of data processing
systems in use today rely on some notion of completeness, which puts them at
a severe disadvantage when applied to unbounded datasets.

I propose that instead of attempting to groom unbounded data into finite
batches of information that eventually become complete, we should be
designing tools that allow us to live in the world of uncertainty imposed by

5

27

these complex datasets. New data will arrive, old data might be retracted or
updated, and any system we build should be able to cope with these facts on
its own, with notions of completeness being a convenient optimization for
specific and appropriate use cases rather than a semantic necessity across all
of them.

Before getting into specifics about what such an approach might look like,
let’s finish up one more useful piece of background: common data processing
patterns.

Data Processing Patterns
At this point, we have enough background established that we can begin
looking at the core types of usage patterns common across bounded and
unbounded data processing today. We look at both types of processing and,
where relevant, within the context of the two main types of engines we care
about (batch and streaming, where in this context, I’m essentially lumping
microbatch in with streaming because the differences between the two aren’t
terribly important at this level).

Bounded Data
Processing bounded data is conceptually quite straightforward, and likely
familiar to everyone. In Figure 1-2, we start out on the left with a dataset full
of entropy. We run it through some data processing engine (typically batch,
though a well-designed streaming engine would work just as well), such as
MapReduce, and on the right side end up with a new structured dataset with
greater inherent value.

Figure 1-2. Bounded data processing with a classic batch engine. A finite pool of unstructured data on
the left is run through a data processing engine, resulting in corresponding structured data on the right.

28

http://bit.ly/2sZNfuA

Though there are of course infinite variations on what you can actually
calculate as part of this scheme, the overall model is quite simple. Much more
interesting is the task of processing an unbounded dataset. Let’s now look at
the various ways unbounded data are typically processed, beginning with the
approaches used with traditional batch engines and then ending up with the
approaches you can take with a system designed for unbounded data, such as
most streaming or microbatch engines.

Unbounded Data: Batch
Batch engines, though not explicitly designed with unbounded data in mind,
have nevertheless been used to process unbounded datasets since batch
systems were first conceived. As you might expect, such approaches revolve
around slicing up the unbounded data into a collection of bounded datasets
appropriate for batch processing.

Fixed windows
The most common way to process an unbounded dataset using repeated runs
of a batch engine is by windowing the input data into fixed-size windows and
then processing each of those windows as a separate, bounded data source
(sometimes also called tumbling windows), as in Figure 1-3. Particularly for
input sources like logs, for which events can be written into directory and file
hierarchies whose names encode the window they correspond to, this sort of
thing appears quite straightforward at first blush because you’ve essentially
performed the time-based shuffle to get data into the appropriate event-time
windows ahead of time.

In reality, however, most systems still have a completeness problem to deal
with (What if some of your events are delayed en route to the logs due to a
network partition? What if your events are collected globally and must be
transferred to a common location before processing? What if your events
come from mobile devices?), which means some sort of mitigation might be
necessary (e.g., delaying processing until you’re sure all events have been
collected or reprocessing the entire batch for a given window whenever data
arrive late).

29

Figure 1-3. Unbounded data processing via ad hoc fixed windows with a classic batch engine. An
unbounded dataset is collected up front into finite, fixed-size windows of bounded data that are then

processed via successive runs a of classic batch engine.

Sessions
This approach breaks down even more when you try to use a batch engine to
process unbounded data into more sophisticated windowing strategies, like
sessions. Sessions are typically defined as periods of activity (e.g., for a
specific user) terminated by a gap of inactivity. When calculating sessions
using a typical batch engine, you often end up with sessions that are split
across batches, as indicated by the red marks in Figure 1-4. We can reduce the
number of splits by increasing batch sizes, but at the cost of increased latency.
Another option is to add additional logic to stitch up sessions from previous
runs, but at the cost of further complexity.

Figure 1-4. Unbounded data processing into sessions via ad hoc fixed windows with a classic batch
engine. An unbounded dataset is collected up front into finite, fixed-size windows of bounded data that

are then subdivided into dynamic session windows via successive runs a of classic batch engine.

Either way, using a classic batch engine to calculate sessions is less than
ideal. A nicer way would be to build up sessions in a streaming manner,
which we look at later on.

Unbounded Data: Streaming
Contrary to the ad hoc nature of most batch-based unbounded data processing
approaches, streaming systems are built for unbounded data. As we talked
about earlier, for many real-world, distributed input sources, you not only find
yourself dealing with unbounded data, but also data such as the following:

Highly unordered with respect to event times, meaning that you need

30

some sort of time-based shuffle in your pipeline if you want to
analyze the data in the context in which they occurred.

Of varying event-time skew, meaning that you can’t just assume
you’ll always see most of the data for a given event time X within
some constant epsilon of time Y.

There are a handful of approaches that you can take when dealing with data
that have these characteristics. I generally categorize these approaches into
four groups: time-agnostic, approximation, windowing by processing time,
and windowing by event time.

Let’s now spend a little bit of time looking at each of these approaches.

Time-agnostic
Time-agnostic processing is used for cases in which time is essentially
irrelevant; that is, all relevant logic is data driven. Because everything about
such use cases is dictated by the arrival of more data, there’s really nothing
special a streaming engine has to support other than basic data delivery. As a
result, essentially all streaming systems in existence support time-agnostic use
cases out of the box (modulo system-to-system variances in consistency
guarantees, of course, if you care about correctness). Batch systems are also
well suited for time-agnostic processing of unbounded data sources by simply
chopping the unbounded source into an arbitrary sequence of bounded
datasets and processing those datasets independently. We look at a couple of
concrete examples in this section, but given the straightforwardness of
handling time-agnostic processing (from a temporal perspective at least), we
won’t spend much more time on it beyond that.

Filtering
A very basic form of time-agnostic processing is filtering, an example of
which is rendered in Figure 1-5. Imagine that you’re processing web traffic
logs and you want to filter out all traffic that didn’t originate from a specific
domain. You would look at each record as it arrived, see if it belonged to the
domain of interest, and drop it if not. Because this sort of thing depends only
on a single element at any time, the fact that the data source is unbounded,
unordered, and of varying event-time skew is irrelevant.

31

Figure 1-5. Filtering unbounded data. A collection of data (flowing left to right) of varying types is
filtered into a homogeneous collection containing a single type.

Inner joins
Another time-agnostic example is an inner join, diagrammed in Figure 1-6.
When joining two unbounded data sources, if you care only about the results
of a join when an element from both sources arrive, there’s no temporal
element to the logic. Upon seeing a value from one source, you can simply
buffer it up in persistent state; only after the second value from the other
source arrives do you need to emit the joined record. (In truth, you’d likely
want some sort of garbage collection policy for unemitted partial joins, which
would likely be time based. But for a use case with little or no uncompleted
joins, such a thing might not be an issue.)

Figure 1-6. Performing an inner join on unbounded data. Joins are produced when matching elements
from both sources are observed.

Switching semantics to some sort of outer join introduces the data
completeness problem we’ve talked about: after you’ve seen one side of the
join, how do you know whether the other side is ever going to arrive or not?
Truth be told, you don’t, so you need to introduce some notion of a timeout,
which introduces an element of time. That element of time is essentially a
form of windowing, which we’ll look at more closely in a moment.

Approximation algorithms
The second major category of approaches is approximation algorithms, such
as approximate Top-N, streaming k-means, and so on. They take an
unbounded source of input and provide output data that, if you squint at them,
look more or less like what you were hoping to get, as in Figure 1-7. The
upside of approximation algorithms is that, by design, they are low overhead
and designed for unbounded data. The downsides are that a limited set of

32

http://bit.ly/2JLcOG9
http://bit.ly/2JLQE6O

them exist, the algorithms themselves are often complicated (which makes it
difficult to conjure up new ones), and their approximate nature limits their
utility.

Figure 1-7. Computing approximations on unbounded data. Data are run through a complex algorithm,
yielding output data that look more or less like the desired result on the other side.

It’s worth noting that these algorithms typically do have some element of time
in their design (e.g., some sort of built-in decay). And because they process
elements as they arrive, that time element is usually processing-time based.
This is particularly important for algorithms that provide some sort of
provable error bounds on their approximations. If those error bounds are
predicated on data arriving in order, they mean essentially nothing when you
feed the algorithm unordered data with varying event-time skew. Something
to keep in mind.

Approximation algorithms themselves are a fascinating subject, but as they
are essentially another example of time-agnostic processing (modulo the
temporal features of the algorithms themselves), they’re quite straightforward
to use and thus not worth further attention, given our current focus.

Windowing
The remaining two approaches for unbounded data processing are both
variations of windowing. Before diving into the differences between them, I
should make it clear exactly what I mean by windowing, insomuch as we
touched on it only briefly in the previous section. Windowing is simply the
notion of taking a data source (either unbounded or bounded), and chopping it
up along temporal boundaries into finite chunks for processing. Figure 1-8
shows three different windowing patterns.

33

Figure 1-8. Windowing strategies. Each example is shown for three different keys, highlighting the
difference between aligned windows (which apply across all the data) and unaligned windows (which

apply across a subset of the data).

Let’s take a closer look at each strategy:
Fixed windows (aka tumbling windows)

We discussed fixed windows earlier. Fixed windows slice time into
segments with a fixed-size temporal length. Typically (as shown in
Figure 1-9), the segments for fixed windows are applied uniformly across
the entire dataset, which is an example of aligned windows. In some
cases, it’s desirable to phase-shift the windows for different subsets of the
data (e.g., per key) to spread window completion load more evenly over
time, which instead is an example of unaligned windows because they
vary across the data.

Sliding windows (aka hopping windows)
A generalization of fixed windows, sliding windows are defined by a
fixed length and a fixed period. If the period is less than the length, the
windows overlap. If the period equals the length, you have fixed
windows. And if the period is greater than the length, you have a weird
sort of sampling window that looks only at subsets of the data over time.
As with fixed windows, sliding windows are typically aligned, though
they can be unaligned as a performance optimization in certain use cases.
Note that the sliding windows in Figure 1-8 are drawn as they are to give
a sense of sliding motion; in reality, all five windows would apply across
the entire dataset.

Sessions
An example of dynamic windows, sessions are composed of sequences of
events terminated by a gap of inactivity greater than some timeout.
Sessions are commonly used for analyzing user behavior over time, by

6

34

grouping together a series of temporally related events (e.g., a sequence of
videos viewed in one sitting). Sessions are interesting because their
lengths cannot be defined a priori; they are dependent upon the actual data
involved. They’re also the canonical example of unaligned windows
because sessions are practically never identical across different subsets of
data (e.g., different users).

The two domains of time we discussed earlier (processing time and event
time) are essentially the two we care about. Windowing makes sense in both
domains, so let’s look at each in detail and see how they differ. Because
processing-time windowing has historically been more common, we’ll start
there.

Windowing by processing time
When windowing by processing time, the system essentially buffers up
incoming data into windows until some amount of processing time has
passed. For example, in the case of five-minute fixed windows, the system
would buffer data for five minutes of processing time, after which it would
treat all of the data it had observed in those five minutes as a window and
send them downstream for processing.

Figure 1-9. Windowing into fixed windows by processing time. Data are collected into windows based
on the order they arrive in the pipeline.

There are a few nice properties of processing-time windowing:

It’s simple. The implementation is extremely straightforward because
you never worry about shuffling data within time. You just buffer
things as they arrive and send them downstream when the window
closes.

Judging window completeness is straightforward. Because the
system has perfect knowledge of whether all inputs for a window
have been seen, it can make perfect decisions about whether a given
window is complete. This means there is no need to be able to deal
with “late” data in any way when windowing by processing time.

7

35

If you’re wanting to infer information about the source as it is
observed, processing-time windowing is exactly what you want.
Many monitoring scenarios fall into this category. Imagine tracking
the number of requests per second sent to a global-scale web service.
Calculating a rate of these requests for the purpose of detecting
outages is a perfect use of processing-time windowing.

Good points aside, there is one very big downside to processing-time
windowing: if the data in question have event times associated with them,
those data must arrive in event-time order if the processing-time windows are
to reflect the reality of when those events actually happened. Unfortunately,
event-time ordered data are uncommon in many real-world, distributed input
sources.

As a simple example, imagine any mobile app that gathers usage statistics for
later processing. For cases in which a given mobile device goes offline for
any amount of time (brief loss of connectivity, airplane mode while flying
across the country, etc.), the data recorded during that period won’t be
uploaded until the device comes online again. This means that data might
arrive with an event-time skew of minutes, hours, days, weeks, or more. It’s
essentially impossible to draw any sort of useful inferences from such a
dataset when windowed by processing time.

As another example, many distributed input sources might seem to provide
event-time ordered (or very nearly so) data when the overall system is
healthy. Unfortunately, the fact that event-time skew is low for the input
source when healthy does not mean it will always stay that way. Consider a
global service that processes data collected on multiple continents. If network
issues across a bandwidth-constrained transcontinental line (which, sadly, are
surprisingly common) further decrease bandwidth and/or increase latency,
suddenly a portion of your input data might begin arriving with much greater
skew than before. If you are windowing those data by processing time, your
windows are no longer representative of the data that actually occurred within
them; instead, they represent the windows of time as the events arrived at the
processing pipeline, which is some arbitrary mix of old and current data.

What we really want in both of those cases is to window data by their event
times in a way that is robust to the order of arrival of events. What we really
want is event-time windowing.

Windowing by event time

36

Event-time windowing is what you use when you need to observe a data
source in finite chunks that reflect the times at which those events actually
happened. It’s the gold standard of windowing. Prior to 2016, most data
processing systems in use lacked native support for it (though any system
with a decent consistency model, like Hadoop or Spark Streaming 1.x, could
act as a reasonable substrate for building such a windowing system). I’m
happy to say that the world of today looks very different, with multiple
systems, from Flink to Spark to Storm to Apex, natively supporting event-
time windowing of some sort.

Figure 1-10 shows an example of windowing an unbounded source into one-
hour fixed windows.

Figure 1-10. Windowing into fixed windows by event time. Data are collected into windows based on
the times at which they occurred. The black arrows call out example data that arrived in processing-

time windows that differed from the event-time windows to which they belonged.

The black arrows in Figure 1-10 call out two particularly interesting pieces of
data. Each arrived in processing-time windows that did not match the event-
time windows to which each bit of data belonged. As such, if these data had
been windowed into processing-time windows for a use case that cared about
event times, the calculated results would have been incorrect. As you would
expect, event-time correctness is one nice thing about using event-time
windows.

Another nice thing about event-time windowing over an unbounded data
source is that you can create dynamically sized windows, such as sessions,
without the arbitrary splits observed when generating sessions over fixed
windows (as we saw previously in the sessions example from “Unbounded
Data: Streaming”), as demonstrated in Figure 1-11.

37

Figure 1-11. Windowing into session windows by event time. Data are collected into session windows
capturing bursts of activity based on the times that the corresponding events occurred. The black
arrows again call out the temporal shuffle necessary to put the data into their correct event-time

locations.

Of course, powerful semantics rarely come for free, and event-time windows
are no exception. Event-time windows have two notable drawbacks due to the
fact that windows must often live longer (in processing time) than the actual
length of the window itself:
Buffering

Due to extended window lifetimes, more buffering of data is required.
Thankfully, persistent storage is generally the cheapest of the resource
types most data processing systems depend on (the others being primarily
CPU, network bandwidth, and RAM). As such, this problem is typically
much less of a concern than you might think when using any well-
designed data processing system with strongly consistent persistent state
and a decent in-memory caching layer. Also, many useful aggregations do
not require the entire input set to be buffered (e.g., sum or average), but
instead can be performed incrementally, with a much smaller,
intermediate aggregate stored in persistent state.

Completeness
Given that we often have no good way of knowing when we’ve seen all of
the data for a given window, how do we know when the results for the
window are ready to materialize? In truth, we simply don’t. For many
types of inputs, the system can give a reasonably accurate heuristic
estimate of window completion via something like the watermarks found
in MillWheel, Cloud Dataflow, and Flink (which we talk about more in
Chapters 3 and 4). But for cases in which absolute correctness is
paramount (again, think billing), the only real option is to provide a way
for the pipeline builder to express when they want results for windows to
be materialized and how those results should be refined over time.
Dealing with window completeness (or lack thereof) is a fascinating topic
but one perhaps best explored in the context of concrete examples, which

38

we look at next.

Summary
Whew! That was a lot of information. If you’ve made it this far, you are to be
commended! But we are only just getting started. Before forging ahead to
looking in detail at the Beam Model approach, let’s briefly step back and
recap what we’ve learned so far. In this chapter, we’ve done the following:

Clarified terminology, focusing the definition of “streaming” to refer
to systems built with unbounded data in mind, while using more
descriptive terms like approximate/speculative results for distinct
concepts often categorized under the “streaming” umbrella.
Additionally, we highlighted two important dimensions of large-
scale datasets: cardinality (i.e., bounded versus unbounded) and
encoding (i.e., table versus stream), the latter of which will consume
much of the second half of the book.

Assessed the relative capabilities of well-designed batch and
streaming systems, positing streaming is in fact a strict superset of
batch, and that notions like the Lambda Architecture, which are
predicated on streaming being inferior to batch, are destined for
retirement as streaming systems mature.

Proposed two high-level concepts necessary for streaming systems to
both catch up to and ultimately surpass batch, those being
correctness and tools for reasoning about time, respectively.

Established the important differences between event time and
processing time, characterized the difficulties those differences
impose when analyzing data in the context of when they occurred,
and proposed a shift in approach away from notions of completeness
and toward simply adapting to changes in data over time.

Looked at the major data processing approaches in common use
today for bounded and unbounded data, via both batch and streaming
engines, roughly categorizing the unbounded approaches into: time-
agnostic, approximation, windowing by processing time, and
windowing by event time.

Next up, we dive into the details of the Beam Model, taking a conceptual look

39

at how we’ve broken up the notion of data processing across four related
axes: what, where, when, and how. We also take a detailed look at processing
a simple, concrete example dataset across multiple scenarios, highlighting the
plurality of use cases enabled by the Beam Model, with some concrete APIs
to ground us in reality. These examples will help drive home the notions of
event time and processing time introduced in this chapter while additionally
exploring new concepts such as watermarks.

 For completeness, it’s perhaps worth calling out that this definition includes
both true streaming as well as microbatch implementations. For those of you
who aren’t familiar with microbatch systems, they are streaming systems that
use repeated executions of a batch processing engine to process unbounded
data. Spark Streaming is the canonical example in the industry.

 Readers familiar with my original “Streaming 101” article might recall that I
rather emphatically encouraged the abandonment of the term “stream” when
referring to datasets. That never caught on, which I initially thought was due
to its catchiness and pervasive existing usage. In retrospect, however, I think I
was simply wrong. There actually is great value in distinguishing between the
two different types of dataset constitutions: tables and streams. Indeed, most
of the second half of this book is dedicated to understanding the relationship
between those two.

 If you’re unfamiliar with what I mean when I say exactly-once, it’s referring
to a specific type of consistency guarantee that certain data processing
frameworks provide. Consistency guarantees are typically bucketed into three
main classes: at-most-once processing, at-least-once processing, and exactly-
once processing. Note that the names in use here refer to the effective
semantics as observed within the outputs generated by the pipeline, not the
actual number of times a pipeline might process (or attempt to process) any
given record. For this reason, the term effectively-once is sometimes used
instead of exactly-once, since it’s more representative of the underlying
nature of things. Reuven covers these concepts in much more detail in
Chapter 5.

 Since the original publication of “Streaming 101,” numerous individuals
have pointed out to me that it would have been more intuitive to place
processing time on the x-axis and event time on the y-axis. I do agree that
swapping the two axes would initially feel more natural, as event time seems
like the dependent variable to processing time’s independent variable.

1

2

3

4

40

https://oreil.ly/2JBfN7X

However, because both variables are monotonic and intimately related,
they’re effectively interdependent variables. So I think from a technical
perspective you just have to pick an axis and stick with it. Math is confusing
(especially outside of North America, where it suddenly becomes plural and
gangs up on you).

 This result really shouldn’t be surprising (but was for me, hence why I’m
pointing it out), because we’re effectively creating a right triangle with the
ideal line when measuring the two types of skew/lag. Maths are cool.

 We look at aligned fixed windows in detail in Chapter 2, and unaligned
fixed windows in Chapter 4.

 If you poke around enough in the academic literature or SQL-based
streaming systems, you’ll also come across a third windowing time domain:
tuple-based windowing (i.e., windows whose sizes are counted in numbers of
elements). However, tuple-based windowing is essentially a form of
processing-time windowing in which elements are assigned monotonically
increasing timestamps as they arrive at the system. As such, we won’t discuss
tuple-based windowing in detail any further.

5

6

7

41

Chapter 2. The What, Where,
When, and How of Data
Processing

Okay party people, it’s time to get concrete!

Chapter 1 focused on three main areas: terminology, defining precisely what I
mean when I use overloaded terms like “streaming”; batch versus streaming,
comparing the theoretical capabilities of the two types of systems, and
postulating that only two things are necessary to take streaming systems
beyond their batch counterparts: correctness and tools for reasoning about
time; and data processing patterns, looking at the conceptual approaches
taken with both batch and streaming systems when processing bounded and
unbounded data.

In this chapter, we’re now going to focus further on the data processing
patterns from Chapter 1, but in more detail, and within the context of concrete
examples. By the time we’re finished, we’ll have covered what I consider to
be the core set of principles and concepts required for robust out-of-order data
processing; these are the tools for reasoning about time that truly get you
beyond classic batch processing.

To give you a sense of what things look like in action, I use snippets of
Apache Beam code, coupled with time-lapse diagrams to provide a visual
representation of the concepts. Apache Beam is a unified programming model
and portability layer for batch and stream processing, with a set of concrete
SDKs in various languages (e.g., Java and Python). Pipelines written with
Apache Beam can then be portably run on any of the supported execution
engines (Apache Apex, Apache Flink, Apache Spark, Cloud Dataflow, etc.).

I use Apache Beam here for examples not because this is a Beam book (it’s
not), but because it most completely embodies the concepts described in this
book. Back when “Streaming 102” was originally written (back when it was
still the Dataflow Model from Google Cloud Dataflow and not the Beam
Model from Apache Beam), it was literally the only system in existence that
provided the amount of expressiveness necessary for all the examples we’ll
cover here. A year and a half later, I’m happy to say much has changed, and

1

42

https://beam.apache.org/
http://oreil.ly/1TV7YGU

most of the major systems out there have moved or are moving toward
supporting a model that looks a lot like the one described in this book. So rest
assured that the concepts we cover here, though informed through the Beam
lens, as it were, will apply equally across most other systems you’ll come
across.

Roadmap
To help set the stage for this chapter, I want to lay out the five main concepts
that will underpin all of the discussions therein, and really, for most of the rest
of Part I. We’ve already covered two of them.

In Chapter 1, I first established the critical distinction between event time (the
time that events happen) and processing time (the time they are observed
during processing). This provides the foundation for one of the main theses
put forth in this book: if you care about both correctness and the context
within which events actually occurred, you must analyze data relative to their
inherent event times, not the processing time at which they are encountered
during the analysis itself.

I then introduced the concept of windowing (i.e., partitioning a dataset along
temporal boundaries), which is a common approach used to cope with the fact
that unbounded data sources technically might never end. Some simpler
examples of windowing strategies are fixed and sliding windows, but more
sophisticated types of windowing, such as sessions (in which the windows are
defined by features of the data themselves; for example, capturing a session of
activity per user followed by a gap of inactivity) also see broad usage.

In addition to these two concepts, we’re now going to look closely at three
more:
Triggers

A trigger is a mechanism for declaring when the output for a window
should be materialized relative to some external signal. Triggers provide
flexibility in choosing when outputs should be emitted. In some sense,
you can think of them as a flow control mechanism for dictating when
results should be materialized. Another way of looking at it is that triggers
are like the shutter-release on a camera, allowing you to declare when to
take a snapshots in time of the results being computed.

Triggers also make it possible to observe the output for a window multiple

43

times as it evolves. This in turn opens up the door to refining results over
time, which allows for providing speculative results as data arrive, as well
as dealing with changes in upstream data (revisions) over time or data that
arrive late (e.g., mobile scenarios, in which someone’s phone records
various actions and their event times while the person is offline and then
proceeds to upload those events for processing upon regaining
connectivity).

Watermarks
A watermark is a notion of input completeness with respect to event
times. A watermark with value of time X makes the statement: “all input
data with event times less than X have been observed.” As such,
watermarks act as a metric of progress when observing an unbounded data
source with no known end. We touch upon the basics of watermarks in
this chapter, and then Slava goes super deep on the subject in Chapter 3.

Accumulation
An accumulation mode specifies the relationship between multiple results
that are observed for the same window. Those results might be completely
disjointed; that is, representing independent deltas over time, or there
might be overlap between them. Different accumulation modes have
different semantics and costs associated with them and thus find
applicability across a variety of use cases.

Also, because I think it makes it easier to understand the relationships
between all of these concepts, we revisit the old and explore the new within
the structure of answering four questions, all of which I propose are critical to
every unbounded data processing problem:

What results are calculated? This question is answered by the types
of transformations within the pipeline. This includes things like
computing sums, building histograms, training machine learning
models, and so on. It’s also essentially the question answered by
classic batch processing

Where in event time are results calculated? This question is answered
by the use of event-time windowing within the pipeline. This
includes the common examples of windowing from Chapter 1 (fixed,
sliding, and sessions); use cases that seem to have no notion of
windowing (e.g., time-agnostic processing; classic batch processing

44

also generally falls into this category); and other, more complex
types of windowing, such as time-limited auctions. Also note that it
can include processing-time windowing, as well, if you assign
ingress times as event times for records as they arrive at the system.

When in processing time are results materialized? This question is
answered by the use of triggers and (optionally) watermarks. There
are infinite variations on this theme, but the most common patterns
are those involving repeated updates (i.e., materialized view
semantics), those that utilize a watermark to provide a single output
per window only after the corresponding input is believed to be
complete (i.e., classic batch processing semantics applied on a per-
window basis), or some combination of the two.

How do refinements of results relate? This question is answered by
the type of accumulation used: discarding (in which results are all
independent and distinct), accumulating (in which later results build
upon prior ones), or accumulating and retracting (in which both the
accumulating value plus a retraction for the previously triggered
value(s) are emitted).

We look at each of these questions in much more detail throughout the rest of
the book. And, yes, I’m going to run this color scheme thing into the ground
in an attempt to make it abundantly clear which concepts relate to which
question in the What/Where/When/How idiom. You’re welcome <winky-
smiley/>.

Batch Foundations: What and Where
Okay, let’s get this party started. First stop: batch processing.

What: Transformations
The transformations applied in classic batch processing answer the question:
“What results are calculated?” Even though you are likely already familiar
with classic batch processing, we’re going to start there anyway because it’s
the foundation on top of which we add all of the other concepts.

In the rest of this chapter (and indeed, through much of the book), we look at
a single example: computing keyed integer sums over a simple dataset
consisting of nine values. Let’s imagine that we’ve written a team-based

2

45

mobile game and we want to build a pipeline that calculates team scores by
summing up the individual scores reported by users’ phones. If we were to
capture our nine example scores in a SQL table named “UserScores,” it might
look something like this:

--
| Name | Team | Score | EventTime | ProcTime |
--
Julie	TeamX	5	12:00:26	12:05:19
Frank	TeamX	9	12:01:26	12:08:19
Ed	TeamX	7	12:02:26	12:05:39
Julie	TeamX	8	12:03:06	12:07:06
Amy	TeamX	3	12:03:39	12:06:13
Fred	TeamX	4	12:04:19	12:06:39
Naomi	TeamX	3	12:06:39	12:07:19
Becky	TeamX	8	12:07:26	12:08:39
Naomi	TeamX	1	12:07:46	12:09:00
--

Note that all the scores in this example are from users on the same team; this
is to keep the example simple, given that we have a limited number of
dimensions in our diagrams that follow. And because we’re grouping by
team, we really just care about the last three columns:

Score

The individual user score associated with this event

EventTime

The event time for the score; that is, the time at which the score occurred

ProcTime

The processing for the score; that is, the time at which the score was
observed by the pipeline

For each example pipeline, we’ll look at a time-lapse diagram that highlights
how the data evolves over time. Those diagrams plot our nine scores in the
two dimensions of time we care about: event time in the x-axis, and
processing time in the y-axis. Figure 2-1 illustrates what a static plot of the
input data looks like.

46

Figure 2-1. Nine input records, plotted in both event time and processing time

Subsequent time-lapse diagrams are either animations (Safari) or a sequence
of frames (print and all other digital formats), allowing you to see how the
data are processed over time (more on this shortly after we get to the first
time-lapse diagram).

Preceding each example is a short snippet of Apache Beam Java SDK
pseudocode to make the definition of the pipeline more concrete. It is
pseudocode in the sense that I sometime bend the rules to make the examples
clearer, elide details (like the use of concrete I/O sources), or simplify names
(the trigger names in Beam Java 2.x and earlier are painfully verbose; I use
simpler names for clarity). Beyond minor things like those, it’s otherwise
real-world Beam code (and real code is available on GitHub for all examples
in this chapter).

If you’re already familiar with something like Spark or Flink, you should
have a relatively easy time understanding what the Beam code is doing. But
to give you a crash course in things, there are two basic primitives in Beam:

PCollections

These represent datasets (possibly massive ones) across which parallel
transformations can be performed (hence the “P” at the beginning of the
name).

PTransforms

These are applied to PCollections to create new PCollections.
PTransforms may perform element-wise transformations, they may
group/aggregate multiple elements together, or they may be a composite

47

http://bit.ly/2KMsDwR

combination of other PTransforms, as depicted in Figure 2-2.

Figure 2-2. Types of transformations

For the purposes of our examples, we typically assume that we start out with
a pre-loaded PCollection<KV<Team, Integer>> named “input” (that is, a
PCollection composed of key/value pairs of Teams and Integers, where
the Teams are just something like Strings representing team names, and the
Integers are scores from any individual on the corresponding team). In a
real-world pipeline, we would’ve acquired input by reading in a
PCollection<String> of raw data (e.g., log records) from an I/O source and
then transforming it into a PCollection<KV<Team, Integer>> by parsing
the log records into appropriate key/value pairs. For the sake of clarity in this
first example, I include pseudocode for all of those steps, but in subsequent
examples, I elide the I/O and parsing.

Thus, for a pipeline that simply reads in data from an I/O source, parses
team/score pairs, and calculates per-team sums of scores, we’d have
something like that shown in Example 2-1.
Example 2-1. Summation pipeline
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
 input.apply(Sum.integersPerKey());

Key/value data are read from an I/O source, with a Team (e.g., String of the
team name) as the key and an Integer (e.g., individual team member scores)
as the value. The values for each key are then summed together to generate
per-key sums (e.g., total team score) in the output collection.

For all the examples to come, after seeing a code snippet describing the
pipeline that we’re analyzing, we’ll then look at a time-lapse diagram
showing the execution of that pipeline over our concrete dataset for a single
key. In a real pipeline, you can imagine that similar operations would be

48

happening in parallel across multiple machines, but for the sake of our
examples, it will be clearer to keep things simple.

As noted previously, Safari editions present the complete execution as an
animated movie, whereas print and all other digital formats use a static
sequence of key frames that provide a sense of how the pipeline progresses
over time. In both cases, we also provide a URL to a fully animated version
on www.streamingbook.net.

Each diagram plots the inputs and outputs across two dimensions: event time
(on the x-axis) and processing time (on the y-axis). Thus, real time as
observed by the pipeline progresses from bottom to top, as indicated by the
thick horizontal black line that ascends in the processing-time axis as time
progresses. Inputs are circles, with the number inside the circle representing
the value of that specific record. They start out light gray, and darken as the
pipeline observes them.

As the pipeline observes values, it accumulates them in its intermediate state
and eventually materializes the aggregate results as output. State and output
are represented by rectangles (gray for state, blue for output), with the
aggregate value near the top, and with the area covered by the rectangle
representing the portions of event time and processing time accumulated into
the result. For the pipeline in Example 2-1, it would look something like that
shown in Figure 2-3 when executed on a classic batch engine.

Figure 2-3. Classic batch processing

Because this is a batch pipeline, it accumulates state until it’s seen all of the
inputs (represented by the dashed green line at the top), at which point it

00:00 / 00:00

49

http://www.streamingbook.net

produces its single output of 48. In this example, we’re calculating a sum over
all of event time because we haven’t applied any specific windowing
transformations; hence the rectangles for state and output cover the entirety of
the x-axis. If we want to process an unbounded data source, however, classic
batch processing won’t be sufficient; we can’t wait for the input to end,
because it effectively never will. One of the concepts we want is windowing,
which we introduced in Chapter 1. Thus, within the context of our second
question—“Where in event time are results calculated?”—we’ll now briefly
revisit windowing.

Where: Windowing
As discussed in Chapter 1, windowing is the process of slicing up a data
source along temporal boundaries. Common windowing strategies include
fixed windows, sliding windows, and sessions windows, as demonstrated in
Figure 2-4.

Figure 2-4. Example windowing strategies. Each example is shown for three different keys, highlighting
the difference between aligned windows (which apply across all the data) and unaligned windows

(which apply across a subset of the data).

To get a better sense of what windowing looks like in practice, let’s take our
integer summation pipeline and window it into fixed, two-minute windows.
With Beam, the change is a simple addition of a Window.into transform,
which you can see highlighted in Example 2-2.
Example 2-2. Windowed summation code
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES)))
 .apply(Sum.integersPerKey());

Recall that Beam provides a unified model that works in both batch and
streaming because semantically batch is really just a subset of streaming. As
such, let’s first execute this pipeline on a batch engine; the mechanics are

50

more straightforward, and it will give us something to directly compare
against when we switch to a streaming engine. Figure 2-5 presents the result.

Figure 2-5. Windowed summation on a batch engine

As before, inputs are accumulated in state until they are entirely consumed,
after which output is produced. In this case, however, instead of one output,
we get four: a single output, for each of the four relevant two-minute event-
time windows.

At this point we’ve revisited the two main concepts that I introduced in
Chapter 1: the relationship between the event-time and processing-time
domains, and windowing. If we want to go any further, we’ll need to start
adding the new concepts mentioned at the beginning of this section: triggers,
watermarks, and accumulation.

Going Streaming: When and How
We just observed the execution of a windowed pipeline on a batch engine.
But, ideally, we’d like to have lower latency for our results, and we’d also
like to natively handle unbounded data sources. Switching to a streaming
engine is a step in the right direction, but our previous strategy of waiting
until our input has been consumed in its entirety to generate output is no
longer feasible. Enter triggers and watermarks.

When: The Wonderful Thing About Triggers Is Triggers
Are Wonderful Things!
Triggers provide the answer to the question: “When in processing time are
results materialized?” Triggers declare when output for a window should
happen in processing time (though the triggers themselves might make those
decisions based on things that happen in other time domains, such as
watermarks progressing in the event-time domain, as we’ll see in a few
moments). Each specific output for a window is referred to as a pane of the
window.

00:00 / 00:00

51

Though it’s possible to imagine quite a breadth of possible triggering
semantics, conceptually there are only two generally useful types of triggers,
and practical applications almost always boil down using either one or a
combination of both:
Repeated update triggers

These periodically generate updated panes for a window as its contents
evolve. These updates can be materialized with every new record, or they
can happen after some processing-time delay, such as once a minute. The
choice of period for a repeated update trigger is primarily an exercise in
balancing latency and cost.

Completeness triggers
These materialize a pane for a window only after the input for that
window is believed to be complete to some threshold. This type of trigger
is most analogous to what we’re familiar with in batch processing: only
after the input is complete do we provide a result. The difference in the
trigger-based approach is that the notion of completeness is scoped to the
context of a single window, rather than always being bound to the
completeness of the entire input.

Repeated update triggers are the most common type of trigger encountered in
streaming systems. They are simple to implement and simple to understand,
and they provide useful semantics for a specific type of use case: repeated
(and eventually consistent) updates to a materialized dataset, analogous to the
semantics you get with materialized views in the database world.

Completeness triggers are less frequently encountered, but provide streaming
semantics that more closely align with those from the classic batch processing
world. They also provide tools for reasoning about things like missing data
and late data, both of which we discuss shortly (and in the next chapter) as we
explore the underlying primitive that drives completeness triggers:
watermarks.

But first, let’s start simple and look at some basic repeated update triggers in
action. To make the notion of triggers a bit more concrete, let’s go ahead and
add the most straightforward type of trigger to our example pipeline: a trigger
that fires with every new record, as shown in Example 2-3.
Example 2-3. Triggering repeatedly with every record
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))

3

52

 .triggering(Repeatedly(AfterCount(1))));
 .apply(Sum.integersPerKey());

If we were to run this new pipeline on a streaming engine, the results would
look something like that shown in Figure 2-6.

Figure 2-6. Per-record triggering on a streaming engine

You can see how we now get multiple outputs (panes) for each window: once
per corresponding input. This sort of triggering pattern works well when the
output stream is being written to some sort of table that you can simply poll
for results. Any time you look in the table, you’ll see the most up-to-date
value for a given window, and those values will converge toward correctness
over time.

One downside of per-record triggering is that it’s quite chatty. When
processing large-scale data, aggregations like summation provide a nice
opportunity to reduce the cardinality of the stream without losing information.
This is particularly noticeable for cases in which you have high-volume keys;
for our example, massive teams with lots of active players. Imagine a
massively multiplayer game in which players are split into one of two
factions, and you want to tally stats on a per-faction basis. It’s probably
unnecessary to update your tallies with every new input record for every
player in a given faction. Instead, you might be happy updating them after
some processing-time delay, say every second, or every minute. The nice side
effect of using processing-time delays is that it has an equalizing effect across
high-volume keys or windows: the resulting stream ends up being more
uniform cardinality-wise.

There are two different approaches to processing-time delays in triggers:
aligned delays (where the delay slices up processing time into fixed regions
that align across keys and windows) and unaligned delays (where the delay is
relative to the data observed within a given window). A pipeline with
unaligned delays might look like Example 2-4, the results of which are shown
in Figure 2-7.
Example 2-4. Triggering on aligned two-minute processing-time boundaries
PCollection<KV<Team, Integer>> totals = input

00:00 / 00:00

53

 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(Repeatedly(AlignedDelay(TWO_MINUTES)))
 .apply(Sum.integersPerKey());

Figure 2-7. Two-minute aligned delay triggers (i.e., microbatching)

This sort of aligned delay trigger is effectively what you get from a
microbatch streaming system like Spark Streaming. The nice thing about it is
predictability; you get regular updates across all modified windows at the
same time. That’s also the downside: all updates happen at once, which
results in bursty workloads that often require greater peak provisioning to
properly handle the load. The alternative is to use an unaligned delay. That
would look something Example 2-5 in Beam. Figure 2-8 presents the results.
Example 2-5. Triggering on unaligned two-minute processing-time
boundaries
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(Repeatedly(UnalignedDelay(TWO_MINUTES))
 .apply(Sum.integersPerKey());

Figure 2-8. Two-minute unaligned delay triggers

Contrasting the unaligned delays in Figure 2-8 to the aligned delays in
Figure 2-6, it’s easy to see how the unaligned delays spread the load out more
evenly across time. The actual latencies involved for any given window differ
between the two, sometimes more and sometimes less, but in the end the
average latency will remain essentially the same. From that perspective,
unaligned delays are typically the better choice for large-scale processing
because they result in a more even load distribution over time.

Repeated update triggers are great for use cases in which we simply want
periodic updates to our results over time and are fine with those updates
converging toward correctness with no clear indication of when correctness is

00:00 / 00:00

00:00 / 00:00

54

achieved. However, as we discussed in Chapter 1, the vagaries of distributed
systems often lead to a varying level of skew between the time an event
happens and the time it’s actually observed by your pipeline, which means it
can be difficult to reason about when your output presents an accurate and
complete view of your input data. For cases in which input completeness
matters, it’s important to have some way of reasoning about completeness
rather than blindly trusting the results calculated by whichever subset of data
happen to have found their way to your pipeline. Enter watermarks.

When: Watermarks
Watermarks are a supporting aspect of the answer to the question: “When in
processing time are results materialized?” Watermarks are temporal notions
of input completeness in the event-time domain. Worded differently, they are
the way the system measures progress and completeness relative to the event
times of the records being processed in a stream of events (either bounded or
unbounded, though their usefulness is more apparent in the unbounded case).

Recall this diagram from Chapter 1, slightly modified in Figure 2-9, in which
I described the skew between event time and processing time as an ever-
changing function of time for most real-world distributed data processing
systems.

55

Figure 2-9. Event-time progress, skew, and watermarks

That meandering red line that I claimed represented reality is essentially the
watermark; it captures the progress of event-time completeness as processing
time progresses. Conceptually, you can think of the watermark as a function,
F(P) → E, which takes a point in processing time and returns a point in event
time. That point in event time, E, is the point up to which the system believes
all inputs with event times less than E have been observed. In other words,
it’s an assertion that no more data with event times less than E will ever be
seen again. Depending upon the type of watermark, perfect or heuristic, that
assertion can be a strict guarantee or an educated guess, respectively:
Perfect watermarks

For the case in which we have perfect knowledge of all of the input data,
it’s possible to construct a perfect watermark. In such a case, there is no
such thing as late data; all data are early or on time.

Heuristic watermarks

4

56

For many distributed input sources, perfect knowledge of the input data is
impractical, in which case the next best option is to provide a heuristic
watermark. Heuristic watermarks use whatever information is available
about the inputs (partitions, ordering within partitions if any, growth rates
of files, etc.) to provide an estimate of progress that is as accurate as
possible. In many cases, such watermarks can be remarkably accurate in
their predictions. Even so, the use of a heuristic watermark means that it
might sometimes be wrong, which will lead to late data. We show you
about ways to deal with late data soon.

Because they provide a notion of completeness relative to our inputs,
watermarks form the foundation for the second type of trigger mentioned
previously: completeness triggers. Watermarks themselves are a fascinating
and complex topic, as you’ll see when you get to Slava’s watermarks deep
dive in Chapter 3. But for now, let’s look at them in action by updating our
example pipeline to utilize a completeness trigger built upon watermarks, as
demonstrated in Example 2-6.
Example 2-6. Watermark completeness trigger
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark()))
 .apply(Sum.integersPerKey());

Now, an interesting quality of watermarks is that they are a class of functions,
meaning there are multiple different functions F(P) → E that satisfy the
properties of a watermark, to varying degrees of success. As I noted earlier,
for situations in which you have perfect knowledge of your input data, it
might be possible to build a perfect watermark, which is the ideal situation.
But for cases in which you lack perfect knowledge of the inputs or for which
it’s simply too computationally expensive to calculate the perfect watermark,
you might instead choose to utilize a heuristic for defining your watermark.
The point I want to make here is that the given watermark algorithm in use is
independent from the pipeline itself. We’re not going to discuss in detail what
it means to implement a watermark here (Slava does that in Chapter 3). For
now, to help drive home this idea that a given input set can have different
watermarks applied to it, let’s take a look at our pipeline in Example 2-6
when executed on the same dataset but using two distinct watermark
implementations (Figure 2-10): on the left, a perfect watermark; on the right,
a heuristic watermark.

In both cases, windows are materialized as the watermark passes the end of

57

the window. The perfect watermark, as you might expect, perfectly captures
the event-time completeness of the pipeline as time progresses. In contrast,
the specific algorithm used for the heuristic watermark on the right fails to
take the value of 9 into account, which drastically changes the shape of the
materialized outputs, both in terms of output latency and correctness (as seen
by the incorrect answer of 5 that’s provided for the [12:00, 12:02) window).

The big difference between the watermark triggers from Figure 2-9 and the
repeated update triggers we saw in Figures 2-5 through 2-7 is that the
watermarks give us a way to reason about the completeness of our input.
Until the system materializes an output for a given window, we know that the
system does not yet believe the inputs to be complete. This is especially
important for use cases in which you want to reason about a lack of data in
the input, or missing data.

Figure 2-10. Windowed summation on a streaming engine with perfect (left) and heuristic (right)
watermarks

A great example of a missing-data use case is outer joins. Without a notion of
completeness like watermarks, how do you know when to give up and emit a
partial join rather than continue to wait for that join to complete? You don’t.
And basing that decision on a processing-time delay, which is the common
approach in streaming systems that lack true watermark support, is not a safe
way to go, because of the variable nature of event-time skew we spoke about
in Chapter 1: as long as skew remains smaller than the chosen processing-
time delay, your missing-data results will be correct, but any time skew grows
beyond that delay, they will suddenly become incorrect. From this
perspective, event-time watermarks are a critical piece of the puzzle for many
real-world streaming use cases which must reason about a lack of data in the
input, such as outer joins, anomaly detection, and so on.

Now, with that said, these watermark examples also highlight two
shortcomings of watermarks (and any other notion of completeness),
specifically that they can be one of the following:
Too slow

5

00:00 / 00:00

58

When a watermark of any type is correctly delayed due to known
unprocessed data (e.g., slowly growing input logs due to network
bandwidth constraints), that translates directly into delays in output if
advancement of the watermark is the only thing you depend on for
stimulating results.

This is most obvious in the left diagram of Figure 2-10, for which the late
arriving 9 holds back the watermark for all the subsequent windows, even
though the input data for those windows become complete earlier. This is
particularly apparent for the second window, [12:02, 12:04), for which it
takes nearly seven minutes from the time the first value in the window
occurs until we see any results for the window whatsoever. The heuristic
watermark in this example doesn’t suffer the same issue quite so badly
(five minutes until output), but don’t take that to mean heuristic
watermarks never suffer from watermark lag; that’s really just a
consequence of the record I chose to omit from the heuristic watermark in
this specific example.

The important point here is the following: Although watermarks provide a
very useful notion of completeness, depending upon completeness for
producing output is often not ideal from a latency perspective. Imagine a
dashboard that contains valuable metrics, windowed by hour or day. It’s
unlikely you’d want to wait a full hour or day to begin seeing results for
the current window; that’s one of the pain points of using classic batch
systems to power such systems. Instead, it would be much nicer to see the
results for those windows refine over time as the inputs evolve and
eventually become complete.

Too fast
When a heuristic watermark is incorrectly advanced earlier than it should
be, it’s possible for data with event times before the watermark to arrive
some time later, creating late data. This is what happened in the example
on the right: the watermark advanced past the end of the first window
before all the input data for that window had been observed, resulting in
an incorrect output value of 5 instead of 14. This shortcoming is strictly a
problem with heuristic watermarks; their heuristic nature implies they will
sometimes be wrong. As a result, relying on them alone for determining
when to materialize output is insufficient if you care about correctness.

In Chapter 1, I made some rather emphatic statements about notions of
completeness being insufficient for most use cases requiring robust out-of-

59

order processing of unbounded data streams. These two shortcomings—
watermarks being too slow or too fast—are the foundations for those
arguments. You simply cannot get both low latency and correctness out of a
system that relies solely on notions of completeness. So, for cases for which
you do want the best of both worlds, what’s a person to do? Well, if repeated
update triggers provide low-latency updates but no way to reason about
completeness, and watermarks provide a notion of completeness but variable
and possible high latency, why not combine their powers together?

When: Early/On-Time/Late Triggers FTW!
We’ve now looked at the two main types of triggers: repeated update triggers
and completeness/watermark triggers. In many case, neither of them alone is
sufficient, but the combination of them together is. Beam recognizes this fact
by providing an extension of the standard watermark trigger that also supports
repeated update triggering on either side of the watermark. This is known as
the early/on-time/late trigger because it partitions the panes that are
materialized by the compound trigger into three categories:

Zero or more early panes, which are the result of a repeated update
trigger that periodically fires up until the watermark passes the end of
the window. The panes generated by these firings contain speculative
results, but allow us to observe the evolution of the window over
time as new input data arrive. This compensates for the shortcoming
of watermarks sometimes being too slow.

A single on-time pane, which is the result of the
completeness/watermark trigger firing after the watermark passes the
end of the window. This firing is special because it provides an
assertion that the system now believes the input for this window to
be complete. This means that it is now safe to reason about missing
data; for example, to emit a partial join when performing an outer
join.

Zero or more late panes, which are the result of another (possibly
different) repeated update trigger that periodically fires any time late
data arrive after the watermark has passed the end of the window. In
the case of a perfect watermark, there will always be zero late panes.
But in the case of a heuristic watermark, any data the watermark
failed to properly account for will result in a late firing. This

6

7

60

compensates for the shortcoming of watermarks being too fast.

Let’s see how this looks in action. We’ll update our pipeline to use a periodic
processing-time trigger with an aligned delay of one minute for the early
firings, and a per-record trigger for the late firings. That way, the early firings
will give us some amount of batching for high-volume windows (thanks to
the fact that the trigger will fire only once per minute, regardless of the
throughput into the window), but we won’t introduce unnecessary latency for
the late firings, which are hopefully somewhat rare if we’re using a
reasonably accurate heuristic watermark. In Beam, that looks Example 2-7
(Figure 2-11 shows the results).
Example 2-7. Early, on-time, and late firings via the early/on-time/late API
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

Figure 2-11. Windowed summation on a streaming engine with early, on-time, and late firings

This version has two clear improvements over Figure 2-9:

For the “watermarks too slow” case in the second window, [12:02,
12:04): we now provide periodic early updates once per minute. The
difference is most stark in the perfect watermark case, for which
time-to-first-output is reduced from almost seven minutes down to
three and a half; but it’s also clearly improved in the heuristic case,
as well. Both versions now provide steady refinements over time
(panes with values 7, 10, then 18), with relatively minimal latency
between the input becoming complete and materialization of the final
output pane for the window.

For the “heuristic watermarks too fast” case in the first window,
[12:00, 12:02): when the value of 9 shows up late, we immediately
incorporate it into a new, corrected pane with value of 14.

One interesting side effect of these new triggers is that they effectively

00:00 / 00:00

61

normalize the output pattern between the perfect and heuristic watermark
versions. Whereas the two versions in Figure 2-10 were starkly different, the
two versions here look quite similar. They also look much more similar to the
various repeated update version from Figures 2-6 through 2-8, with one
important difference: thanks to the use of the watermark trigger, we can also
reason about input completeness in the results we generate with the early/on-
time/late trigger. This allows us to better handle use cases that care about
missing data, like outer joins, anomaly detection, and so on.

The biggest remaining difference between the perfect and heuristic early/on-
time/late versions at this point is window lifetime bounds. In the perfect
watermark case, we know we’ll never see any more data for a window after
the watermark has passed the end of it, hence we can drop all of our state for
the window at that time. In the heuristic watermark case, we still need to hold
on to the state for a window for some amount of time to account for late data.
But as of yet, our system doesn’t have any good way of knowing just how
long state needs to be kept around for each window. That’s where allowed
lateness comes in.

When: Allowed Lateness (i.e., Garbage Collection)
Before moving on to our last question (“How do refinements of results
relate?”), I’d like to touch on a practical necessity within long-lived, out-of-
order stream processing systems: garbage collection. In the heuristic
watermarks example in Figure 2-11, the persistent state for each window
lingers around for the entire lifetime of the example; this is necessary to allow
us to appropriately deal with late data when/if they arrive. But while it would
be great to be able to keep around all of our persistent state until the end of
time, in reality, when dealing with an unbounded data source, it’s often not
practical to keep state (including metadata) for a given window indefinitely;
we’ll eventually run out of disk space (or at the very least tire of paying for it,
as the value for older data diminishes over time).

As a result, any real-world out-of-order processing system needs to provide
some way to bound the lifetimes of the windows it’s processing. A clean and
concise way of doing this is by defining a horizon on the allowed lateness
within the system; that is, placing a bound on how late any given record may
be (relative to the watermark) for the system to bother processing it; any data
that arrives after this horizon are simply dropped. After you’ve bounded how
late individual data may be, you’ve also established precisely how long the

62

state for windows must be kept around: until the watermark exceeds the
lateness horizon for the end of the window. But in addition, you’ve also given
the system the liberty to immediately drop any data later than the horizon as
soon as they’re observed, which means the system doesn’t waste resources
processing data that no one cares about.

MEASURING LATENESS
It might seem a little odd to be specifying a horizon for handling late data
using the very metric that resulted in the late data in the first place (i.e., the
heuristic watermark). And in some sense it is. But of the options available,
it’s arguably the best. The only other practical option would be to specify
the horizon in processing time (e.g., keep windows around for 10 minutes
of processing time after the watermark passes the end of the window), but
using processing time would leave the garbage collection policy
vulnerable to issues within the pipeline itself (e.g., workers crashing,
causing the pipeline to stall for a few minutes), which could lead to
windows that didn’t actually have a chance to handle late data that they
otherwise should have. By specifying the horizon in the event-time
domain, garbage collection is directly tied to the actual progress of the
pipeline, which decreases the likelihood that a window will miss its
opportunity to handle late data appropriately.

Note however, that not all watermarks are created equal. When we speak
of watermarks in this book, we generally refer to low watermarks, which
pessimistically attempt to capture the event time of the oldest unprocessed
record the system is aware of. The nice thing about dealing with lateness
via low watermarks is that they are resilient to changes in event-time
skew; no matter how large the skew in a pipeline may grow, the low
watermark will always track the oldest outstanding event known to the
system, providing the best guarantee of correctness possible.

In contrast, some systems may use the term “watermark” to mean other
things. For example, watermarks in Spark Structured Streaming are high
watermarks, which optimistically track the event time of the newest record
the system is aware of. When dealing with lateness, the system is free to
garbage collect any window older than the high watermark adjusted by
some user-specified lateness threshold. In other words, the system allows
you to specify the maximum amount of event-time skew you expect to see
in your pipeline, and then throws away any data outside of that skew

63

http://bit.ly/2yhCHMm

window. This can work well if skew within your pipeline remains within
some constant delta, but is more prone to incorrectly discarding data than
low watermarking schemes.

Because the interaction between allowed lateness and the watermark is a little
subtle, it’s worth looking at an example. Let’s take the heuristic watermark
pipeline from Example 2-7/Figure 2-11 and add in Example 2-8 a lateness
horizon of one minute (note that this particular horizon has been chosen
strictly because it fits nicely into the diagram; for real-world use cases, a
larger horizon would likely be much more practical):
Example 2-8. Early/on-time/late firings with allowed lateness
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1)))
 .withAllowedLateness(ONE_MINUTE))
 .apply(Sum.integersPerKey());

The execution of this pipeline would look something like Figure 2-12, in
which I’ve added the following features to highlight the effects of allowed
lateness:

The thick black line denoting the current position in processing time
is now annotated with ticks indicating the lateness horizon (in event
time) for all active windows.

When the watermark passes the lateness horizon for a window, that
window is closed, which means that all state for the window is
discarded. I leave around a dotted rectangle showing the extent of
time (in both domains) that the window covered when it was closed,
with a little tail extending to the right to denote the lateness horizon
for the window (for contrasting against the watermark).

For this diagram only, I’ve added an additional late datum for the
first window with value 6. The 6 is late, but still within the allowed
lateness horizon and thus is incorporated into an updated result with
value 11. The 9, however, arrives beyond the lateness horizon, so it
is simply dropped.

64

Figure 2-12. Allowed lateness with early/on-time/late firings

Two final side notes about lateness horizons:

To be absolutely clear, if you happen to be consuming data from
sources for which perfect watermarks are available, there’s no need
to deal with late data, and an allowed lateness horizon of zero
seconds will be optimal. This is what we saw in the perfect
watermark portion of Figure 2-10.

One noteworthy exception to the rule of needing to specify lateness
horizons, even when heuristic watermarks are in use, would be
something like computing global aggregates over all time for a
tractably finite number of keys (e.g., computing the total number of
visits to your site over all time, grouped by web browser family). In
this case, the number of active windows in the system is bounded by
the limited keyspace in use. As long as the number of keys remains
manageably low, there’s no need to worry about limiting the lifetime
of windows via allowed lateness.

Practicality sated, let’s move on to our fourth and final question.

How: Accumulation
When triggers are used to produce multiple panes for a single window over
time, we find ourselves confronted with the last question: “How do
refinements of results relate?” In the examples we’ve seen so far, each
successive pane is built upon the one immediately preceding it. However,
there are actually three different modes of accumulation:
Discarding

Every time a pane is materialized, any stored state is discarded. This
means that each successive pane is independent from any that came
before. Discarding mode is useful when the downstream consumer is
performing some sort of accumulation itself; for example, when sending
integers into a system that expects to receive deltas that it will sum

00:00 / 00:00

8 9

65

together to produce a final count.

Accumulating
As in Figures 2-6 through 2-11, every time a pane is materialized, any
stored state is retained, and future inputs are accumulated into the existing
state. This means that each successive pane builds upon the previous
panes. Accumulating mode is useful when later results can simply
overwrite previous results, such as when storing output in a key/value
store like HBase or Bigtable.

Accumulating and retracting
This is like accumulating mode, but when producing a new pane, it also
produces independent retractions for the previous pane(s). Retractions
(combined with the new accumulated result) are essentially an explicit
way of saying “I previously told you the result was X, but I was wrong.
Get rid of the X I told you last time, and replace it with Y.” There are two
cases for which retractions are particularly helpful:

When consumers downstream are regrouping data by a different
dimension, it’s entirely possible the new value may end up keyed
differently from the previous value and thus end up in a different
group. In that case, the new value can’t just overwrite the old value;
you instead need the retraction to remove the old value

When dynamic windows (e.g., sessions, which we look at more
closely in a few moments) are in use, the new value might be
replacing more than one previous window, due to window merging.
In this case, it can be difficult to determine from the new window
alone which old windows are being replaced. Having explicit
retractions for the old windows makes the task straightforward. We
see an example of this in detail in Chapter 8.

The different semantics for each group are somewhat clearer when seen side-
by-side. Consider the two panes for the second window (the one with event-
time range [12:06, 12:08)) in Figure 2-11 (the one with early/on-time/late
triggers). Table 2-1 shows what the values for each pane would look like
across the three accumulation modes (with accumulating mode being the
specific mode used in Figure 2-11 itself).

Table 2-1. Comparing accumulation modes using the second

66

window from Figure 2-11

 Discarding Accumulating Accumulating & Retracting

Pane 1: inputs=[3] 3 3 3

Pane 2: inputs=[8, 1] 9 12 12, –3

Value of final normal pane 9 12 12

Sum of all panes 12 15 12

Let’s take a closer look at what’s happening:
Discarding

Each pane incorporates only the values that arrived during that specific
pane. As such, the final value observed does not fully capture the total
sum. However, if you were to sum all of the independent panes
themselves, you would arrive at a correct answer of 12. This is why
discarding mode is useful when the downstream consumer itself is
performing some sort of aggregation on the materialized panes.

Accumulating
As in Figure 2-11, each pane incorporates the values that arrived during
that specific pane, plus all of the values from previous panes. As such, the
final value observed correctly captures the total sum of 12. If you were to
sum up the individual panes themselves, however, you’d effectively be
double-counting the inputs from pane 1, giving you an incorrect total sum
of 15. This is why accumulating mode is most useful when you can
simply overwrite previous values with new values: the new value already
incorporates all of the data seen thus far.

Accumulating and retracting
Each pane includes both a new accumulating mode value as well as a
retraction of the previous pane’s value. As such, both the last value
observed (excluding retractions) as well as the total sum of all
materialized panes (including retractions) provide you with the correct
answer of 12. This is why retractions are so powerful.

Example 2-9 demonstrates discarding mode in action, illustrating the changes
we would make to Example 2-7:
Example 2-9. Discarding mode version of early/on-time/late firings

67

PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AtCount(1)))
 .discardingFiredPanes())
 .apply(Sum.integersPerKey());

Running again on a streaming engine with a heuristic watermark would
produce output like that shown in Figure 2-13.

Figure 2-13. Discarding mode version of early/on-time/late firings on a streaming engine

Even though the overall shape of the output is similar to the accumulating
mode version from Figure 2-11, note how none of the panes in this discarding
version overlap. As a result, each output is independent from the others.

If we want to look at retractions in action, the change would be similar, as
shown in Example 2-10. ??? depicts the results.
Example 2-10. Accumulating and retracting mode version of early/on-
time/late firings
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AtCount(1)))
 .accumulatingAndRetractingFiredPanes())
 .apply(Sum.integersPerKey());

Accumulating and retracting mode version of early/late firings on a streaming
engine

Because the panes for each window all overlap, it’s a little tricky to see the
retractions clearly. The retractions are indicated in red, which combines with

00:00 / 00:00

00:00 / 00:00

68

the overlapping blue panes to yield a slightly purplish color. I’ve also
horizontally shifted the values of the two outputs within a given pane slightly
(and separated them with a comma) to make them easier to differentiate.

Figure 2-14 combines the final frames of Figures 2-9, 2-11 (heuristic only),
and side-by-side, providing a nice visual contrast of the three modes.

Figure 2-14. Side-by-side comparison of accumulation modes

As you can imagine, the modes in the order presented (discarding,
accumulating, accumulating and retracting) are each successively more
expensive in terms of storage and computation costs. To that end, choice of
accumulation mode provides yet another dimension for making trade-offs
along the axes of correctness, latency, and cost.

Summary
With this chapter complete, you now understand the basics of robust stream
processing and are ready to go forth into the world and do amazing things. Of
course, there are eight more chapters anxiously waiting for your attention, so
hopefully you won’t go forth like right now, this very minute. But regardless,
let’s recap what we’ve just covered, lest you forget any of it in your haste to
amble forward. First, the major concepts we touched upon:
Event time versus processing time

The all-important distinction between when events occurred and when
they are observed by your data processing system.

Windowing
The commonly utilized approach to managing unbounded data by slicing
it along temporal boundaries (in either processing time or event time,
though we narrow the definition of windowing in the Beam Model to
mean only within event time).

Triggers
The declarative mechanism for specifying precisely when materialization

69

of output makes sense for your particular use case.

Watermarks
The powerful notion of progress in event time that provides a means of
reasoning about completeness (and thus missing data) in an out-of-order
processing system operating on unbounded data.

Accumulation
The relationship between refinements of results for a single window for
cases in which it’s materialized multiple times as it evolves.

Second, the four questions we used to frame our exploration:

What results are calculated? = transformations.

Where in event time are results calculated? = windowing.

When in processing time are results materialized? = triggers plus
watermarks.

How do refinements of results relate? = accumulation.

Third, to drive home the flexibility afforded by this model of stream
processing (because in the end, that’s really what this is all about: balancing
competing tensions like correctness, latency, and cost), a recap of the major
variations in output we were able to achieve over the same dataset with only a
minimal amount of code change:

Integer summation
Example 2-1 / Figure 2-3

Integer summation
Fixed windows batch
Example 2-2 / Figure 2-5

Integer summation
Fixed windows streaming
Repeated per-record trigger
Example 2-3 / Figure 2-6

Integer summation
Fixed windows streaming

Integer summation
Fixed windows streaming

Integer summation
Fixed windows streaming

70

Repeated aligned-delay trigger
Example 2-4 / Figure 2-7

Repeated unaligned-delay
trigger
Example 2-5 / Figure 2-8

Fixed windows streaming
Heuristic watermark trigger
Example 2-6 / Figure 2-10

Integer summation
Fixed windows streaming
Early/on-time/late trigger
Discarding
Example 2-9 / Figure 2-13

Integer summation
Fixed windows streaming
Early/on-time/late trigger
Accumulating
Example 2-7 / Figure 2-11

Integer summation
Fixed windows streaming
Early/on-time/late trigger
Accumulating and Retracting
Example 2-10 / ???

All that said, at this point, we’ve really looked at only one type of windowing:
fixed windowing in event time. As we know, there are a number of
dimensions to windowing, and I’d like to touch upon at least two more of
those before we call it day with the Beam Model. First, however, we’re going
to take a slight detour to dive deeper into the world of watermarks, as this
knowledge will help frame future discussions (and be fascinating in and of
itself). Enter Slava, stage right...

 If you’re fortunate enough to be reading the Safari version of the book, you
have full-blown time-lapse animations just like in “Streaming 102”. For print,
Kindle, and other ebook versions, there are static images with a link to
animated versions on the web.

 Bear with me here. Fine-grained emotional expressions via composite
punctuation (i.e., emoticons) are strictly forbidden in O’Reilly publications <​
winky-smiley/>.

 And indeed, we did just that with the original triggers feature in Beam. In
retrospect, we went a bit overboard. Future iterations will be simpler and
easier to use, and in this book I focus only on the pieces that are likely to
remain in some form or another.

 More accurately, the input to the function is really the state at time P of
everything upstream of the point in the pipeline where the watermark is being
observed: the input source, buffered data, data actively being processed, and
so on; but conceptually it’s simpler to think of it as a mapping from
processing time to event time.

1

2

3

4

5

71

http://oreil.ly/1TV7YGU

 Note that I specifically chose to omit the value of 9 from the heuristic
watermark because it will help me to make some important points about late
data and watermark lag. In reality, a heuristic watermark might be just as
likely to omit some other value(s) instead, which in turn could have
significantly less drastic effect on the watermark. If winnowing late-arriving
data from the watermark is your goal (which is very valid in some cases, such
as abuse detection, for which you just want to see a significant majority of the
data as quickly as possible), you don’t necessarily want a heuristic watermark
rather than a perfect watermark. What you really want is a percentile
watermark, which explicitly drops some percentile of late-arriving data from
its calculations. See Chapter 3.

 Which isn’t to say there aren’t use cases that care primarily about
correctness and not so much about latency; in those cases, using an accurate
watermark​ as the sole driver of output from a pipeline is a reasonable
approach.

 And, as we know from before, this assertion is either guaranteed, in the case
of a perfect watermark being used, or an educated guess, in the case of a
heuristic watermark.

 You might note that there should logically be a fourth mode: discarding and
retracting. That mode isn’t terribly useful in most cases, so I don’t discuss it
further here.

 In retrospect, it probably would have been clearer to choose a different set
of names that are more oriented toward the observed nature of data in the
materialized stream (e.g., “output modes”) rather than names describing the
state management semantics that yield those data. Perhaps: discarding mode
→ delta mode, accumulating mode → value mode, accumulating and
retracting mode → value and retraction mode? However, the
discarding/accumulating/accumulating and retracting names are enshrined in
the 1.x and 2.x lineages of the Beam Model, so I don’t want to introduce
potential confusion in the book by deviating. Also, it’s very likely
accumulating modes will blend into the background more with Beam 3.0 and
the introduction of sink triggers; more on this when we discuss SQL in
Chapter 8.

5

6

7

8

9

72

https://s.apache.org/beam-sink-triggers

Chapter 3. Watermarks

So far, we have been looking at stream processing from the perspective of the
pipeline author or data scientist. Chapter 2 introduced watermarks as part of
the answer to the fundamental questions of where in event-time processing is
taking place and when in processing time results are materialized. In this
chapter, we approach the same questions, but instead from the perspective of
the underlying mechanics of the stream processing system. Looking at these
mechanics will help us motivate, understand, and apply the concepts around
watermarks. We discuss how watermarks are created at the point of data
ingress, how they propagate through a data processing pipeline, and how they
affect output timestamps. We also demonstrate how watermarks preserve the
guarantees that are necessary for answering the questions of where in event-
time data are processed and when it is materialized, while dealing with
unbounded data.

Definition
Consider any pipeline that ingests data and outputs results continuously. We
wish to solve the general problem of when it is safe to call an event-time
window closed, meaning that the window does not expect any more data. To
do so we would like to characterize the progress that the pipeline is making
relative to its unbounded input.

One naive approach for solving the event-time windowing problem would be
to simply base our event-time windows on the current processing time. As we
saw in Chapter 1, we quickly run into trouble—data processing and transport
is not instantaneous, so processing and event times are almost never equal.
Any hiccup or spike in our pipeline might cause us to incorrectly assign
messages to windows. Ultimately, this strategy fails because we have no
robust way to make any guarantees about such windows.

Another intuitive, but ultimately incorrect, approach would be to consider the
rate of messages processed by the pipeline. Although this is an interesting
metric, the rate may vary arbitrarily with changes in input, variability of
expected results, resources available for processing, and so on. Even more
important, rate does not help answer the fundamental questions of
completeness. Specifically, rate does not tell us when we have seen all of the

73

messages for a particular time interval. In a real-world system, there will be
situations in which messages are not making progress through the system.
This could be the result of transient errors (such as crashes, network failures,
machine downtime), or the result of persistent errors such as application-level
failures that require changes to the application logic or other manual
intervention to resolve. Of course, if lots of failures are occurring, a rate-of-
processing metric might be a good proxy for detecting this. However a rate
metric could never tell us that a single message is failing to make progress
through our pipeline. Even a single such message, however, can arbitrarily
affect the correctness of the output results.

We require a more robust measure of progress. To arrive there, we make one
fundamental assumption about our streaming data: each message has an
associated logical event timestamp. This assumption is reasonable in the
context of continuously arriving unbounded data because this implies the
continuous generation of input data. In most cases, we can take the time of the
original event’s occurrence as its logical event timestamp. With all input
messages containing an event timestamp, we can then examine the
distribution of such timestamps in any pipeline. Such a pipeline might be
distributed to process in parallel over many agents and consuming input
messages with no guarantee of ordering between individual shards. Thus, the
set of event timestamps for active in-flight messages in this pipeline will form
a distribution, as illustrated in Figure 3-1.

Messages are ingested by the pipeline, processed, and eventually marked
completed. Each message is either “in-flight,” meaning that it has been
received but not yet completed, or “completed,” meaning that no more
processing on behalf of this message is required. If we examine the
distribution of messages by event time, it will look something like Figure 3-1.
As time advances, more messages will be added to the “in-flight” distribution
on the right, and more of those messages from the “in-flight” part of the
distribution will be completed and moved into the “completed” distribution.

74

Figure 3-1. Distribution of in-flight and completed message event times within a streaming pipeline.
New messages arrive as input and remain “in-flight” until processing for them completes. The leftmost
edge of the “in-flight” distribution corresponds to the oldest unprocessed element at any given moment.

There is a key point on this distribution, located at the leftmost edge of the
“in-flight” distribution, corresponding to the oldest event timestamp of any
unprocessed message of our pipeline. We use this value to define the
watermark:

The watermark is a monotonically increasing timestamp of the oldest work
not yet completed.

There are two fundamental properties that are provided by this definition that
make it useful:
Completeness

If the watermark has advanced past some timestamp T, we are guaranteed
by its monotonic property that no more processing will occur for on-time
(nonlate data) events at or before T. Therefore, we can correctly emit any
aggregations at or before T. In other words, the watermark allows us to
know when it is correct to close a window.

00:00 / 00:00

1

75

Visibility
If a message is stuck in our pipeline for any reason, the watermark cannot
advance. Furthermore, we will be able to find the source of the problem
by examining the message that is preventing the watermark from
advancing.

Source Watermark Creation
Where do these watermarks come from? To establish a watermark for a data
source, we must assign a logical event timestamp to every message entering
the pipeline from that source. As Chapter 2 informs us, all watermark creation
falls into one of two broad categories: perfect or heuristic. To remind
ourselves about the difference between perfect and heuristic watermarks, let’s
look at Figure 3-2, which presents the windowed summation example from
Chapter 2.

Figure 3-2. Windowed summation with perfect (left) and heuristic (right) watermarks

Notice that the distinguishing feature is that perfect watermarks ensure that
the watermark accounts for all data, whereas heuristic watermarks admit
some late-data elements.

After the watermark is created as either perfect or heuristic, watermarks
remain so throughout the rest of the pipeline. As to what makes watermark
creation perfect or heuristic, it depends a great deal on the nature of the source
that’s being consumed. To see why, let’s look at a few examples of each type
of watermark creation.

Perfect Watermark Creation
Perfect watermark creation assigns timestamps to incoming messages in such
a way that the resulting watermark is a strict guarantee that no data with
event times less than the watermark will ever be seen again from this source.
Pipelines using perfect watermark creation never have to deal with late data;
that is, data that arrive after the watermark has advanced past the event times

00:00 / 00:00

76

of newly arriving messages. However, perfect watermark creation requires
perfect knowledge of the input, and thus is impractical for many real-world
distributed input sources. Here are a couple of examples of use cases that can
create perfect watermarks:
Ingress timestamping

A source that assigns ingress times as the event times for data entering the
system can create a perfect watermark. In this case, the source watermark
simply tracks the current processing time as observed by the pipeline.
This is essentially the method that nearly all streaming systems supporting
windowing prior to 2016 used.

Because event times are assigned from a single, monotonically increasing
source (actual processing time), the system thus has perfect knowledge
about which timestamps will come next in the stream of data. As a result,
event-time progress and windowing semantics become vastly easier to
reason about. The downside, of course, is that the watermark has no
correlation to the event times of the data themselves; those event times
were effectively discarded, and the watermark instead merely tracks the
progress of data relative to its arrival in the system.

Static sets of time-ordered logs
A statically sized input source of time-ordered logs (e.g., an Apache
Kafka topic with a static set of partitions, where each partition of the
source contains monotonically increasing event times) would be relatively
straightforward source atop which to create a perfect watermark. To do so,
the source would simply track the minimum event time of unprocessed
data across the known and static set of source partitions (i.e., the
minimum of the event times of the most recently read record in each of
the partitions).

Similar to the aforementioned ingress timestamps, the system has perfect
knowledge about which timestamps will come next, thanks to the fact that
event times across the static set of partitions are known to increase
monotonically. This is effectively a form of bounded out-of-order
processing; the amount of disorder across the known set of partitions is
bounded by the minimum observed event time among those partitions.

Typically, the only way you can guarantee monotonically increasing
timestamps within partitions is if the timestamps within those partitions
are assigned as data are written to it; for example, by web frontends

2

77

logging events directly into Kafka. Though still a limited use case, this is
definitely a much more useful one than ingress timestamping upon arrival
at the data processing system because the watermark tracks meaningful
event times of the underlying data.

Heuristic Watermark Creation
Heuristic watermark creation, on the other hand, creates a watermark that is
merely an estimate that no data with event times less than the watermark will
ever be seen again. Pipelines using heuristic watermark creation might need
to deal with some amount of late data. Late data is any data that arrives after
the watermark has advanced past the event time of this data. Late data is only
possible with heuristic watermark creation. If the heuristic is a reasonably
good one, the amount of late data might be very small, and the watermark
remains useful as a completion estimate. The system still needs to provide a
way for the user to cope with late data if it’s to support use cases requiring
correctness (e.g., things like billing).

For many real-world, distributed input sources, it’s computationally or
operationally impractical to construct a perfect watermark, but still possible to
build a highly accurate heuristic watermark by taking advantage of structural
features of the input data source. Following are two example for which
heuristic watermarks (of varying quality) are possible:
Dynamic sets of time-ordered logs

Consider a dynamic set of structured log files (each individual file
containing records with monotonically increasing event times relative to
other records in the same file but with no fixed relationship of event times
between files), where the full set of expected log files (i.e., partitions, in
Kafka parlance) is not known at runtime. Such inputs are often found in
global-scale services constructed and managed by a number of
independent teams. In such a use case, creating a perfect watermark over
the input is intractable, but creating an accurate heuristic watermark is
quite possible.

By tracking the minimum event times of unprocessed data in the existing
set of log files, monitoring growth rates, and utilizing external information
like network topology and bandwidth availability, you can create a
remarkably accurate watermark, even given the lack of perfect knowledge
of all the inputs. This type of input source is one of the most common
types of unbounded datasets found at Google, so we have extensive

78

experience with creating and analyzing watermark quality for such
scenarios and have seen them used to good effect across a number of use
cases.

Google Cloud Pub/Sub
Cloud Pub/Sub is an interesting use case. Pub/Sub currently makes no
guarantees on in-order delivery; even if a single publisher publishes two
messages in order, there’s a chance (usually small) that they might be
delivered out of order (this is due to the dynamic nature of the underlying
architecture, which allows for transparent scaling up to very high levels of
throughput with zero user intervention). As a result, there’s no way to
guarantee a perfect watermark for Cloud Pub/Sub. The Cloud Dataflow
team has, however, built a reasonably accurate heuristic watermark by
taking advantage of what knowledge is available about the data in Cloud
Pub/Sub. The implementation of this heuristic is discussed at length as a
case study later in this chapter.

Consider an example where users play a mobile game, and their scores are
sent to our pipeline for processing: you can generally assume that for any
source utilizing mobile devices for input it will be generally impossible to
provide a perfect watermark. Due to the problem of devices that go offline for
extended periods of time, there’s just no way to provide any sort of
reasonable estimate of absolute completeness for such a data source. You can,
however, imagine building a watermark that accurately tracks input
completeness for devices that are currently online, similar to the Google
Pub/Sub watermark described a moment ago. Users who are actively online
are likely the most relevant subset of users from the perspective of providing
low-latency results anyway, so this often isn’t as much of a shortcoming as
you might initially think.

With heuristic watermark creation, broadly speaking, the more that is known
about the source, the better the heuristic, and the fewer late data items will be
seen. There is no one-size-fits-all solution, given that the types of sources,
distributions of events, and usage patterns will vary greatly. But in either case
(perfect or heuristic), after a watermark is created at the input source, the
system can propagate the watermark through the pipeline perfectly. This
means perfect watermarks will remain perfect downstream, and heuristic
watermarks will remain strictly as heuristic as they were when established.
This is the benefit of the watermark approach: you can reduce the complexity
of tracking completeness in a pipeline entirely to the problem of creating a

79

watermark at the source.

Watermark Propagation
So far, we have considered only the watermark for the inputs within the
context of a single operation or stage. However, most real-world pipelines
consist of multiple stages. Understanding how watermarks propagate across
independent stages is important in understanding how they affect the pipeline
as a whole and the observed latency of its results.

PIPELINE STAGES
Different stages are typically necessary every time your pipeline groups
data together by some new dimension. For example, if you had a pipeline
that consumed raw data, computed some per-user aggregates, and then
used those per-user aggregates to compute some per-team aggregates,
you’d likely end up with a three-stage pipeline:

One consuming the raw, ungrouped data

One grouping the data by user and computing per-user aggregates

One grouping the data by team and computing per-team
aggregates

We learn more about the effects of grouping on pipeline shapes in
Chapter 6.

Watermarks are created at input sources, as discussed in the preceding
section. They then conceptually flow through the system as data progress
through it. You can track watermarks at varying levels of granularity. For
pipelines comprising multiple distinct stages, each stage likely tracks its own
watermark, whose value is a function of all the inputs and stages that come
before it. Therefore, stages that come later in the pipeline will have
watermarks that are further in the past (because they’ve seen less of the
overall input).

We can define watermarks at the boundaries of any single operation, or stage,
in the pipeline. This is useful not only in understanding the relative progress
that each stage in the pipeline is making, but for dispatching timely results
independently and as soon as possible for each individual stage. We give the
following definitions for the watermarks at the boundaries of stages:

3

80

An input watermark, which captures the progress of everything
upstream of that stage (i.e., how complete the input is for that stage).
For sources, the input watermark is a source-specific function
creating the watermark for the input data. For nonsource stages, the
input watermark is defined as the minimum of the output watermarks
of all shards/partitions/instances of all of its upstream sources and
stages.

An output watermark, which captures the progress of the stage itself,
and is essentially defined as the minimum of the stage’s input
watermark and the event times of all nonlate data active messages
within the stage. Exactly what “active” encompasses is somewhat
dependent upon the operations a given stage actually performs, and
the implementation of the stream processing system. It typically
includes data buffered for aggregation but not yet materialized
downstream, pending output data in flight to downstream stages, and
so on.

One nice feature of defining an input and output watermark for a specific
stage is that we can use these to calculate the amount of event-time latency
introduced by a stage. Subtracting the value of a stage’s output watermark
from the value of its input watermark gives the amount of event-time latency
or lag introduced by the stage. This lag is the notion of how far delayed
behind real time the output of each stage will be. As an example, a stage
performing 10-second windowed aggregations will have a lag of 10 seconds
or more, meaning that the output of the stage will be at least that much
delayed behind the input and real time. Definitions of input and output
watermarks provide a recursive relationship of watermarks throughout a
pipeline. Each subsequent stage in a pipeline delays the watermark as
necessary, based on event-time lag of the stage.

Processing within each stage is also not monolithic. We can segment the
processing within one stage into a flow with several conceptual components,
each of which contributes to the output watermark. As mentioned previously,
the exact nature of these components depends on the operations the stage
performs and the implementation of the system. Conceptually, each such
component serves as a buffer where active messages can reside until some
operation has completed. For example, as data arrives, it is buffered for
processing. Processing might then write the data to state for later delayed
aggregation. Delayed aggregation, when triggered, might write the results to

81

an output buffer awaiting consumption from a downstream stage, as shown in
Figure 3-3.

Figure 3-3. Example system components of a streaming system stage, containing buffers of in-flight
data. Each will have associated watermark tracking, and the overall output watermark of the stage will

be the minimum of the watermarks across all such buffers.

We can track each such buffer with its own watermark. The minimum of the
watermarks across the buffers of each stage forms the output watermark of
the stage. Thus the output watermark could be the minimum of the following:

Per-source watermark—for each sending stage.

Per-external input watermark—for sources external to the pipeline

Per-state component watermark—for each type of state that can be
written

Per-output buffer watermark—for each receiving stage

Making watermarks available at this level of granularity also provides better
visibility into the behavior of the system. The watermarks track locations of
messages across various buffers in the system, allowing for easier diagnosis
of stuckness.

Understanding Watermark Propagation
To get a better sense for the relationship between input and output
watermarks and how they affect watermark propagation, let’s look at an
example. Let’s consider gaming scores, but instead of computing sums of
team scores, we’re going to take a stab at measuring user engagement levels.
We’ll do this by first calculating per-user session lengths, under the
assumption that the amount of time a user stays engaged with the game is a
reasonable proxy for how much they’re enjoying it. After answering our four
questions once to calculate sessions lengths, we’ll then answer them a second

82

time to calculate average session lengths within fixed periods of time.

To make our example even more interesting, lets say that we are working
with two datasets, one for Mobile Scores and one for Console Scores. We
would like to perform identical score calculations via integer summation in
parallel over these two independant datasets. One pipeline is calculating
scores for users playing on mobile devices, whereas the other is for users
playing on home gaming consoles, perhaps due to different data collection
strategies employed for the different platforms. The important point is that
these two stages are performing the same operation but over different data,
and thus with very different output watermarks.

To begin, let’s take a look at Example 3-1 to see what the abbreviated code
for what the first section of this pipeline might be like.
Example 3-1. Calculating session lengths
PCollection<Double> mobileSessions = IO.read(new MobileInputSource())
 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
 .triggering(AtWatermark())
 .discardingFiredPanes())
 .apply(CalculateWindowLength());

PCollection<Double> consoleSessions = IO.read(new ConsoleInputSource())
 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
 .triggering(AtWatermark())
 .discardingFiredPanes())
 .apply(CalculateWindowLength());

Here, we read in each of our inputs independently, and whereas previously we
were keying our collections by team, in this example we key by user. After
that, for the first stage of each pipeline, we window into sessions and then call
a custom PTransform named CalculateWindowLength. This PTransform
simply groups by key (i.e., User) and then computes the per-user session
length by treating the size of the current window as the value for that window.
In this case, we’re fine with the default trigger (AtWatermark) and
accumulation mode (discardingFiredPanes) settings, but I’ve listed them
explicitly for completeness. The output for each pipeline for two particular
users might look something like Figure 3-4.

00:00 / 00:00

83

Figure 3-4. Per-user session lengths across two different input pipelines

Because we need to track data across multiple stages, we track everything
related to Mobile Scores in red, everything related to Console Scores in blue,
while the watermark and output for Average Session Lengths in Figure 3-5
are yellow.

We have answered the four questions of what, where, when, and how to
compute individual session lengths. Next we’ll answer them a second time to
transform those session lengths into global session-length averages within
fixed windows of time. This requires us to first flatten our two data sources
into one, and then re-window into fixed windows; we’ve already captured the
important essence of the session in the session-length value we computed, and
we now want to compute a global average of those sessions within consistent
windows of time over the course of the day. Example 3-2 shows the code for
this.
Example 3-2. Calculating session lengths
PCollection<Double> mobileSessions = IO.read(new MobileInputSource())
 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
 .triggering(AtWatermark())
 .discardingFiredPanes())
 .apply(CalculateWindowLength());

PCollection<Double> consoleSessions = IO.read(new ConsoleInputSource())
 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
 .triggering(AtWatermark())
 .discardingFiredPanes())
 .apply(CalculateWindowLength());

PCollection<Float> averageSessionLengths = PCollectionList
 .of(mobileSessions).and(consoleSessions)
 .apply(Flatten.pCollections())
 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))
 .triggering(AtWatermark())
 .apply(Mean.globally());

If we were to see this pipeline in action, it would look something like
Figure 3-5. As before, the two input pipelines are computing individual
session lengths for mobile and console players. Those session lengths then
feed into the second stage of the pipeline, where global session-length
averages are computed in fixed windows.

84

Figure 3-5. Average session lengths of mobile and console gaming sessions

Let’s walk through some of this example, given that there’s a lot going on.
The two important points here are:

The output watermark for each of the Mobile Sessions and Console
Sessions stages is at least as old as the corresponding input
watermark of each, and in reality a little bit older. This is because in
a real system computing answers takes time, and we don’t allow the
output watermark to advance until processing for a given input has
completed.

The input watermark for the Average Session Lengths stage is the
minimum of the output watermarks for the two stages directly
upstream.

The result is that the downstream input watermark is an alias for the minimum
composition of the upstream output watermarks. Note that this matches the
definitions for those two types of watermarks earlier in the chapter. Also
notice how watermarks further downstream are further in the past, capturing
the intuitive notion that upstream stages are going to be further ahead in time
than the stages that follow them.

One observation worth making here is just how cleanly we were able to ask
the questions again in Example 3-1 to substantially alter the results of the
pipeline. Whereas before we simply computed per-user session lengths, we
now compute two-minute global session-length averages. This provides a
much more insightful look into the overall behaviors of the users playing our
games and gives you a tiny glimpse of the difference between simple data
transformations and real data science.

Even better, now that we understand the basics of how this pipeline operates,
we can look more closely at one of the more subtle issues related to asking the
four questions over again: output timestamps.

Watermark Propagation and Output Timestamps

00:00 / 00:00

85

In Figure 3-5, I glossed over some of the details of output timestamps. But if
you look closely at the second stage in the diagram, you can see that each of
the outputs from the first stage was assigned a timestamp that matched the
end of its window. Although that’s a fairly natural choice for output
timestamps, it’s not the only valid choice. As you know from earlier in this
chapter, watermarks are never allowed to move backward. Given that
restriction, you can infer that the range of valid timestamps for a given
window begins with the timestamp of the earliest nonlate record in the
window (because only nonlate records are guaranteed to hold a watermark up)
and extends all the way to positive infinity. That’s quite a lot of options. In
practice, however, there tend to be only a few choices that make sense in most
circumstances:
End of the window

Using the end of the window is the only safe choice if you want the output
timestamp to be representative of the window bounds. As we’ll see in a
moment, it also allows the smoothest watermark progression out of all of
the options.

Timestamp of first nonlate element
Using the timestamp of the first nonlate element is a good choice when
you want to keep your watermarks as conservative as possible. The trade-
off, however, is that watermark progress will likely be more hindered, as
we’ll also see shortly.

Timestamp of a specific element
For certain use cases, the timestamp of some other arbitrary (from the
system’s perspective) element is the right choice. Imagine a use case in
which you’re joining a stream of queries to a stream of clicks on results
for that query. After performing the join, some systems will find the
timestamp of the query to be more useful; others will prefer the timestamp
of the click. Any such timestamp is valid from a watermark correctness
perspective, as long as it corresponded to an element that did not arrive
late.

Having thought a bit about some alternate options for output timestamps, let’s
look at what effects the choice of output timestamp can have on the overall
pipeline. To make the changes as dramatic as possible, in Example 3-3 and
Figure 3-6, we’ll switch to using the earliest timestamp possible for the
window: the timestamp of the first nonlate element as the timestamp for the

4

86

window.
Example 3-3. Average session lengths pipeline, that output timestamps for
session windows set at earliest element
PCollection<Double> mobileSessions = IO.read(new MobileInputSource())
 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
 .triggering(AtWatermark())
 .withTimestampCombiner(EARLIEST)
 .discardingFiredPanes())
 .apply(CalculateWindowLength());

PCollection<Double> consoleSessions = IO.read(new ConsoleInputSource())
 .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
 .triggering(AtWatermark())
 .withTimestampCombiner(EARLIEST)
 .discardingFiredPanes())
 .apply(CalculateWindowLength());

PCollection<Float> averageSessionLengths = PCollectionList
 .of(mobileSessions).and(consoleSessions)
 .apply(Flatten.pCollections())
 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))
 .triggering(AtWatermark())
 .apply(Mean.globally());

Figure 3-6. Average session lengths for sessions that are output at the timestamp of the earliest element

To help call out the effect of the output timestamp choice, look at the dashed
lines in the first stages showing what the output watermark for each stage is
being held to. The output watermark is delayed by our choice of timestamp,
as compared to Figures 3-7 and 3-8, in which the output timestamp was
chosen to be the end of the window. You can see from this diagram that the
input watermark of the second stage is thus subsequently also delayed.

00:00 / 00:00

87

Figure 3-7. Comparison of watermarks and results with different choice of window outout timestamps.
The watermarks in this figure correspond to output timestamps at the end of the session windows (i.e.,

Figure 3-5).

Figure 3-8. In this figure, the watermarks are at the beginning of the session windows (i.e., Figure 3-6).
We can see that the watermark line in this figure is more delayed, and the resulting average session

lengths are different.

As far as differences in this version compared to Figure 3-7, two are worth
noting:

88

Watermark delay
Compared to Figure 3-5, the watermark proceeds much more slowly in
Figure 3-6. This is because the output watermark for the first stage is held
back to the timestamp of the first element in every window until the input
for that window becomes complete. Only after a given window has been
materialized is the output watermark (and thus the downstream input
watermark) allowed to advance.

Semantic differences
Because the session timestamps are now assigned to match the earliest
nonlate element in the session, the individual sessions often end up in
different fixed window buckets when we then calculate the session-length
averages in the next stage. There’s nothing inherently right or wrong
about either of the two options we’ve seen so far; they’re just different.
But it’s important to understand that they will be different as well as have
an intuition for the way in which they’ll be different so that you can make
the correct choice for your specific use case when the time comes.

The Tricky Case of Overlapping Windows
One additional subtle but important issue regarding output timestamps is how
to handle sliding windows. The naive approach of setting the output
timestamp to the earliest element can very easily lead to delays downstream
due to watermarks being (correctly) held back. To see why, consider an
example pipeline with two stages, each using the same type of sliding
windows. Suppose that each element ends up in three successive windows. As
the input watermark advances, the desired semantics for sliding windows in
this case would be as follows:

The first window completes in the first stage and is emitted
downstream.

The first window then completes in the second stage and can also be
emitted downstream.

Some time later, the second window completes in the first stage…
and so on.

However, if output timestamps are chosen to be the timestamp of the first
nonlate element in the pane, what actually happens is the following:

89

The first window completes in the first stage and is emitted
downstream.

The first window in the second stage remains unable to complete
because its input watermark is being held up by the output
watermark of the second and third windows upstream. Those
watermarks are rightly being held back because the earliest element
timestamp is being used as the output timestamp for those windows.

The second window completes in the first stage and is emitted
downstream.

The first and second windows in the second stage remain unable to
complete, held up by the third window upstream.

The third window completes in the first stage and is emitted
downstream.

The first, second, and third windows in the second stage are now all
able to complete, finally emitting all three in one swoop.

Although the results of this windowing are correct, this leads to the results
being materialized in an unnecessarily delayed way. Because of this, Beam
has special logic for overlapping windows that ensures the output timestamp
for window N+1 is always greater than the end of window N.

Percentile Watermarks
So far, we have concerned ourselves with watermarks as measured by the
minimum event time of active messages in a stage. Tracking the minimum
allows the system to know when all earlier timestamps have been accounted
for. On the other hand, we could consider the entire distribution of event
timestamps for active messages and make use of it to create finer-grained
triggering conditions.

Instead of considering the minimum point of the distribution, we could take
any percentile of the distribution and say that we are guaranteed to have
processed this percentage of all events with earlier timestamps.

What is the advantage of this scheme? If for the business logic “mostly”
correct is sufficient, percentile watermarks provide a mechanism by which the
watermark can advance more quickly and more smoothly than if we were
tracking the minimum event time by discarding outliers in the long tail of the

5

90

distribution from the watermark. Figure 3-9 shows a compact distribution of
event times where the 90 percentile watermark is close to the 100
percentile. Figure 3-10 demonstrates a case where the outlier is further
behind, so the 90 percentile watermark is significantly ahead of the 100
percentile. By discarding the outlier data from the watermark, the percentile
watermark can still keep track of the bulk of the distribution without being
delayed by the outliers.

Figure 3-9. Normal-looking watermark histogram

Figure 3-10. Watermark histogram with outliers

Figure 3-11 shows an example of percentile watermarks used to draw window
boundaries for two-minute fixed windows. We can draw early boundaries
based on the percentile of timestamps of arrived data as tracked by the
percentile watermark.

th th

th th

00:00 / 00:00

91

Figure 3-11. Effects of varying watermark percentiles. As the percentile increases, more events are
included in the window: however, the processing time delay to materialize the window also increases.

Figure 3-11 shows the 33 percentile, 66 percentile, and 100 percentile
(full) watermark, tracking the respective timestamp percentiles in the data
distribution. As expected, these allow boundaries to be drawn earlier than
tracking the full 100 percentile watermark. Notice that the 33 and 66
percentile watermarks each allow earlier triggering of windows but with the
trade-off of marking more data as late. For example, for the first window,
[12:00, 12:02), a window closed based on the 33 percentile watermark
would include only four events and materialize the result at 12:06 processing
time. If we use the 66 percentile watermark, the same event-time window
would include seven events, and materialize at 12:07 processing time. Using
the 100 percentile watermark includes all ten events and delays
materializing the results until 12:08 processing time. Thus, percentile
watermarks provide a way to tune the trade-off between latency of
materializing results and precision of the results.

Processing-Time Watermarks
Until now, we have been looking at watermarks as they relate to the data
flowing through our system. We have seen how looking at the watermark can
help us identify the overall delay between our oldest data and real time.
However, this is not enough to distinguish between old data and a delayed
system. In other words, by only examining the event-time watermark as we
have defined it up until now, we cannot distinguish between a system that is
processing data from an hour ago quickly and without delay, and a system
that is attempting to process real-time data and has been delayed for an hour
while doing so.

To make this distinction, we need something more: processing-time
watermarks. We have already seen that there are two time domains in a
streaming system: processing time and event time. Until now, we have
defined the watermark entirely in the event-time domain, as a function of
timestamps of the data flowing through the system. This is an event-time
watermark. We will now apply the same model to the processing-time domain
to define a processing-time watermark.

Our stream processing system is constantly performing operations such as
shuffling messages between stages, reading or writing messages to persistent

rd th th

th rd th

rd

th

th

92

state, or triggering delayed aggregations based on watermark progress. All of
these operations are performed in response to previous operations done at the
current or upstream stage of the pipeline. Thus, just as data elements “flow”
through the system, a cascade of operations involved in processing these
elements also “flows” through the system.

We define the processing-time watermark in the exact same way as we have
defined the event-time watermark, except instead of using the event-time
timestamp of oldest work not yet completed, we use the processing-time
timestamp of the oldest operation not yet completed. An example of delay to
the processing-time watermark could be a stuck message delivery from one
stage to another, a stuck I/O call to read state or external data, or an exception
while processing that prevents processing from completing.

The processing-time watermark, therefore, provides a notion of processing
delay separate from the data delay. To understand the value of this distinction,
consider the graph in Figure 3-12 where we look at the event-time watermark
delay.

We see that the data delay is monotonically increasing, but there is not
enough information to distinguish between the cases of a stuck system and
stuck data. Only by looking at the processing-time watermark, shown in
Figure 3-13, can we distinguish the cases.

Figure 3-12. Event-time watermark increasing. It is not possible to know from this information whether
this is due to data buffering or system processing delay.

Figure 3-13. Processing-time watermark also increasing. This indicates that the system processing is
delayed.

93

In the first case (Figure 3-12), when we examine the processing-time
watermark delay we see that it too is increasing. This tells us that an operation
in our system is stuck, and the stuckness is also causing the data delay to fall
behind. Some real-world examples of situations in which this might occur are
when there is a network issue preventing message delivery between stages of
a pipeline or if a failure has occurred and is being retried. In general, a
growing processing-time watermark indicates a problem that is preventing
operations from completing that are necessary to the system’s function, and
often involves user or administrator intervention to resolve.

In this second case, as seen in Figure 3-14, the processing-time watermark
delay is small. This tells us that there are no stuck operations. The event-time
watermark delay is still increasing, which indicates that we have some
buffered state that we are waiting to drain. This is possible, for example, if we
are buffering some state while waiting for a window boundary to emit an
aggregation, and corresponds to a normal operation of the pipeline, as in
Figure 3-15.

Figure 3-14. Event-time watermark delay increasing, processing-time watermark stable. This is an
indication that data are buffered in the system and waiting to be processed, rather than an indication

that a system operation is preventing data processing from completing.

Figure 3-15. Watermark delay for fixed windows. The event-time watermark delay increases as
elements are buffered for each window, and decreases as each window’s aggregate is emitted via an

on-time trigger, whereas the processing-time watermark simply tracks system-level delays (which
remain relatively steady in a healthy pipeline).

Therefore, the processing-time watermark is a useful tool in distinguishing
system latency from data latency. In addition to visibility, we can use the

94

processing-time watermark at the system-implementation level for tasks such
as garbage collection of temporary state (Reuven talks more about an example
of this in Chapter 5).

Case Studies
Now that we’ve laid the groundwork for how watermarks ought to behave,
it’s time to take a look at some real systems to understand how different
mechanisms of the watermark are implemented. We hope that these shed
some light on the trade-offs that are possible between latency and correctness
as well as scalability and availability for watermarks in real-world systems.

Case Study: Watermarks in Google Cloud Dataflow
There are many possible approaches to implementing watermarks in a stream
processing system. Here, we present a quick survey of the implementation in
Google Cloud Dataflow, a fully managed service for executing Apache Beam
pipelines. Dataflow includes SDKs for defining data processing workflows,
and a Cloud Platform managed service to run those workflows on Google
Cloud Platform resources.

Dataflow stripes (shards) each of the data processing steps in its data
processing graph across multiple physical workers by splitting the available
keyspace of each worker into key ranges and assigning each range to a
worker. Whenever a GroupByKey operation with distinct keys is encountered,
data must be shuffled to corresponding keys.

Figure 3-16 depicts a logical representation of the processing graph with a
GroupByKey.

95

Figure 3-16. A GroupByKey step consumes data from another DoFn. This means that there is a data
shuffle between the keys of the first step and the keys of the second step.

Whereas the physical assignment of key ranges to workers might look
Figure 3-17.

96

Figure 3-17. Key ranges of both steps are assigned (striped) across the available workers.

In the watermark propagation section, we discussed that the watermark is
maintained for multiple subcomponents of each step. Dataflow keeps track of
the per-range watermarks of each of these components. Watermark
aggregation then involves computing the minimum of each watermark across
all ranges, ensuring that the following guarantees are met:

All ranges must be reporting a watermark. If a watermark is not
present for a range, we cannot advance the watermark, because a
range not reporting must be treated as unknown.

Ensure that the watermark is monotonically increasing. Because late

97

data is possible, we must not update the watermark if it would cause
the watermark to move backward.

Google Cloud Dataflow performs aggregation via a centralized aggregator
agent. We can shard this agent for efficiency. From a correctness standpoint,
the watermark aggregator serves as a “single source of truth” about the
watermark.

Ensuring correctness in distributed watermark aggregation poses certain
challenges. It is paramount that watermarks are not advanced prematurely
because advancing the watermark prematurely will turn on-time data into late
data. Specifically, as physical assignments are actuated to workers, the
workers maintain leases on the persistent state attached to the key ranges,
ensuring that only a single worker may mutate the persistent state for a key.
To guarantee watermark correctness, we must ensure that each watermark
update from a worker process is admitted into the aggregate only if the
worker process still maintains a lease on its persistent state; therefore, the
watermark update protocol must take state ownership lease validation into
account.

Case Study: Watermarks in Apache Flink
Apache Flink is an open source stream processing framework for distributed,
high-performing, always-available, and accurate data streaming applications.
It is possible to run Beam programs using a Flink runner. In doing so, Beam
relies on the implementation of stream processing concepts such as
watermarks within Flink. Unlike Google Cloud Dataflow, which implements
watermark aggregation via a centralized watermark aggregator agent, Flink
performs watermark tracking and aggregation in-band.

To understand how this works, let’s look at a Flink pipeline, as shown in
Figure 3-18.

6

98

Figure 3-18. A Flink pipeline with two sources and event-time watermarks propagating in-band

In this pipeline data is generated at two sources. These sources also both
generate watermark “checkpoints” that are sent synchronously in-band with
the data stream. This means that when a watermark checkpoint from source A
for timestamp “53” is emitted, it guarantees that no nonlate data messages
will be emitted from source A with timestamp behind “53”. The downstream
“keyBy” operators consume the input data and the watermark checkpoints. As
new watermark checkpoints are consumed, the downstream operators’ view
of the watermark is advanced, and a new watermark checkpoint for
downstream operators can be emitted.

This choice to send watermark checkpoints in-band with the data stream
differs from the Cloud Dataflow approach that relies on central aggregation
and leads to a few interesting trade-offs.

Following are some advantages of in-band watermarks:
Reduced watermark propagation latency, and very low-latency watermarks

Because it is not necessary to have watermark data traverse multiple hops
and await central aggregation, it is possible to achieve very low latency
more easily with the in-band approach.

No single point of failure for watermark aggregation
Unavailability in the central watermark aggregation agent will lead to a
delay in watermarks across the entire pipeline. With the in-band approach,
unavailability of part of the pipeline cannot cause watermark delay to the
entire pipeline.

Inherent scalability
Although Cloud Dataflow scales well in practice, more complexity is

99

needed to achieve scalability with a centralized watermark aggregation
service versus implicit scalability with in-band watermarks.

Here are some advantages of out-of-band watermark aggregation:
Single source of “truth”

For debuggability, monitoring, and other applications such as throttling
inputs based on pipeline progress, it is advantageous to have a service that
can vend the values of watermarks rather than having watermarks implicit
in the streams, with each component of the system having its own partial
view.

Source watermark creation
Some source watermarks require global information. For example,
sources might be temprarily idle, have low data rates, or require out-of-
band information about the source or other system components to
generate the watermarks. This is easier to achieve in a central service. For
an example see the case study that follows on source watermarks for
Google Cloud Pub/Sub.

Case Study: Source Watermarks for Google Cloud
Pub/Sub
Google Cloud Pub/Sub is a fully managed real-time messaging service that
allows you to send and receive messages between independent applications.
Here, we discuss how to create a reasonable heuristic watermark for data sent
into a pipeline via Cloud Pub/Sub.

First, we need to describe a little about how Pub/Sub works. Messages are
published on Pub/Sub topics. A particular topic can be subscribed to by any
number of Pub/Sub subscriptions. The same messages are delivered on all
subscriptions subscribed to a given topic. The method of delivery is for
clients to pull messages off the subscription, and to ack the receipt of
particular messages via provided IDs. Clients do not get to choose which
messages are pulled, although Pub/Sub does attempt to provide oldest
messages first, with no hard guarantees around this.

To build a heuristic, we make some assumptions about the source that is
sending data into Pub/Sub. Specifically, we assume that the timestamps of the
original data are “well behaved”; in other words, we expect a bounded
amount of out-of-order timestamps on the source data, before it is sent to

100

Pub/Sub. Any data that are sent with timestamps outside the allowed out-of-
order bounds will be considered late data. In our current implementation, this
bound is at least 10 seconds, meaning reordering of timestamps up to 10
seconds before sending to Pub/Sub will not create late data. We call this value
the estimation band. Another way to look at this is that when the pipepline is
perfectly caught up with the input, the watermark will be 10 seconds behind
real time to allow for possible reorderings from the source. If the pipeline is
backlogged, all of the backlog (not just the 10-second band) is used for
estimating the watermark.

What are the challenges we face with Pub/Sub? Because Pub/Sub does not
guarantee ordering, we must have some kind of additional metadata to know
enough about the backlog. Luckily, Pub/Sub provides a measurement of
backlog in terms of the “oldest unacknowledged publish timestamp.” This is
not the same as the event timestamp of our message, because Pub/Sub is
agnostic to the application-level metadata being sent through it; instead, this
is the timestamp of when the message was ingested by Pub/Sub.

This measurement is not the same as an event-time watermark. It is in fact the
processing-time watermark for Pub/Sub message delivery. The Pub/Sub
publish timestamps are not equal to the event timestamps, and in the case that
historical (past) data are being sent, it might be arbitrarily far away. The
ordering on these timestamps might also be different because, as mentioned
earlier, we allow a limited amount of reordering.

However, we can use this as a measure of backlog to learn enough
information about the event timestamps present in the backlog so that we can
create a reasonable watermark as follows.

We create two subscriptions to the topic containing the input messages: a
base subscription that the pipeline will actually use to read the data to be
processed, and a tracking subscription, which is used for metadata only, to
perform the watermark estimation.

Taking a look at our base subscription in Figure 3-19, we see that messages
might arrive out of order. We label each message with its Pub/Sub publish
timestamp “pt” and its event-time timestamp “et.” Note that the two time
domains can be unrelated.

101

Figure 3-19. Processing-time and event-time timestamps of messages arriving on a Pub/Sub
subscription

Some messages on the base subscription are unacknowledged forming a
backlog. This might be due to them not yet being delivered or they might
have been delivered but not yet processed. Remember also that pulls from this
subscription are distributed across multiple shards. Thus, it is not possible to
say just by looking at the base subscription what our watermark should be.

The tracking subscription, seen in Figure 3-20, is used to effectively inspect
the backlog of the base subscription and take the minimum of the event
timestamps in the backlog. By maintaining little or no backlog on the tracking
subscription, we can inspect the messages ahead of the base subsciption’s
oldest unacknowledged message.

Figure 3-20. An additional “tracking” subscription receiving the same messages as the “base”
subscription

We stay caught up on the tracking subscription by ensuring that pulling from
this subscription is computationally inexpensive. Conversely, if we fall
sufficiently behind on the tracking subscription, we will stop advancing the
watermark. To do so, we ensure that at least one of the following conditions is
met:

The tracking subscription is sufficiently ahead of the base

102

subscription. Sufficiently ahead means that the tracking subscription
is ahead by at least the estimation band. This ensures that any
bounded reorder within the estimation band is taken into account.

The tracking subscription is sufficiently close to real time. In other
words, there is no backlog on the tracking subscription.

We acknowledge the messages on the tracking subscription as soon as
possible, after we have durably saved metadata about the publish and event
timestamps of the messages. We store this metadata in a sparse histogram
format to minimize the amount of space used and the size of the durable
writes.

Finally, we ensure that we have enough data to make a reasonable watermark
estimate. We take a band of event timestamps we’ve read from our tracking
subscription with publish timestamps newer than the oldest unacknowledged
of the base subscription, or the width of the estimation band. This ensures that
we consider all event timestamps in the backlog, or if the backlog is small, the
most recent estimation band, to make a watermark estimate.

Finally, the watermark value is computed to be the minimum event time in
the band.

This method is correct in the sense that all timestamps within the reordering
limit of 10 seconds at the input will be accounted for by the watermark and
not appear as late data. However, it produces possibly an overly conservative
watermark, one that advances “too slowly” in the sense described in
Chapter 2. Because we consider all messages ahead of the base subscription’s
oldest unacknowledged message on the tracking subscription, we can include
event timestamps in the watermark estimate for messages that have already
been acknowledged.

Additionally, there are a few heuristics to ensure progress. This method works
well in the case of dense, frequently arriving data. In the case of sparse or
infrequent data, there might not be enough recent messages to build a
reasonable estimate. In the case that we have not seen data on the subscription
in more than two minutes (and there’s no backlog), we advance the
watermark to near real time. This ensures that the watermark and the pipeline
continue to make progress even if no more messages are forthcoming.

All of the above ensures that as long as source data-event timestamp
reordering is within the estimation band, there will be no additional late data.

103

Summary
At this point, we have explored how we can use the event times of messages
to give a robust definition of progress in a stream processing system. We saw
how this notion of progress can subsequently help us answer the question of
where in event time processing is taking place and when in processing time
results are materialized. Specifically, we looked at how watermarks are
created at the sources, the points of data ingestion into a pipeline, and then
propagated throughout the pipeline to preserve the essential guarantees that
allow the questions of where and when to be answered. We also looked at the
implications of changing the output window timestamps on watermarks.
Finally, we explored some real-world system considerations when building
watermarks at scale.

Now that we have a firm footing in how watermarks work under the covers,
we can take a dive into what they can do for us as we use windowing and
triggering to answer more complex queries in Chapter 4.

 Note the additional mention of monotonicity; we have not yet discussed
how to achieve this. Indeed the discussion thus far makes no mention of
monotonicity. If we considered exclusively the oldest in-flight event time, the
watermark would not always be monotonic, as we have made no assumptions
about our input. We return to this discussion later on.

 To be precise, it’s not so much that the number of logs need be static as it is
that the number of logs at any given time be known a priori by the system. A
more sophisticated input source composed of a dynamically chosen number
of inputs logs, such as Pravega, could just as well be used for constructing a
perfect watermark. It’s only when the number of logs that exist in the
dynamic set at any given time is unknown (as in the example in the next
section) that one must fall back on a heuristic watermark.

 Note that by saying “flow through the system,” I don’t necessarily imply
they flow along the same path as normal data. They might (as in Apache
Flink), but they might also be transmitted out-of-band (as in MillWheel/Cloud
Dataflow).

 The start of the window is not a safe choice from a watermark correctness
perspective because the first element in the window often comes after the
beginning of the window itself, which means that the watermark is not
guaranteed to have been held back as far as the start of the window.

1

2

3

4

5

104

http://pravega.io

 The percentile watermark triggering scheme described here is not currently
implemented by Beam; however, other systems such as MillWheel implement
this.

 For more information on Flink watermarks, see the Flink documentation on
the subject.

5

6

105

https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/event_time.html

Chapter 4. Advanced Windowing

Hello again! I hope you enjoyed Chapter 3 as much as I did. Watermarks are
a fascinating topic, and Slava knows them better than anyone on the planet.
Now that we have a deeper understanding of watermarks under our belts, I’d
like to dive into some more advanced topics related to the what, where, when,
and how questions.

We first look at processing-time windowing, which is an interesting mix of
both where and when, to understand better how it relates to event-time
windowing and get a sense for times when it’s actually the right approach to
take. We then dive into some more advanced event-time windowing concepts,
looking at session windows in detail, and finally making a case for why
generalized custom windowing is a useful (and surprisingly straightforward)
concept by exploring three different types of custom windows: unaligned
fixed windows, per-key fixed windows, and bounded sessions windows.

When/Where: Processing-Time Windows
Processing-time windowing is important for two reasons:

For certain use cases, such as usage monitoring (e.g., web service
traffic QPS), for which you want to analyze an incoming stream of
data as it’s observed, processing-time windowing is absolutely the
appropriate approach to take.

For use cases for which the time that events happened is important
(e.g., analyzing user behavior trends, billing, scoring, etc.),
processing-time windowing is absolutely the wrong approach to take,
and being able to recognize these cases is critical.

As such, it’s worth gaining a solid understanding of the differences between
processing-time windowing and event-time windowing, particularly given the
prevalence of processing-time windowing in many streaming systems today.

When working within a model for which windowing as a first-class notion is
strictly event-time based, such as the one presented in this book, there are two
methods that you can use to achieve processing-time windowing:
Triggers

106

Ignore event time (i.e., use a global window spanning all of event time)
and use triggers to provide snapshots of that window in the processing-
time axis.

Ingress time
Assign ingress times as the event times for data as they arrive, and use
normal event-time windowing from there on. This is essentially what
something like Spark Streaming 1.x does.

Note that the two methods are more or less equivalent, although they differ
slightly in the case of multistage pipelines: in the triggers version, a
multistage pipeline will slice the processing-time “windows” independently at
each stage, so, for example, data in window N for one stage might instead end
up in window N–1 or N+1 in the following stage; in the ingress-time version,
after a datum is incorporated into window N, it will remain in window N for
the duration of the pipeline due to synchronization of progress between stages
via watermarks (in the Cloud Dataflow case), microbatch boundaries (in the
Spark Streaming case), or whatever other coordinating factor is involved at
the engine level.

As I’ve noted to death, the big downside of processing-time windowing is
that the contents of the windows change when the observation order of the
inputs changes. To drive this point home in a more concrete manner, we’re
going to look at these three use cases: event-time windowing, processing-time
windowing via triggers, and processing-time windowing via ingress time.

Each will be applied to two different input sets (so six variations total). The
two inputs sets will be for the exact same events (i.e., same values, occurring
at the same event times), but with different observation orders. The first set
will be the observation order we’ve seen all along, colored white; the second
one will have all the values shifted in the processing-time axis as in Figure 4-
1, colored purple. You can simply imagine that the purple example is another
way reality could have happened if the winds had been blowing in from the
east instead of the west (i.e., the underlying set of complex distributed
systems had played things out in a slightly different order).

00:00 / 00:00

107

Figure 4-1. Shifting input observation order in processing time, holding values, and event-times
constant

Event-Time Windowing
To establish a baseline, let’s first compare fixed windowing in event time
with a heuristic watermark over these two observation orderings. We’ll reuse
the early/late code from Example 2-7/Figure 2-10 to get the results shown in
Figure 4-2. The lefthand side is essentially what we saw before; the righthand
side is the results over the second observation order. The important thing to
note here is that even though the overall shape of the outputs differs (due to
the different orders of observation in processing time), the final results for the
four windows remain the same: 14, 18, 3, and 12.

Figure 4-2. Event-time windowing over two different processing-time orderings of the same inputs

Processing-Time Windowing via Triggers
Let’s now compare this to the two processing-time methods just described.
First, we’ll try the triggers method. There are three aspects to making
processing-time “windowing” work in this manner:
Windowing

We use the global event-time window because we’re essentially emulating
processing-time windows with event-time panes.

Triggering
We trigger periodically in the processing-time domain based on the
desired size of the processing-time windows.

Accumulation
We use discarding mode to keep the panes independent from one another,
thus letting each of them act like an independent processing-time
“window.”

The corresponding code looks something like Example 4-1; note that global
windowing is the default in Beam, hence there is no specific override of the

00:00 / 00:00

108

windowing strategy.
Example 4-1. Processing-time windowing via repeated, discarding panes of a
global event-time window
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.triggering(Repeatedly(AlignedDelay(ONE_MINUTE)))
 .discardingFiredPanes())
 .apply(Sum.integersPerKey());

When executed on a streaming runner against our two different orderings of
the input data, the results look like Figure 4-3. Here are some interesting notes
about this figure:

Because we’re emulating processing-time windows via event-time
panes, the “windows” are delineated in the processing-time axis,
which means their effective width is measured on the y-axis instead
of the x-axis.

Because processing-time windowing is sensitive to the order that
input data are encountered, the results for each of the “windows”
differs for each of the two observation orders, even though the events
themselves technically happened at the same times in each version.
On the left we get 12, 18, 18, whereas on the right we get 7, 36, 5.

Figure 4-3. Processing-time “windowing” via triggers, over two different processing-time orderings of
the same inputs

Processing-Time Windowing via Ingress Time
Lastly, let’s look at processing-time windowing achieved by mapping the
event times of input data to be their ingress times. Code-wise, there are four
aspects worth mentioning here:
Time-shifting

When elements arrive, their event times need to be overwritten with the
time of ingress. We can do this in Beam by providing a new DoFn that sets
the timestamp of the element to the current time via the
outputWithTimestamp method.

00:00 / 00:00

109

Windowing
Return to using standard event-time fixed windowing.

Triggering
Because ingress time affords the ability to calculate a perfect watermark,
we can use the default trigger, which in this case implicitly fires exactly
once when the watermark passes the end of the window.

Accumulation mode
Because we only ever have one output per window, the accumulation
mode is irrelevant.

The actual code might thus look something like that in Example 4-2.
Example 4-2. Processing-time windowing via repeated, discarding panes of a
global event-time window
PCollection<String> raw = IO.read().apply(ParDo.of(
 new DoFn<String, String>() {
 public void processElement(ProcessContext c) {
 c.outputWithTimestmap(new Instant());
 }
 });
PCollection<KV<Team, Integer>> input =
 raw.apply(ParDo.of(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.info(FixedWindows.of(TWO_MINUTES))
 .apply(Sum.integersPerKey());

Execution on a streaming engine would look like Figure 4-4. As data arrive,
their event times are updated to match their ingress times (i.e., the processing
times at arrival), resulting in a rightward horizontal shift onto the ideal
watermark line. Here are some interesting notes about this figure:

As with the other processing-time windowing example, we get
different results when the ordering of inputs changes, even though
the values and event times for the input stay constant.

Unlike the other example, the windows are once again delineated in
the event-time domain (and thus along the x-axis). Despite this, they
aren’t bonafide event-time windows; we’ve simply mapped
processing time onto the event-time domain, erasing the original
record of occurrence for each input and replacing it with a new one
that instead represents the time the datum was first observed by the
pipeline.

110

Despite this, thanks to the watermark, trigger firings still happen at
exactly the same time as in the previous processing-time example.
Furthermore, the output values produced are identical to that
example, as predicted: 12, 18, 18 on the left, and 7, 36, 5 on the right.

Because perfect watermarks are possible when using ingress time,
the actual watermark matches the ideal watermark, ascending up and
to the right with a slope of one.

Figure 4-4. Processing-time windowing via the use of ingress time, over two different processing-time
orderings of the same inputs

Although it’s interesting to see the different ways you can implement
processing-time windowing, the big takeaway here is the one I’ve been
harping on since the first chapter: event-time windowing is order-agnostic, at
least in the limit (actual panes along the way might differ until the input
becomes complete); processing-time windowing is not. If you care about the
times at which your events actually happened, you must use event-time
windowing or your results will be meaningless. I will get off my soapbox
now.

Where: Session Windows
Enough with processing-time windowing. Let’s now go back to tried-and-true
event-time windowing, but now we’re going to look at one of my favorite
features: the dynamic, data-driven windows called sessions.

Sessions are a special type of window that captures a period of activity in the
data that is terminated by a gap of inactivity. They’re particularly useful in
data analysis because they can provide a view of the activities for a specific
user over a specific period of time during which they were engaged in some
activity. This allows for the correlation of activities within the session,
drawing inferences about levels of engagement based on the lengths of the
sessions, and so on.

From a windowing perspective, sessions are particularly interesting in two

00:00 / 00:00

111

ways:

They are an example of a data-driven window: the location and sizes
of the windows are a direct consequence of the input data
themselves, rather than being based on some predefined pattern
within time, as are fixed and sliding windows.

They are also an example of an unaligned window; that is, a window
that does not apply uniformly across the data, but instead only to a
specific subset of the data (e.g., per user). This is in contrast to
aligned windows like fixed and sliding windows, which typically
apply uniformly across the data.

For some use cases, it’s possible to tag the data within a single session with a
common identifier ahead of time (e.g., a video player that emits heartbeat
pings with quality-of-service information; for any given viewing, all of the
pings can be tagged ahead of time with a single session ID). In this case,
sessions are much easier to construct because it’s basically just a form of
grouping by key.

However, in the more general case (i.e., where the actual session itself is not
known ahead of time), the sessions must be constructed from the locations of
the data within time alone. When dealing with out-of-order data, this becomes
particularly tricky.

Figure 4-5 shows an example of this, with five independent records grouped
together into session windows with a gap timeout of 60 minutes. Each record
starts out in a 60-minute window of its own (a proto-session). Merging
together overlapping proto-sessions yields the two larger session windows
containing three and two records, respectively.

112

Figure 4-5. Unmerged proto-session windows, and the resultant merged sessions

They key insight in providing general session support is that a complete
session window is, by definition, a composition of a set of smaller,
overlapping windows, each containing a single record, with each record in the
sequence separated from the next by a gap of inactivity no larger than a
predefined timeout. Thus, even if we observe the data in the session out of
order, we can build up the final session simply by merging together any
overlapping windows for individual data as they arrive.

To look at this another way, consider the example we’ve been using so far. If
we specify a session timeout of one minute, we would expect to identify two
sessions in the data, delineated in Figure 4-6 by the dashed black lines. Each
of those sessions captures a burst of activity from the user, with each event in
the session separate by less than one minute from at least one other event in
the session.

113

Figure 4-6. Sessions we want to compute

To see how the window merging works to build up these sessions over time
as events are encountered, let’s look at it in action. We’ll take the early/late
code with retractions enabled from Example 2-10 and update the windowing
to build sessions with a one-minute gap duration timeout instead. Example 4-
3 illustrates what this looks like.
Example 4-3. Early/on-time/late firings with session windows and retractions
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(Sessions.withGapDuration(ONE_MINUTE))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

Executed on a streaming engine, you’d get something like that shown in
Figure 4-7 (note that I’ve left in the dashed black lines annotating the
expected final sessions for reference).

Figure 4-7. Early and late firings with session windows and retractions on a streaming engine

There’s quite a lot going on here, so I’ll walk you through some of it:

00:00 / 00:00

114

When the first record with value 5 is encountered, it’s placed into a
single proto-session window that begins at that record’s event time
and spans the width of the session gap duration; for example, one
minute beyond the point at which that datum occurred. Any windows
we encounter in the future that overlap this window should be part of
the same session and will be merged into it as such.

The second record to arrive is the 7, which similarly is placed into its
own proto-session window, given that it doesn’t overlap with the
window for the 5.

In the meantime, the watermark has passed the end of the first
window, so the value of 5 is materialized as an on-time result just
before 12:06. Shortly thereafter, the second window is also
materialized as a speculative result with value 7, right as processing
time hits 12:06.

We next observe a pair of records 3 and 4, the proto-sessions for
which overlap. As a result, they are merged together, and by the time
the early trigger for 12:07 fires, a single window with value 7 is
emitted.

When the 8 arrives shortly thereafter, it overlaps with both of the
windows with value 7. All three are thus merged together, forming a
new combined session with value 22. When the watermark then
passes the end of this session, it materializes both the new session
with value 22 as well as retractions for the two windows of value 7
that were previously emitted, but later incorporated into it.

A similar dance occurs when the 9 arrives late, joining the proto-
session with value 5 and session with value 22 into a single larger
session of value 36. The 36 and the retractions for the 5 and 22
windows are all emitted immediately by the late data trigger.

This is some pretty powerful stuff. And what’s really awesome is how easy it
is to describe something like this within a model that breaks apart the
dimensions of stream processing into distinct, composable pieces. In the end,
you can focus more on the interesting business logic at hand, and less on the
minutiae of shaping the data into some usable form.

If you don’t believe me, check out this blog post describing how to manually
build up sessions on Spark Streaming 1.x (note that this is not done to point

115

http://bit.ly/2sXe3vJ

fingers at them; the Spark folks had just done a good enough job with
everything else that someone actually bothered to go to the trouble of
documenting what it takes to build a specific variety of sessions support on
top of Spark 1.x; you can’t say the same for most other systems out there).
It’s quite involved, and they’re not even doing proper event-time sessions, or
providing speculative or late firings, or retractions.

Where: Custom Windowing
Up until now, we’ve talked primarily about predefined types of windowing
strategies: fixed, sliding, and sessions. You can get a lot of mileage out of
standard types of windows, but there are plenty of real-world use cases for
which being able to define a custom windowing strategy can really save the
day (three of which we’re about to see now).

Most systems today don’t support custom windowing to the degree that it’s
supported in Beam, so we focus on the Beam approach. In Beam, a custom
windowing strategy consists of two things:
Window assignment

This places each element into an initial window. At the limit, this allows
every element to be placed within a unique window, which is very
powerful.

(Optional) window merging
This allows windows to merge at grouping times, which makes it possible
for windows to evolve over time, which we saw in action earlier with
session windows.

To give you a sense for how simple windowing strategies really are, and also
how useful custom windows support can be, we’re going to look in detail at
the stock implementations of fixed windows and sessions in Beam and then
consider a few real-world use cases that require custom variations on those
themes. In the process, we’ll see both how easy it is to create a custom
windowing strategy, and how limiting the lack of custom windowing support
can be when your use case doesn’t quite fit into the stock approaches.

Variations on Fixed Windows
To begin, let’s look at the relatively simple strategy of fixed windows. The
stock fixed-windows implementation is as straightforward as you might

1

116

imagine, and consists of the following logic:
Assignment

The element is placed into the appropriate fixed-window based on its
timestamp and the window’s size and offset parameters.

Merging
None.

An abbreviated version of the code looks like Example 4-4.
Example 4-4. Abbreviated FixedWindows implementation
public class FixedWindows extends WindowFn<Object, IntervalWindow> {
 private final Duration size;
 private final Duration offset;
 public Collection<IntervalWindow> assignWindow(AssignContext c) {
 long start = c.timestamp().getMillis() - c.timestamp()
 .plus(size)
 .minus(offset)
 .getMillis() % size.getMillis();
 return Arrays.asList(IntervalWindow(new Instant(start), size));
 }
}

Keep in mind that the point of showing you the code here isn’t so much to
teach you how to write windowing strategies (although it’s nice to demystify
them and call out how simple they are). It’s really to help contrast the
comparative ease and difficulty of supporting some relatively basic use cases,
both with and without custom windowing, respectively. Let’s consider two
such use cases that are variations on the fixed-windows theme now.

Unaligned fixed windows
One characteristic of the default fixed-windows implementation that we
alluded to previously is that windows are aligned across all of the data. In our
running example, the window from noon to 1 PM for any given team aligns
with the corresponding windows for all other teams, which also extend from
noon to 1 PM. And in use cases for which you want to compare like windows
across another dimension, such as between teams, this alignment is very
useful. However, it comes at a somewhat subtle cost. All of the active
windows from noon to 1 PM become complete at around the same time,
which means that once an hour the system is hit with a massive load of
windows to materialize.

To see what I mean, let’s look at a concrete example (Example 4-5). We’ll
begin with a score summation pipeline as we’ve used in most examples, with

117

fixed two-minute windows, and a single watermark trigger.
Example 4-5. Watermark completeness trigger (same as Example 2-6)
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark()))
 .apply(Sum.integersPerKey());

But in this instance, we’ll look at two different keys (see Figure 4-8) from the
same dataset in parallel. What we’ll see is that the outputs for those two keys
are all aligned, on account of the windows being aligned across all of the
keys. As a result, we end up with N panes being materialized every time the
watermark passes the end of a window, where N is the number of keys with
updates in that window. In this example, where N is 2, that’s maybe not too
painful. But when N starts to order in the thousands, millions, or more, that
synchronized burstiness can become problematic.

Figure 4-8. Aligned fixed windows

In circumstances for which comparing across windows is unnecessary, it’s
often more desirable to spread window completion load out evenly across
time. This makes system load more predictable, which can reduce the
provisioning requirements for handling peak load. In most systems, however,
unaligned fixed windows are only available if the system provides support for
them out of the box. But with custom-windowing support, it’s a relatively
trivial modification to the default fixed-windows implementation to provide
unaligned fixed-windows support. What we want to do is continue
guaranteeing that the windows for all elements being grouped together (i.e.,
the ones with the same key) have the same alignment, while relaxing the
alignment restriction across different keys. The code changes to the default
fixed-windowing strategy and looks something like Example 4-6.
Example 4-6. Abbreviated UnalignedFixedWindows implementation
public class UnalignedFixedWindows
 extends WindowFn<KV<K, V>, IntervalWindow> {
 private final Duration size;
 private final Duration offset;
 public Collection<IntervalWindow> assignWindow(AssignContext c) {
 long perKeyShift = hash(c.element().key()) % size;

00:00 / 00:00

2

118

 long start = perKeyShift + c.timestamp().getMillis()
 - c.timestamp()
 .plus(size)
 .minus(offset)
 return Arrays.asList(IntervalWindow(new Instant(start), size));
 }
}

With this change, the windows for all elements with the same key are
aligned, but the windows for elements with different keys will (typically) be
unaligned, thus spreading window completion load out at the cost of also
making comparisons across keys somewhat less meaningful. We can switch
our pipeline to use our new windowing strategy, illustrated in Example 4-7.
Example 4-7. Unaligned fixed windows with a single watermark trigger
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(UnalignedFixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark()))
 .apply(Sum.integersPerKey());

And then you can see what this looks like in Figure 4-9 by comparing
different fixed-window alignments across the same dataset as before (in this
case, I’ve chosen a maximal phase shift between the two alignments to most
clearly call out the benefits, given that randomly chosen phases across a large
number of keys will result in similar effects).

Figure 4-9. Unaligned fixed windows

Note how there are no instances where we emit multiple panes for multiple
keys simultaneously. Instead, the panes arrive individually at a much more
even cadence. This is another example of being able to make trade-offs in one
dimension (ability to compare across keys) in exchange for benefits in another
dimension (reduced peak resource provisioning requirements) when the use
case allows. Such flexibility is critical when you’re trying to process massive
quantities of data as efficiently as possible.

Let’s now look at a second variation on fixed windows, one which is more
intrinsically tied to the data being processed.

Per-element/key fixed windows

3

00:00 / 00:00

119

Our second example comes courtesy of one of the early adopters of Cloud
Dataflow. This company generates analytics data for its customers, but each
customer is allowed to configure the window size over which it wants to
aggregate its metrics. In other words, each customer gets to define the specific
size of its fixed windows.

Supporting a use case like this isn’t too difficult as long the number of
available window sizes is itself fixed. For example, you could imagine
offering the option of choosing 30-minute, 60-minute, and 90-minute fixed
windows and then running a separate pipeline (or fork of the pipeline) for
each of those options. Not ideal, but not too horrible. However, that rapidly
becomes intractable as the number of options increases, and in the limit of
providing support for truly arbitrary window sizes (which is what this
customer’s use case required) is entirely impractical.

Fortunately, because each record the customer processes is already annotated
with metadata describing the desired size of window for aggregation,
supporting arbitrary, per-user fixed-window size was as simple as changing a
couple of lines from the stock fixed-windows implementation, as
demonstrated in Example 4-8.
Example 4-8. Modified (and abbreviated) FixedWindows implementation that
supports per-element window sizes
public class PerElementFixedWindows<T extends HasWindowSize%gt;
 extends WindowFn<T, IntervalWindow> {
 private final Duration offset;
 public Collection<IntervalWindow> assignWindow(AssignContext c) {
 long perElementSize = c.element().getWindowSize();
 long start = perKeyShift + c.timestamp().getMillis()
 - c.timestamp()
 .plus(size)
 .minus(offset)
 .getMillis() % size.getMillis();
 return Arrays.asList(IntervalWindow(
 new Instant(start), perElementSize));
 }
}

With this change, each element is assigned to a fixed window with the
appropriate size, as dictated by metadata carried around in the element itself.
Changing the pipeline code to use this new strategy is again trivial, as shown
in Example 4-9.
Example 4-9. Per-element fixed-window sizes with a single watermark trigger
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(PerElementFixedWindows.of(TWO_MINUTES))

4

120

 .triggering(AfterWatermark()))
 .apply(Sum.integersPerKey());

And then looking at an this pipeline in action (Figure 4-10), it’s easy to see
that the elements for Key A all have two minutes as their window size,
whereas the elements for Key B have one-minute window sizes.

Figure 4-10. Per-key custom-sized fixed windows

This really isn’t something you would ever reasonably expect a system to
provide to you; the nature of where window size preferences are stored is too
use-case specific for it to make sense to try to build into a standard API.
Nevertheless, as exhibited by this customer’s needs, use cases like this do
exist. That’s why the flexibility provided by custom windowing is so
powerful.

Variations on Session Windows
To really drive home the usefulness of custom windowing, let’s look at one
final example, which is a variation on sessions. Session windowing is
understandably a bit more complex than fixed windows. Its implementation
consists of the following:
Assignment

Each element is initially placed into a proto-session window that begins at
the element’s timestamp and extends for the gap duration.

Merging
At grouping time, all eligible windows are sorted, after which any
overlapping windows are merged together.

An abbreviated version of the sessions code (hand merged together from a
number of helper classes) looks something like that shown in Example 4-10.
Example 4-10. Abbreviated Sessions implementation
public class Sessions extends WindowFn<Object, IntervalWindow> {
 private final Duration gapDuration;
 public Collection<IntervalWindow> assignWindows(AssignContext c) {
 return Arrays.asList(

00:00 / 00:00

121

 new IntervalWindow(c.timestamp(), gapDuration));
 }
 public void mergeWindows(MergeContext c) throws Exception {
 List<IntervalWindow> sortedWindows = new ArrayList<>();
 for (IntervalWindow window : c.windows()) {
 sortedWindows.add(window);
 }
 Collections.sort(sortedWindows);
 List<MergeCandidate> merges = new ArrayList<>();
 MergeCandidate current = new MergeCandidate();
 for (IntervalWindow window : sortedWindows) {
 if (current.intersects(window)) {
 current.add(window);
 } else {
 merges.add(current);
 current = new MergeCandidate(window);
 }
 }
 merges.add(current);
 for (MergeCandidate merge : merges) {
 merge.apply(c);
 }
 }
}

As before, the point of seeing the code isn’t so much to teach you how custom
windowing functions are implemented, or even what the implementation of
sessions looks like; it’s really to show the ease with which you can support
new use via custom windowing.

Bounded sessions
One such custom use case I’ve come across multiple times is bounded
sessions: sessions that are not allowed to grow beyond a certain size, either in
time, element count, or some other dimension. This can be for semantic
reasons, or it can simply be an exercise in spam protection. However, given
the variations in types of limits (some use cases care about total session size
in event time, some care about total element count, some care about element
density, etc.), it’s difficult to provide a clean and concise API for bounded
sessions. Much more practical is allowing users to implement their own
custom windowing logic, tailored to their specific use case. An example of
one such use case, in which session windows are time-limited, might look
something like Example 4-11 (eliding some of the builder boilerplate we’ll
utilize here).
Example 4-11. Abbreviated Sessions implementation
public class BoundedSessions extends WindowFn<Object, IntervalWindow> {
 private final Duration gapDuration;
 private final Duration maxSize;

122

 public Collection<IntervalWindow> assignWindows(AssignContext c) {
 return Arrays.asList(
 new IntervalWindow(c.timestamp(), gapDuration));
 }
 private Duration windowSize(IntervalWindow window) {
 return window == null
 ? new Duration(0)
 : new Duration(window.start(), window.end());
 }
 public static void mergeWindows(
 WindowFn<?, IntervalWindow>.MergeContext c) throws Exception {
 List<IntervalWindow> sortedWindows = new ArrayList<>();
 for (IntervalWindow window : c.windows()) {
 sortedWindows.add(window);
 }
 Collections.sort(sortedWindows);
 List<MergeCandidate> merges = new ArrayList<>();
 MergeCandidate current = new MergeCandidate();
 for (IntervalWindow window : sortedWindows) {
 MergeCandidate next = new MergeCandidate(window);
 if (current.intersects(window)) {
 current.add(window);
 if (windowSize(current.union) <= (maxSize - gapDuration))
 continue;
 // Current window exceeds bounds, so flush and move to next
 next = new MergeCandidate();
 }
 merges.add(current);
 current = next;
 }
 merges.add(current);
 for (MergeCandidate merge : merges) {
 merge.apply(c);
 }
 }
}

As always, updating our pipeline (the early/on-time/late version of it, from
Example 2-7, in this case) to use this custom windowing strategy is trivial, as
you can see in Example 4-12.
Example 4-12. Early, on-time, and late firings via the early/on-time/late API
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(BoundedSessions
 .withGapDuration(ONE_MINUTE)
 .withMaxSize(THREE_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

And executed over our running example, it might then look something like

123

Figure 4-11.

Figure 4-11. Per-key custom-sized fixed windows

Note how the large session with value 36 that spanned [12:00.26, 12:05.20),
or nearly five minutes of time, in the unbounded sessions implementation
from Figure 2-7 now ends up broken apart into two shorter sessions of length
2 minutes and 2 minutes 53 seconds.

Given how few systems provide custom windowing support today, it’s worth
pointing out how much more effort would be required to implement such a
thing using a system that supported only an unbounded sessions
implementation. Your only real recourse would be to write code downstream
of the session grouping logic that looked at the generated sessions and
chopped them up if they exceed the length limit. This would require the
ability to decompose a session after the fact, which would obviate the benefits
of incremental aggregation (something we look at in more detail in
Chapter 7), increasing cost. It would also eliminate any spam protection
benefits one might hope to gain by limiting session lengths, because the
sessions would first need to grow to their full sizes before being chopped or
truncated.

One Size Does Not Fit All
We’ve now looked at three real-world use cases, each of which was a subtle
variation on the stock types of windowing typically provided by data
processing systems: unaligned fixed windows, per-element fixed windows,
and bounded sessions. In all three cases, we saw how simple it was to support
those use cases via custom windowing and how much more difficult (or
expensive) it would be to support those use cases without it. Though custom
windowing doesn’t see broad support across the industry as yet, it’s a feature
that provides much needed flexibility for balancing trade-offs when building
data processing pipelines that need to handle complex, real-world use cases
over massive amounts of data as efficiently as possible.

00:00 / 00:00

124

Summary
Advanced windowing is a complex and varied topic. In this chapter, we
covered three advanced concepts:
Processing-time windows

We saw how this relates to event-time windowing, calling out the places
where it’s inherently useful and, most important, identifying those where
it’s not by specifically highlighting the stability of results that event-time
windowing affords us.

Session windows
We had our first introduction to the dynamic class of merging window
strategies and seeing just how much heavy lifting the system does for us
in providing such a powerful construct that you can simply drop into
place.

Custom windows
Here, we looked at three real-world examples of custom windows that are
difficult or impossible to achieve in systems that provide only a static set
of stock windowing strategies but relatively trivial to implement in a
system with custom-windowing support:

Unaligned fixed windows, which provide a more even distribution of
outputs over time when using a watermark trigger in conjunction
with fixed windows.

Per-element fixed windows, which provide the flexibility to
dynamically choose the size of fixed windows per element (e.g., to
provide customizable per-user or per-ad-campaign window sizes),
for greater customization of the pipeline semantics to the use case at
hand.

Bounded-session windows, which limit how large a given session
may grow; for example, to counteract spam attempts or to place a
bound on the latency for completed sessions being materialized by
the pipeline.

After deep diving through watermarks in Chapter 3 with Slava and taking a
broad survey of advanced windowing here, we’ve now gone well beyond the
basics of robust stream processing in multiple dimensions. With that, we

125

conclude our focus on the Beam Model and thus Part I of the book.

Up next is Reuven’s Chapter 5 on consistency guarantees, exactly-once
processing, and side effects, after which we begin our journey into Part II,
Streams and Tables with Chapter 6.

 As far as I know, Apache Flink is the only other system to support custom
windowing to the extent that Beam does. And to be fair, its support extends
even beyond that of Beam’s, thanks to the ability to provide a custom window
evictor. Head asplode.

 And I’m not actually aware of any such systems at this time.

 This naturally implies the use of keyed data, but because windowing is
intrinsically tied to grouping by key anyway, that restriction isn’t particularly
burdensome.

 And it’s not critical that the element itself know the window size; you could
just as easily look up and cache the appropriate window size for whatever the
desired dimension is; for example, per-user.

1

2

3

4

126

Chapter 5. Exactly-Once and
Side Effects

We now shift from discussing programming models and APIs to the systems
that implement them. A model and API allows users to describe what they
want to compute. Actually running the computation accurately at scale
requires a system—usually a distributed system.

In this chapter, we focus on how an implementing system can correctly
implement the Beam Model to produce accurate results. Streaming systems
often talk about exactly-once processing; that is, ensuring that every record is
processed exactly one time. We will explain what we mean by this, and how
it might be implemented.

As a motivating example, this chapter focuses on techniques used by Google
Cloud Dataflow to efficiently guarantee exactly-once processing of records.
Toward the end of the chapter, we also look at techniques used by some other
popular streaming systems to guarantee exactly once.

Why Exactly Once Matters
It almost goes without saying that for many users, any risk of dropped records
or data loss in their data processing pipelines is unacceptable. Even so,
historically many general-purpose streaming systems made no guarantees
about record processing—all processing was “best effort” only. Other systems
provided at-least-once guarantees, ensuring that records were always
processed at least once, but records might be duplicated (and thus result in
inaccurate aggregations); in practice, many such at-least-once systems
performed aggregations in memory, and thus their aggregations could still be
lost when machines crashed. These systems were used for low-latency,
speculative results but generally could guarantee nothing about the veracity of
these results.

As Chapter 1 points out, this led to a strategy that was coined the Lambda
Architecture—run a streaming system to get fast, but inaccurate results.
Sometime later (often after end of day), a batch system runs to the correct
answer. This works only if the data stream is replayable; however, this was
true for enough data sources that this strategy proved viable. Nonetheless,

127

many people who tried this experienced a number of issues with the Lambda
Architecture:
Inaccuracy

Users tend to underestimate the impact of failures. They often assume that
a small percentage of records will be lost or duplicated (often based on
experiments they ran), and are shocked on that one bad day when 10% (or
more!) of records are lost or are duplicated. In a sense, such systems
provide only “half” a guarantee—and without a full one, anything is
possible.

Inconsistency
The batch system used for the end-of-day calculation often has different
data semantics than the streaming system. Getting the two pipelines to
produce comparable results proved more difficult than initially thought.

Complexity
By definition, Lambda requires you to write and maintain two different
codebases. You also must run and maintain two complex distributed
systems, each with different failure modes. For anything but the simplest
of pipelines, this quickly becomes overwhelming.

Unpredictability
In many use cases, end users will see streaming results that differ from the
daily results by an uncertain amount, which can change randomly. In
these cases, users will stop trusting the streaming data and wait for daily
batch results instead, thus destroying the value of getting low-latency
results in the first place.

Latency
Some business use cases require low-latency correct results, which the
Lambda Architecture does not provide by design.

Fortunately, many Beam runners can do much better. In this chapter, we
explain how exactly-once stream processing helps users count on accurate
results and avoid the risk of data loss while relying on a single codebase and
API. Because a variety of issues that can affect a pipeline’s output are often
erroneously conflated with exactly-once guarantees, we first explain precisely
which issues are in and out of scope when we refer to “exactly once” in the
context of Beam and data processing.

128

Accuracy Versus Completeness
Whenever a Beam pipeline processes a record for a pipeline, we want to
ensure that the record is never dropped or duplicated. However, the nature of
streaming pipelines is such that records sometimes show up late, after
aggregates for their time windows have already been processed. The Beam
SDK allows the user to configure how long the system should wait for late
data to arrive; any (and only) records arriving later than this deadline are
dropped. This feature contributes to completeness, not to accuracy: all records
that showed up in time for processing are accurately processed exactly once,
whereas these late records are explicitly dropped.

Although late records are usually discussed in the context of streaming
systems, it’s worth noting that batch pipelines have similar completeness
issues. For example, a common batch paradigm is to run a job at 2 AM over
all the previous day’s data. However, if some of yesterday’s data wasn’t
collected until after 2 AM, it won’t be processed by the batch job! Thus, batch
pipelines also provide accurate but not always complete results.

Side Effects
One characteristic of Beam and Dataflow is that users inject custom code that
is executed as part of their pipeline graph. Dataflow does not guarantee that
this code is run only once per record, whether by the streaming or batch
runner. It might run a given record through a user transform multiple times, or
it might even run the same record simultaneously on multiple workers; this is
necessary to guarantee at-least-once processing in the face of worker failures.
Only one of these invocations can “win” and produce output further down the
pipeline.

As a result, nonidempotent side effects are not guaranteed to execute exactly
once; if you write code that has side effects external to the pipeline, such as
contacting an outside service, these effects might be executed more than once
for a given record. This situation is usually unavoidable because there is no
way to atomically commit Dataflow’s processing with the side effect on the
external service. Pipelines do need to eventually send results to the outside
world, and such calls might not be idempotent. As you will see later in the
chapter, often such sinks are able to add an extra stage to restructure the call
into an idempotent operation first.

Problem Definition

1

129

So, we’ve given a couple of examples of what we’re not talking about. What
do we mean then by exactly-once processing? To motivate this, let’s begin
with a simple streaming pipeline, shown in Example 5-1.
Example 5-1. A simple streaming pipeline
Pipeline p = Pipeline.create(options);
// Calculate 1-minute counts of events per user.
PCollection<..> perUserCounts =
 p.apply(ReadFromUnboundedSource.read())
 .apply(new KeyByUser())
 .Window.<..>into(FixedWindows.of(Duration.standardMinutes(1)))
 .apply(Count.perKey());
// Process these per-user counts, and write the output somewhere.
perUserCounts.apply(new ProcessPerUserCountsAndWriteToSink());
// Add up all these per-user counts to get 1-minute counts of all events.
perUserCounts.apply(Values.<..>create())
 .apply(Count.globally())
 .apply(new ProcessGlobalCountAndWriteToSink());
p.run();

This pipeline computes two different windowed aggregations. The first counts
how many events came from each individual user over the course of a minute,
and the second counts how many total events came in each minute. Both
aggregations are written to unspecified streaming sinks.

Remember that Dataflow executes pipelines on many different workers in
parallel. After each GroupByKey (the Count operations use GroupByKey under
the covers), all records with the same key are processed on the same machine
following a process called shuffle. The Dataflow workers shuffle data
between themselves using Remote Procedure Calls (RPCs), ensuring that
records for a given key all end up on the same machine.

Figure 5-1 shows the shuffles that Dataflow creates for the pipeline in
Example 5-1. The Count.perKey shuffles all the data for each user onto a
given worker, whereas the Count.globally shuffles all these partial counts
to a single worker to calculate the global sum.

Figure 5-1. Shuffles in a pipeline

2

3

130

For Dataflow to accurately process data, this shuffle process must ensure that
every record is shuffled exactly once. As you will see in a moment, the
distributed nature of shuffle makes this a challenging problem.

This pipeline also both reads and writes data from and to the outside world, so
Dataflow must ensure that this interaction does not introduce any
inaccuracies. Dataflow has always supported this task—what Apache Spark
and Apache Flink call end-to-end exactly once—for sources and sinks
whenever technically feasible.

The focus of this chapter will be on three things:
Shuffle

How Dataflow guarantees that every record is shuffled exactly once.

Sources
How Dataflow guarantees that every source record is processed exactly
once.

Sinks
How Dataflow guarantees that every sink produces accurate output.

Ensuring Exactly Once in Shuffle
As just explained, Dataflow’s streaming shuffle uses RPCs. Now, any time
you have two machines communicating via RPC, you should think long and
hard about data integrity. First of all, RPCs can fail for many reasons. The
network might be interrupted, the RPC might time out before completing, or
the receiving server might decide to fail the call. To guarantee that records are
not lost in shuffle, Dataflow employs upstream backup. This simply means
that the sender will retry RPCs until it receives positive acknowledgment of
receipt. Dataflow also ensures that it will continue retrying these RPCs even if
the sender crashes. This guarantees that every record is delivered at least
once.

Now, the problem is that these retries might themselves create duplicates.
Most RPC frameworks, including the one Dataflow uses, provide the sender
with a status indicating success or failure. In a distributed system, you need to
be aware that RPCs can sometimes succeed even when they have appeared to
fail. There are many reasons for this: race conditions with the RPC timeout,
positive acknowledgment from the server failing to transfer even though the

131

RPC succeeded, and so on. The only status that a sender can really trust is a
successful one.

An RPC returning a failure status generally indicates that the call might or
might not have succeeded. Although specific error codes can communicate
unambiguous failure, many common RPC failures, such as Deadline
Exceeded, are ambiguous. In the case of streaming shuffle, retrying an RPC
that really succeeded means delivering a record twice! Dataflow needs some
way of detecting and removing these duplicates.

At a high level, the algorithm for this task is quite simple (see Figure 5-2):
every message sent is tagged with a unique identifier. Each receiver stores a
catalog of all identifiers that have already been seen and processed. Every
time a record is received, its identifier is looked up in this catalog. If it is
found, the record is dropped as a duplicate. Because Dataflow is built on top
of a scalable key/value store, this store is used to hold the deduplication
catalog.

Figure 5-2. Detecting duplicates in shuffle

Addressing Determinism
Making this strategy work in the real world requires a lot of care, however.
One immediate wrinkle is that the Beam Model allows for user code to
produce nondeterministic output. This means that a ParDo can execute twice
on the same input record (due to a retry), yet produce different output on each
retry. The desired behavior is that only one of those outputs will commit into
the pipeline; however, the nondeterminism involved makes it difficult to
guarantee that both outputs have the same deterministic ID. Even trickier, a
ParDo can output multiple records, so each of these retries might produce a
different number of outputs!

So, why don’t we simply require that all user processing be deterministic?
Our experience is that in practice, many pipelines require nondeterministic

4

132

transforms And all too often, pipeline authors do not realize that the code they
wrote is nondeterministic. For example, consider a transform that looks up
supplemental data in Cloud Bigtable in order to enrich its input data. This is a
nondeterministic task, as the external value might change in between retries
of the transform. Any code that relies on current time is likewise not
deterministic. We have also seen transforms that need to rely on random
number generators. And even if the user code is purely deterministic, any
event-time aggregation that allows for late data might have nondeterministic
inputs.

Dataflow addresses this issue by using checkpointing to make
nondeterministic processing effectively deterministic. Each output from a
transform is checkpointed, together with its unique ID, to stable storage
before being delivered to the next stage. Any retries in the shuffle delivery
simply replay the output that has been checkpointed—the user’s
nondeterministic code is not run again on retry. To put it another way, the
user’s code may be run multiple times but only one of those runs can “win.”
Furthermore, Dataflow uses a consistent store that allows it to prevent
duplicates from being written to stable storage.

Performance
To implement exactly-once shuffle delivery, a catalog of record IDs is stored
in each receiver key. For every record that arrives, Dataflow looks up the
catalog of IDs already seen to determine whether this record is a duplicate.
Every output from step to step is checkpointed to storage to ensure that the
generated record IDs are stable.

However, unless implemented carefully, this process would significantly
degrade pipeline performance for customers by creating a huge increase in
reads and writes. Thus, for exactly-once processing to be viable for Dataflow
users, that I/O has to be reduced, in particular by preventing I/O on every
record.

Dataflow achieves this goal via two key techniques: graph optimization and
Bloom filters.

Graph Optimization
The Dataflow service runs a series of optimizations on the pipeline graph
before executing it. One such optimization is fusion, in which the service

5

133

fuses many logical steps into a single execution stage. Figure 5-3 shows some
simple examples.

Figure 5-3. Example optimizations: fusion

All fused steps are run as an in-process unit, so there’s no need to store
exactly-once data for each of them. In many cases, fusion reduces the entire
graph down to a few physical steps, greatly reducing the amount of data
transfer needed (and saving on state usage, as well).

Dataflow also optimizes associative and commutative Combine operations
(such as Count and Sum) by performing partial combining locally before
sending the data to the main grouping operation, as illustrated in Figure 5-4.
This approach can greatly reduce the number of messages for delivery,
consequently also reducing the number of reads and writes.

Figure 5-4. Example optimizations: combiner lifting

Bloom Filters
The aforementioned optimizations are general techniques that improve
exactly-once performance as a byproduct. For an optimization aimed strictly
at improving exactly-once processing, we turn to Bloom filters.

134

In a healthy pipeline, most arriving records will not be duplicates. We can use
that fact to greatly improve performance via Bloom filters, which are compact
data structures that allow for quick set-membership checks. Bloom filters
have a very interesting property: they can return false positives but never false
negatives. If the filter says “Yes, the element is in the set,” we know that the
element is probably in the set (with a probability that can be calculated).
However, if the filter says an element is not in the set, it definitely isn’t. This
function is a perfect fit for the task at hand.

The implementation in Dataflow works like this: each worker keeps a Bloom
filter of every ID it has seen. Whenever a new record ID shows up, it looks it
up in the filter. If the filter returns false, this record is not a duplicate and the
worker can skip the more expensive lookup from stable storage. It needs to do
that second lookup only if the Bloom filter returns true, but as long as the
filter’s false-positive rate is low, that step is rarely needed.

Bloom filters tend to fill up over time, however, and as that happens, the
false-positive rate increases. We also need to construct this Bloom filter anew
any time a worker restarts by scanning the ID catalog stored in state.
Helpfully, Dataflow attaches a system timestamp to each record. Thus,
instead of creating a single Bloom filter, the service creates a separate one for
every 10-minute range. When a record arrives, Dataflow queries the
appropriate filter based on the system timestamp. This step prevents the
Bloom filters from saturating because filters are garbage-collected over time,
and it also bounds the amount of data that needs to be scanned at startup.

Figure 5-5 illustrates this process: records arrive in the system and are
delegated to a Bloom filter based on their arrival time. None of the records
hitting the first filter are duplicates, and all of their catalog lookups are
filtered. Record r1 is delivered a second time, so a catalog lookup is needed
to verify that it is indeed a duplicate; the same is true for records r4 and r6.
Record r8 is not a duplicate; however, due to a false positive in its Bloom
filter, a catalog lookup is generated (which will determine that r8 is not a
duplicate and should be processed).

6

7

8

135

Figure 5-5. Exactly-once Bloom filters

Garbage Collection
Every Dataflow worker persistently stores a catalog of unique record IDs it
has seen. As Dataflow’s state and consistency model is per-key, in reality
each key stores a catalog of records that have been delivered to that key. We
can’t store these identifiers forever, or all available storage will eventually fill
up. To avoid that issue, you need garbage collection of acknowledged record
IDs.

One strategy for accomplishing this goal would be for senders to tag each
record with a strictly increasing sequence number in order to track the earliest
sequence number still in flight (corresponding to an unacknowledged record
delivery). Any identifier in the catalog with an earlier sequence number could
then be garbage-collected because all earlier records have already been
acknowledged.

There is a better alternative, however. As previously mentioned, Dataflow
already tags each record with a system timestamp that is used for bucketing
exactly-once Bloom filters. Consequently, instead of using sequence numbers
to garbage-collect the exactly-once catalog, Dataflow calculates a garbage-
collection watermark based on these system timestamps (this is the
processing-time watermark discussed in Chapter 3). A nice side benefit of this
approach is that because this watermark is based on the amount of physical
time spent waiting in a given stage (unlike the data watermark, which is based

136

on custom event times), it provides intuition on what parts of the pipeline are
slow. This metadata is the basis for the System Lag metric shown in the
Dataflow WebUI.

What happens if a record arrives with an old timestamp and we’ve already
garbage-collected identifiers for this point in time? This can happen due to an
effect we call network remnants, in which an old message becomes stuck for
an indefinite period of time inside the network and then suddenly shows up.
Well, the low watermark that triggers garbage collection won’t advance until
record deliveries have been acknowledged, so we know that this record has
already been successfully processed. Such network remnants are clearly
duplicates and are ignored.

Exactly Once in Sources
Beam provides a source API for reading data into a Dataflow pipeline.
Dataflow might retry reads from a source if processing fails and needs to
ensure that every unique record produced by a source is processed exactly
once.

For most sources Dataflow handles this process transparently; such sources
are deterministic. For example, consider a source that reads data out of files.
The records in a file will always be in a deterministic order and at
deterministic byte locations, no matter how many times the file is read. The
filename and byte location uniquely identify each record, so the service can
automatically generate unique IDs for each record. Another source that
provides similar determinism guarantees is Apache Kafka; each Kafka topic
is divided into a static set of partitions, and records in a partition always have
a deterministic order. Such deterministic sources will work seamlessly in
Dataflow with no duplicates.

However, not all sources are so simple. For example, one common source for
Dataflow pipelines is Google Cloud Pub/Sub. Pub/Sub is a nondeterministic
source: multiple subscribers can pull from a Pub/Sub topic, but which
subscribers receive a given message is unpredictable. If processing fails
Pub/Sub will redeliver messages but the messages might be delivered to
different workers than those that processed them originally, and in a different
order. This nondeterministic behavior means that Dataflow needs assistance
for detecting duplicates because there is no way for the service to
deterministically assign record IDs that will be stable upon retry. (We dive

9

10

137

into a more detailed case study of Pub/Sub later in this chapter.)

Because Dataflow cannot automatically assign record IDs, nondeterministic
sources are required to inform the system what the record IDs should be.
Beam’s Source API provides the UnboundedReader.getCurrentRecordId
method. If a source provides unique IDs per record and notifies Dataflow that
it requires deduplication, records with the same ID will be filtered out.

Exactly Once in Sinks
At some point, every pipeline needs to output data to the outside world, and a
sink is simply a transform that does exactly that. Keep in mind that delivering
data externally is a side effect, and we have already mentioned that Dataflow
does not guarantee exactly-once application of side effects. So, how can a
sink guarantee that outputs are delivered exactly once?

The simplest answer is that a number of built-in sinks are provided as part of
the Beam SDK. These sinks are carefully designed to ensure that they do not
produce duplicates, even if executed multiple times. Whenever possible,
pipeline authors are encouraged to use one of these built-in sinks.

However, sometimes the built-ins are insufficient and you need to write your
own. The best approach is to ensure that your side-effect operation is
idempotent and therefore robust in the face of replay. However, often some
component of a side-effect DoFn is nondeterministic and thus might change
on replay. For example, in a windowed aggregation, the set of records in the
window can also be nondeterministic!

Specifically, the window might attempt to fire with elements e0, e1, e2, but
the worker crashes before committing the window processing (but not before
those elements are sent as a side effect). When the worker restarts, the
window will fire again, but now a late element e3 shows up. Because this
element shows up before the window is committed, it’s not counted as late
data, so the DoFn is called again with elements e0, e1, e2, e3. These are then
sent to the side-effect operation. Idempotency does not help here, because
different logical record sets were sent each time.

There are other ways nondeterminism can be introduced. The standard way to
address this risk is to rely on the fact that Dataflow currently guarantees that
only one version of a DoFn’s output can make it past a shuffle boundary.

A simple way of using this guarantee is via the built-in Reshuffle transform.

11

12

13

138

The pattern presented in Example 5-2 ensures that the side-effect operation
always receives a deterministic record to output.
Example 5-2. Reshuffle example
c.apply(Window.<..>into(FixedWindows.of(Duration.standardMinutes(1))))
 .apply(GroupByKey.<..>.create())
 .apply(new PrepareOutputData())
 .apply(Reshuffle.<..>of())
 .apply(WriteToSideEffect());

The preceding pipeline splits the sink into two steps: PrepareOutputData
and WriteToSideEffect. PrepareOutputData outputs records
corresponding to idempotent writes. If we simply ran one after the other, the
entire process might be replayed on failure, PrepareOutputData might
produce a different result, and both would be written as side effects. When we
add the Reshuffle in between the two, Dataflow guarantees this can’t
happen.

Of course, Dataflow might still run the WriteToSideEffect operation
multiple times. The side effects themselves still need to be idempotent, or the
sink will receive duplicates. For example, an operation that sets or overwrites
a value in a data store is idempotent, and will generate correct output even if
it’s run several times. An operation that appends to a list is not idempotent; if
the operation is run multiple times, the same value will be appended each
time.

While Reshuffle provides a simple way of achieving stable input to a DoFn,
a GroupByKey works just as well. However, there is currently a proposal that
removes the need to add a GroupByKey to achieve stable input into a DoFn.
Instead, the user could annotate WriteToSideEffect with a special
annotation, @RequiresStableInput, and the system would then ensure stable
input to that transform.

Use Cases
To illustrate, let’s examine some built-in sources and sinks to see how they
implement the aforementioned patterns.

Example Source: Cloud Pub/Sub
Cloud Pub/Sub is a fully managed, scalable, reliable, and low-latency system
for delivering messages from publishers to subscribers. Publishers publish

139

data on named topics, and subscribers create named subscriptions to pull data
from these topics. Multiple subscriptions can be created for a single topic, in
which case each subscription receives a full copy of all data published on the
topic from the time of the subscription’s creation. Pub/Sub guarantees that
records will continue to be delivered until they are acknowledged; however, a
record might be delivered multiple times.

Pub/Sub is intended for distributed use, so many publishing processes can
publish to the same topic and many subscribing processes can pull from the
same subscription. After a record has been pulled, the subscriber must
acknowledge it within a certain amount of time, or that pull expires and
Pub/Sub will redeliver that record to another of the subscribing processes.

Although these characteristics make Pub/Sub highly scalable, they also make
it a challenging source for a system like Dataflow. It’s impossible to know
which record will be delivered to which worker, and in which order. What’s
more, in the case of failure, redelivery might send the records to different
workers in different orders!

Pub/Sub provides a stable message ID with each message, and this ID will be
the same upon redelivery. The Dataflow Pub/Sub source will default to using
this ID for removing duplicates from Pub/Sub. (The records are shuffled
based on a hash of the ID, so that repeated deliveries are always processed on
the same worker.) In some cases, however, this is not quite enough. The
user’s publishing process might retry publishes, and as a result introduce
duplicates into Pub/Sub. From that service’s perspective these are unique
records, so they will get unique record IDs. Dataflow’s Pub/Sub source
allows the user to provide their own record IDs as a custom attribute. As long
as the publisher sends the same ID when retrying, Dataflow will be able to
detect these duplicates.

Beam (and therefore Dataflow) provides a reference source implementation
for Pub/Sub. However, keep in mind that this is not what Dataflow uses but
rather an implementation used only by non-Dataflow runners (such as Apache
Spark, Apache Flink, and the DirectRunner). For a variety of reasons,
Dataflow handles Pub/Sub internally and does not use the public Pub/Sub
source.

Example Sink: Files
The streaming runner can use Beam’s file sinks (TextIO, AvroIO, and any

140

other sink that implements FileBasedSink) to continuously output records to
files. Example 5-3 provides an example use case.
Example 5-3. Windowed file writes
c.apply(Window.<..>into(FixedWindows.of(Duration.standardMinutes(1))))
 .apply(TextIO.writeStrings().to(new MyNamePolicy()).withWindowedWrites());

The snippet in Example 5-3 writes 10 new files each minute, containing data
from that window. MyNamePolicy is a user-written function that determines
output filenames based on the shard and the window. You can also use
triggers, in which case each trigger pane will be output as a new file.

This process is implemented using a variant on the pattern in Example 5-3.
Files are written out to temporary locations, and these temporary filenames
are sent to a subsequent transform through a GroupByKey. After the
GroupByKey is a finalize transform that atomically moves the temporary files
into their final location. The pseudocode in Example 5-4 provides a sketch of
how a consistent streaming file sink is implemented in Beam. (For more
details, see FileBasedSink and WriteFiles in the Beam codebase.)
Example 5-4. File sink
c
 // Tag each record with a random shard id.
 .apply("AttachShard", WithKeys.of(new RandomShardingKey(getNumShards())))
 // Group all records with the same shard.
 .apply("GroupByShard", GroupByKey.<..>())
 // For each window, write per-shard elements to a temporary file. This is the
 // non-deterministic side effect. If this DoFn is executed multiple times, it
will
 // simply write multiple temporary files; only one of these will pass on through
 // to the Finalize stage.
 .apply("WriteTempFile", ParDo.of(new DoFn<..> {
 @ProcessElement
 public void processElement(ProcessContext c, BoundedWindow window) {
 // Write the contents of c.element() to a temporary file.
 // User-provided name policy used to generate a final filename.
 c.output(new FileResult()).
 }
 }))
 // Group the list of files onto a singleton key.
 .apply("AttachSingletonKey", WithKeys.<..>of((Void)null))
 .apply("FinalizeGroupByKey", GroupByKey.<..>create())
 // Finalize the files by atomically renaming them. This operation is idempotent.
 // Once this DoFn has executed once for a given FileResult, the temporary file
 // is gone, so any further executions will have no effect.
 .apply("Finalize", ParDo.of(new DoFn<..>, Void> {
 @ProcessElement
 public void processElement(ProcessContext c) {
 for (FileResult result : c.element()) {
 rename(result.getTemporaryFileName(), result.getFinalFilename());

141

 }
}}));

You can see how the nonidempotent work is done in WriteTempFile. After
the GroupByKey completes, the Finalize step will always see the same
bundles across retries. Because file rename is idempotent, this give us an
exactly-once sink.

Example Sink: Google BigQuery
Google BigQuery is a fully managed, cloud-native data warehouse. Beam
provides a BigQuery sink, and BigQuery provides a streaming insert API that
supports extremely low-latency inserts. This streaming insert API allows
allows you to tag inserts with a unique ID, and BigQuery will attempt to filter
duplicate inserts with the same ID. To use this capability, the BigQuery sink
must generate statistically unique IDs for each record. It does this by using
the java.util.UUID package, which generates statistically unique 128-bit
IDs.

Generating a random universally unique identifier (UUID) is a
nondeterministic operation, so we must add a Reshuffle before we insert
into BigQuery. After we do this, any retries by Dataflow will always use the
same UUID that was shuffled. Duplicate attempts to insert into BigQuery will
always have the same insert ID, so BigQuery is able to filter them. The
pseudocode shown in Example 5-5 illustrates how the BigQuery sink is
implemented.
Example 5-5. BigQuery sink
// Apply a unique identifier to each record
c
 .apply(new DoFn<> {
 @ProcessElement
 public void processElement(ProcessContext context) {
 String uniqueId = UUID.randomUUID().toString();
 context.output(KV.of(ThreadLocalRandom.current().nextInt(0, 50),
 new RecordWithId(context.element(),
uniqueId)));
 }
})
// Reshuffle the data so that the applied identifiers are stable and will not
change.
.apply(Reshuffle.<Integer, RecordWithId>of())
// Stream records into BigQuery with unique ids for deduplication.
.apply(ParDo.of(new DoFn<..> {
 @ProcessElement
 public void processElement(ProcessContext context) {
 insertIntoBigQuery(context.element().record(), context.element.id());

14

15

142

 }
 });

Again we split the sink into a nonidempotent step (generating a random
number), followed by a step that is idempotent.

Other Systems
Now that we have explained Dataflow’s exactly once in detail, let us contrast
this with some brief overviews of other popular streaming systems. Each
implements exactly-once guarantees in a different way and makes different
trade-offs as a result.

Apache Spark Streaming
Spark Streaming uses a microbatch architecture for continuous data
processing. Users logically deal with a stream object; however, under the
covers, Spark represents this stream as a continuous series of RDDs. Each
RDD is processed as a batch, and Spark relies on the exactly-once nature of
batch processing to ensure correctness; as mentioned previously, techniques
for correct batch shuffles have been known for some time. This approach can
cause increased latency to output—especially for deep pipelines and high
input volumes—and often careful tuning is required to achieve desired
latency.

Spark does assume that operations are all idempotent and might replay the
chain of operations up the current point in the graph. A checkpoint primitive
is provided, however, that causes an RDD to be materialized, guaranteeing
that history prior to that RDD will not be replayed. This checkpoint feature is
intended for performance reasons (e.g., to prevent replaying an expensive
operation); however, you can also use it to implement nonidempotent side
effects.

Apache Flink
Apache Flink also provides exactly-once processing for streaming pipelines
but does so in a manner different than either Dataflow or Spark. Flink
streaming pipelines periodically compute consistent snapshots, each
representing the consistent point-in-time state of an entire pipeline. Flink
snapshots are computed progressively, so there is no need to halt all
processing while computing a snapshot. This allows records to continue

16

143

flowing through the system while taking a snapshot, alleviating some of the
latency issues with the Spark Streaming approach.

Flink implements these snapshots by inserting special numbered snapshot
markers into the data streams flowing from sources. As each operator receives
a snapshot marker, it executes a specific algorithm allowing it to copy its state
to an external location and propagate the snapshot marker to downstream
operators. After all operators have executed this snapshot algorithm, a
complete snapshot is made available. Any worker failures will cause the
entire pipeline to roll back its state from the last complete snapshot. In-flight
messages do not need to be included in the snapshot. All message delivery in
Flink is done via an ordered TCP-based channel. Any connection failures can
be handled by resuming the connection from the last good sequence
number; unlike Dataflow, Flink tasks are statically allocated to workers, so
it can assume that the connection will resume from the same sender and
replay the same payloads.

Because Flink might roll back to the previous snapshot at any time, any state
modifications not yet in a snapshot must be considered tentative. A sink that
sends data to the world outside the Flink pipeline must wait until a snapshot
has completed, and then send only the data that is included in that snapshot.
Flink provides a notifySnapshotComplete callback that allows sinks to
know when each snapshot is completed, and send the data onward. Even
though this does affect the output latency of Flink pipelines, this latency is
introduced only at sinks. In practice, this allows Flink to have lower end-to-
end latency than Spark for deep pipelines because Spark introduces batch
latency at each stage in the pipeline.

Flink’s distributed snapshots are an elegant way of dealing with consistency
in a streaming pipeline; however, a number of assumptions are made about
the pipeline. Failures are assumed to be rare, as the impact of a failure
(rolling back to the previous snapshot) is substantial. To maintain low-latency
output, it is also assumed that snapshots can complete quickly. It remains to
be seen whether this causes issues on very large clusters where the failure rate
will likely increase, as will the time needed to complete a snapshot.

Implementation is also simplified by assuming that tasks are statically
allocated to workers (at least within a single snapshot epoch). This
assumption allows Flink to provide a simple exactly-once transport between
workers because it knows that if a connection fails, the same data can be
pulled in order from the same worker. In contrast, tasks in Dataflow are

17

18

19

144

constantly load balanced between workers (and the set of workers is
constantly growing and shrinking), so Dataflow is unable to make this
assumption. This forces Dataflow to implement a much more complex
transport layer in order to provide exactly-once processing.

Summary
In summary, exactly-once data processing, which was once thought to be
incompatible with low-latency results, is quite possible—Dataflow does it
efficiently without sacrificing latency. This enables far richer uses for stream
processing.

Although this chapter has focused on Dataflow-specific techniques, other
streaming systems also provide exactly-once guarantees. Apache Spark
Streaming runs streaming pipelines as a series of small batch jobs, relying on
exactly-once guarantees in the Spark batch runner. Apache Flink uses a
variation on Chandy Lamport distributed snapshots to get a running consistent
state and can use these snapshots to ensure exactly-once processing. We
encourage you to learn about these other systems, as well, for a broad
understanding of how different stream-processing systems work!

 In fact, no system we are aware of that provides at-least once (or better) is
able to guarantee this, including all other Beam runners.

 Dataflow also provides an accurate batch runner; however, in this context
we are focused on the streaming runner.

 The Dataflow optimizer groups many steps together and adds shuffles only
where they are needed.

 Batch pipelines also need to guard against duplicates in shuffle. However
the problem is much easier to solve in batch, which is why historical batch
systems did do this and streaming systems did not. Streaming runtimes that
use a microbatch architecture, such as Spark Streaming, delegate duplicate
detection to a batch shuffler.

 A lot of care is taken to make sure this checkpointing is efficient; for
example, schema and access pattern optimizations that are intimately tied to
the characteristics of the underlying key/value store.

 This is not the custom user-supplied timestamp used for windowing. Rather
this is a deterministic processing-time timestamp that is assigned by the

1

2

3

4

5

6

145

sending worker.

 Some care needs to be taken to ensure that this algorithm works. Each
sender must guarantee that the system timestamps it generates are strictly
increasing, and this guarantee must be maintained across worker restarts.

 In theory, we could dispense with startup scans entirely by lazily building
the Bloom filter for a bucket only when a threshold number of records show
up with timestamps in that bucket.

 At the time of this writing, a new, more-flexible API called SplittableDoFn
is available for Apache Beam.

 We assume that nobody is maliciously modifying the bytes in the file while
we are reading it.

 Again note that the SplittableDoFn API has different methods for this.

 Using the requiresDedupping override.

 Note that these determinism boundaries might become more explicit in the
Beam Model at some point. Other Beam runners vary in their ability to handle
nondeterministic user code.

 As long as you properly handle the failure when the source file no longer
exists.

 Due to the global nature of the service, BigQuery does not guarantee that
all duplicates are removed. Users can periodically run a query over their
tables to remove any duplicates that were not caught by the streaming insert
API. See the BigQuery documentation for more information.

 Resilient Distributed Datasets; Spark’s abstraction of a distributed dataset,
similar to PCollection in Beam.

 These sequence numbers are per connection and are unrelated to the
snapshot epoch number.

 Only for nonidempotent sinks. Completely idempotent sinks do not need to
wait for the snapshot to complete.

 Specifically, Flink assumes that the mean time to worker failure is less than
the time to snapshot; otherwise, the pipeline would be unable to make
progress.

7

8

9

10

11

12

13

14

15

16

17

18

19

146

http://bit.ly/2JQa7GJ
http://bit.ly/2JQa7GJ

Part II. Streams and Tables

147

Chapter 6. Streams and Tables

You have reached the part of the book where we talk about streams and
tables. If you recall, back in Chapter 1, we briefly discussed two important
but orthogonal dimensions of data: cardinality and constitution. Until now,
we’ve focused strictly on the cardinality aspects (bounded versus unbounded)
and otherwise ignored the constitution aspects (stream versus table). This has
allowed us to learn about the challenges brought to the table by the
introduction of unbounded datasets, without worrying too much about the
lower-level details that really drive the way things work. We’re now going to
expand our horizons and see what the added dimension of constitution brings
to the mix.

Though it’s a bit of a stretch, one way to think about this shift in approach is
to compare the relationship of classical mechanics to quantum mechanics.
You know how in physics class they teach you a bunch of classical mechanics
stuff like Newtonian theory and so on, and then after you think you’ve more
or less mastered that, they come along and tell you it was all bunk, and
classical physics gives you only part of the picture, and there’s actually this
other thing called quantum mechanics that really explains how things work at
a lower level, but it didn’t make sense to complicate matters up front by
trying to teach you both at once, and...oh wait...we also haven’t fully
reconciled everything between the two yet, so just squint at it and trust us that
it all makes sense somehow? Well this is a lot like that, except your brain will
hurt less because physics is way harder than data processing, and you won’t
have to squint at anything and pretend it makes sense because it actually does
come together beautifully in the end, which is really cool.

So, with the stage appropriately set, the point of this chapter is twofold:

To try to describe the relationship between the Beam Model (as
we’ve described it in the book up to this point) and the theory of
“streams and tables” (as popularized by Martin Kleppmann and Jay
Kreps, among others, but essentially originating out of the database
world). It turns out that stream and table theory does an illuminating
job of describing the low-level concepts that underlie the Beam
Model. Additionally, a clear understanding of how they relate is
particularly informative when considering how robust stream

148

http://bit.ly/2LO0cik
http://bit.ly/2sX0bl8

processing concepts might be cleanly integrated into SQL
(something we consider in Chapter 8).

To bombard you with bad physics analogies for the sheer fun of it.
Writing a book is a lot of work; you have to find little joys here and
there to keep you going.

Stream-and-Table Basics Or: a Special Theory
of Stream and Table Relativity
The basic idea of streams and tables derives from the database world. Anyone
familiar with SQL is likely familiar with tables and their core properties,
roughly summarized as: tables contain rows and columns of data, and each
row is uniquely identified by some sort of key, either explicit or implicit.

If you think back to your database systems class in college, you’ll probably
recall the data structure underlying most databases is an append-only log. As
transactions are applied to a table in the database, those transactions are
recorded in a log, the contents of which are then serially applied to the table
to materialize those updates. In streams and tables nomenclature, that log is
effectively the stream.

From that perspective, we now understand how to create a table from a
stream: the table is just the result of applying the transaction log of updates
found in the stream. But how to do we create a stream from a table? It’s
essentially the inverse: a stream is a changelog for a table. The motivating
example typically used for table-to-stream conversion is materialized views.
Materialized views in SQL let you specify a query on a table, which itself is
then manifested by the database system as another first-class table. This
materialized view is essentially a cached version of that query, which the
database system ensures is always up to date as the contents of the source
table evolve over time. Perhaps unsurprisingly, materialized views are
implemented via the changelog for the original table; any time the source
table changes, that change is logged. The database then evaluates that change
within the context of the materialized view’s query and applies any resulting
change to the destination materialized view table.

Combining these two points together and employing yet another questionable
physics analogy, we arrive at what one might call the Special Theory of
Stream and Table Relativity:

1

149

Streams → tables
The aggregation of a stream of updates over time yields a table.

Tables → streams
The observation of changes to a table over time yields a stream.

This is a very powerful pair of concepts, and their careful application to the
world of stream processing is a big reason for the massive success of Apache
Kafka, the ecosystem that is built around these underlying principles.
However, those statements themselves are not quite general enough to allow
us to tie streams and tables to all of the concepts in the Beam Model. For that,
we must go a little bit deeper.

Toward a General Theory of Stream and Table Relativity
If we want to reconcile stream/table theory with everything we know of the
Beam Model, we’ll need to tie up some loose ends, specifically:

How does batch processing fit into all of this?

What is the relationship of streams to bounded and unbounded
datasets?

How do the four what, where, when, how questions map onto a
streams/tables world?

As we attempt to do so, it will be helpful to have the right mindset about
streams and tables. In addition to understanding them in relation to each
other, as captured by the previous definition, it can be illuminating to define
them independent of each other. Here’s a simple way of looking at it that will
underscore some of our future analyses:

Tables are data at rest.

This isn’t to say tables are static in any way; nearly all useful tables
are continuously changing over time in some way. But at any given
time, a snapshot of the table provides some sort of picture of the
dataset contained together as a whole. In that way, tables act as a
conceptual resting place for data to accumulate and be observed over
time. Hence, data at rest.

Streams are data in motion.

2

150

Whereas tables capture a view of the dataset as a whole at a specific
point in time, streams capture the evolution of that data over time.
Julian Hyde is fond of saying streams are like the derivatives of
tables, and tables the integrals of streams, which is a nice way of
thinking about it for you math-minded individuals out there.
Regardless, the important feature of streams is that they capture the
inherent movement of data within a table as it changes. Hence, data
in motion.

Though tables and streams are intimately related, it’s important to keep in
mind that they are very much not the same thing, even if there are many cases
in which one might be fully derived from the other. The differences are subtle
but important, as we’ll see.

Batch Processing Versus Streams and Tables
With our proverbial knuckles now cracked, let’s start to tie up some loose
ends. To begin, we tackle the first one, regarding batch processing. At the
end, we’ll discover that the resolution to the second issue, regarding the
relationship of streams to bounded and unbounded data, will fall out naturally
from the answer for the first. Score one for serendipity.

A Streams and Tables Analysis of MapReduce
To keep our analysis relatively simple, but solidly concrete, as it were, let’s
look at how a traditional MapReduce job fits into the streams/tables world. As
alluded to by its name, a MapReduce job superficially consists of two phases:
Map and Reduce. For our purposes, though, it’s useful to look a little deeper
and treat it more like six:
MapRead

This consumes the input data and preprocesses them a bit into a standard
key/value form for mapping.

Map
This repeatedly (and/or in parallel) consumes a single key/value pair
from the preprocessed input and outputs zero or more key/value pairs.

MapWrite
This clusters together sets of Map-phase output values having identical

3

151

http://bit.ly/2uvKRe6

keys and writes those key/value-list groups to (temporary) persistent
storage. In this way, the MapWrite phase is essentially a group-by-key-
and-checkpoint operation.

ReduceRead
This consumes the saved shuffle data and converts them into a standard
key/value-list form for reduction.

Reduce
This repeatedly (and/or in parallel) consumes a single key and its
associated value-list of records and outputs zero or more records, all of
which may optionally remain associated with that same key.

ReduceWrite
This writes the outputs from the Reduce phase to the output datastore.

Note that the MapWrite and ReduceRead phases sometimes are referred to in
aggregate as the Shuffle phase, but for our purposes, it’s better to consider
them independently. It’s perhaps also worth noting that the functions served
by the MapRead and ReduceWrite phases are more commonly referred to
these days as sources and sinks. Digressions aside, however, let’s now see
how this all relates to streams and tables.

Map as streams/tables
Because we start and end with static datasets, it should be clear that we begin
with a table and end with a table. But what do we have in between? Naively,
one might assume that it’s tables all the way down; after all, batch processing
is (conceptually) known to consume and produce tables. And if you think of a
batch processing job as a rough analog of executing a classic SQL query, that
feels relatively natural. But let’s look a little more closely at what’s really
happening, step by step.

First up, MapRead consumes a table and produces something. That something
is consumed next by the Map phase, so if we want to understand its nature, a
good place to start would be with the Map phase API, which looks something
like this in Java:

void map(KI key, VI value, Emit<KO, VO> emitter);

The map call will be repeatedly invoked for each key/value pair in the input
table. If you think this sounds suspiciously like the input table is being

4

152

consumed as a stream of records, you’d be right. We look more closely at
how the table is being converted into a stream later, but for now, suffice it to
say that the MapRead phase is iterating over the data at rest in the input table
and putting them into motion in the form of a stream that is then consumed by
the Map phase.

Next up, the Map phase consumes that stream, and then does what? Because
the map operation is an element-wise transformation, it’s not doing anything
that will halt the moving elements and put them to rest. It might change the
effective cardinality of the stream by either filtering some elements out or
exploding some elements into multiple elements, but those elements all
remain independent from one another after the Map phase concludes. So, it
seems safe to say that the Map phase both consumes a stream as well as
produces a stream.

After the Map phase is done, we enter the MapWrite phase. As I noted earlier,
the MapWrite groups records by key and then writes them in that format to
persistent storage. The persistent part of the write actually isn’t strictly
necessary at this point as long as there’s persistence somewhere (i.e., if the
upstream inputs are saved and one can recompute the intermediate results
from them in cases of failure, similar to the approach Spark takes with
Resilient Distributed Datasets [RDDs]). What is important is that the records
are grouped together into some kind of datastore, be it in memory, on disk, or
what have you. This is important because, as a result of this grouping
operation, records that were previously flying past one-by-one in the stream
are now brought to rest in a location dictated by their key, thus allowing per-
key groups to accumulate as their like-keyed brethren and sistren arrive. Note
how similar this is to the definition of stream-to-table conversion provided
earlier: the aggregation of a stream of updates over time yields a table. The
MapWrite phase, by virtue of grouping the stream of records by their keys,
has put those data to rest and thus converted the stream back into a table.
Cool!

We’re now halfway through the MapReduce, so, using Figure 6-1, let’s recap
what we’ve seen so far.

We’ve gone from table to stream and back again across three operations.
MapRead converted the table into a stream, which was then transformed into
a new stream by Map (via the user’s code), which was then converted back
into a table by MapWrite. We’re going to find that the next three operations in
the MapReduce look very similar, so I’ll go through them more quickly, but I

5

153

still want to point out one important detail along the way.

Figure 6-1. Map phases in a MapReduce. Data in a table are converted to a stream and back again.

Reduce as streams/tables
Picking up where we left off after the MapWrite phase, ReduceRead itself is
relatively uninteresting. It’s basically identical to MapRead, except that the
values being read are singleton lists of values instead of singleton values,
because the data stored by MapWrite were key/value-list pairs. But it’s still
just iterating over a snapshot of a table to convert it into a stream. Nothing
new here.

And even though it sounds like it might be interesting, Reduce in this context

154

is really just a glorified Map phase that happens to receive a list of values for
each key instead of a single value. So it’s still just mapping single
(composite) records into zero or more new records. Nothing particularly new
here, either.

ReduceWrite is the one that’s a bit noteworthy. We know already that this
phase must convert a stream to a table, given that Reduce produces a stream
and the final output is a table. But how does that happen? If I told you it was a
direct result of key-grouping the outputs from the previous phase into
persistent storage, just like we saw with MapWrite, you might believe me,
until you remembered that I noted earlier that key-association was an optional
feature of the Reduce phase. With that feature enabled, ReduceWrite is
essentially identical to MapWrite. But if that feature is disabled and the
outputs from Reduce have no associated keys, what exactly is happening to
bring those data to rest?

To understand what’s going on, it’s useful to think again of the semantics of a
SQL table. Though often recommended, it’s not strictly required for a SQL
table to have a primary key uniquely identifying each row. In the case of
keyless tables, each row that is inserted is considered to be a new,
independent row (even if the data therein are identical to one or more extant
rows in the table), much as though there were an implicit
AUTO_INCREMENT field being used as the key (which incidentally, is
what’s effectively happening under the covers in most implementations, even
though the “key” in this case might just be some physical block location that
is never exposed or expected to be used as a logical identifier). This implicit
unique key assignment is precisely what’s happening in ReduceWrite with
unkeyed data. Conceptually, there’s still a group-by-key operation happening;
that’s what brings the data to rest. But lacking a user-supplied key, the
ReduceWrite is treating each record as though it has a new, never-before-seen
key, and effectively grouping each record with itself, resulting again in data at
rest.

Take a look at Figure 6-2, which shows the entire pipeline from the
perspective of stream/tables. You can see that it’s a sequence of TABLE →
STREAM → STREAM → TABLE → STREAM → STREAM → TABLE.
Even though we’re processing bounded data and even though we’re doing
what we traditionally think of as batch processing, it’s really just streams and
tables under the covers.

6

7

155

Figure 6-2. Map and Reduce phases in a MapReduce, viewed from the perspective of streams and
tables

Reconciling with Batch Processing
So where does this leave us with respect to our first two questions?

1. Q: How does batch processing fit into stream/table theory?

A: Quite nicely. The basic pattern is as follows:

a. Tables are read in their entirety to become streams.

b. Streams are processed into new streams until a grouping
operation is hit.

156

c. Grouping turns the stream into a table.

d. Steps a through c repeat until you run out of stages in the
pipeline.

2. Q: How do streams relate to bounded/unbounded data?

A: As we can see from the MapReduce example, streams are simply
the in-motion form of data, regardless of whether they’re bounded or
unbounded.

Taken from this perspective, it’s easy to see that stream/table theory isn’t
remotely at odds with batch processing of bounded data. In fact, it only
further supports the idea I’ve been harping on that batch and streaming really
aren’t that different: at the end of the of day, it’s streams and tables all the
way down.

With that, we’re well on our way toward a general theory of streams and
tables. But to wrap things up cleanly, we last need to revisit the four
what/where/when/how questions within the streams/tables context, to see how
they all relate.

What, Where, When, and How in a Streams
and Tables World
In this section, we look at each of the four questions and see how they relate
to streams and tables. We’ll also answer any questions that may be lingering
from the previous section, one big one being: if grouping is the thing that
brings data to rest, what precisely is the “ungrouping” inverse that puts them
in motion? More on that later. But for now, on to transformations.

What: Transformations
In Chapter 3, we learned that transformations tell us what the pipeline is
computing; that is, whether it’s building models, counting sums, filtering
spam, and so on. We saw in the earlier MapReduce example that four of the
six stages answered what questions:

Map and Reduce both applied the pipeline author’s element-wise
transformation on each key/value or key/value-list pair in the input
stream, respectively, yielding a new, transformed stream.

157

MapWrite and ReduceWrite both grouped the outputs from the
previous stage according to the key assigned by that stage (possibly
implicitly, in the optional Reduce case), and in doing so transformed
the input stream into an output table.

Viewed in that light, you can see that there are essentially two types of what
transforms from the perspective of stream/table theory:
Nongrouping

These operations (as we saw in Map and Reduce) simply accept a stream
of records and produce a new, transformed stream of records on the other
side. Examples of nongrouping transformations are filters (e.g., removing
spam messages), exploders (i.e., splitting apart a larger composite record
into its constituent parts), and mutators (e.g., divide by 100), and so on.

Grouping
These operations (as we saw in MapWrite and ReduceWrite) accept a
stream of records and group them together in some way, thereby
transforming the stream into a table. Examples of grouping
transformations are joins, aggregations, list/set accumulation, changelog
application, histogram creation, machine learning model training, and so
forth.

To get a better sense for how all of this ties together, let’s look at an updated
version of Figure 2-2, where we first began to look at transformations. To
save you jumping back there to see what we were talking about, Example 6-1
contains the code snippet we were using.
Example 6-1. Summation pipeline
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
 input.apply(Sum.integersPerKey());

This pipeline is simply reading in input data, parsing individual team member
scores, and then summing those scores per team. The event-time/processing-
time visualization of it looks like the diagram presented in Figure 6-3.

158

Figure 6-3. Event-time/processing-time view of classic batch processing

Figure 6-4 depicts a more topological view of this pipeline over time,
rendered from a streams-and-tables perspective.

Figure 6-4. Streams and tables view of classic batch processing

In the streams and tables version of this visualization, the passage of time is
manifested by scrolling the graph area downward in the processing-time
dimension (y-axis) as time advances. The nice thing about rendering things
this way is that it very clearly calls out the difference between nongrouping
and grouping operations. Unlike our previous diagrams, in which I elided all
initial transformations in the pipeline other than the Sum.integersByKey,
I’ve included the initial parsing operation here, as well, because the
nongrouping aspect of the parsing operation provides a nice contrast to the
grouping aspect of the summation. Viewed in this light, it’s very easy to see
the difference between the two. The nongrouping operation does nothing to
halt the motion of the elements in the stream, and as a result yields another
stream on the other side. In contrast, the grouping operation brings all the
elements in the stream to rest as it adds them together into the final sum.
Because this example was running on a batch processing engine over
bounded data, the final results are emitted only after the end of the input is
reached. As we noted in Chapter 2 this example is sufficient for bounded data,

00:00 / 00:00

00:00 / 00:00

159

but is too limiting in the context of unbounded data because the input will
theoretically never end. But is it really insufficient?

Looking at the new streams/tables portion of the diagram, if all we’re doing is
calculating sums as our final results (and not actually transforming those sums
in any additional way further downstream within the pipeline), the table we
created with our grouping operation has our answer sitting right there,
evolving over time as new data arrive. Why don’t we just read our results
from there?

This is exactly the point being made by the folks championing stream
processors as a database (primarily the Kafka and Flink crews): anywhere
you have a grouping operation in your pipeline, you’re creating a table that
includes what is effectively the output values of that portion of the stage. If
those output values happen to be the final thing your pipeline is calculating,
you don’t need to rematerialize them somewhere else if you can read them
directly out of that table. Besides providing quick and easy access to results as
they evolve over time, this approach saves on compute resources by not
requiring an additional sink stage in the pipeline to materialize the outputs,
yields disk savings by eliminating redundant data storage, and obviates the
need for any engineering work building the aforementioned sink stages. The
only major caveat is that you need to take care to ensure that only the data
processing pipeline has the ability to make modifications to the table. If the
values in the table can change out from under the pipeline due to external
modification, all bets are off regarding consistency guarantees.

A number of folks in the industry have been recommending this approach for
a while now, and it’s being put to great use in a variety of scenarios. We’ve
seen MillWheel customers within Google do the same thing by serving data
directly out of their Bigtable-based state tables, and we’re in the process of
adding first-class support for accessing state from outside of your pipeline in
the C++–based Apache Beam equivalent we use internally at Google (Google
Flume); hopefully those concepts will make their way to Apache Beam proper
someday soon, as well.

Now, reading from the state tables is great if the values therein are your final
results. But, if you have more processing to perform downstream in the
pipeline (e.g., imagine our pipeline was actually computing the top scoring
team), we still need some better way to cope with unbounded data, allowing
us to transform the table back into a stream in a more incremental fashion. For
that, we’ll want to journey back through the remaining three questions,

8

9

160

beginning with windowing, expanding into triggering, and finally tying it all
together with accumulation.

Where: Windowing
As we know from Chapter 3, windowing tells us where in event time
grouping occurs. Combined with our earlier experiences, we can thus also
infer it must play a role in stream-to-table conversion because grouping is
what drives table creation. There are really two aspects of windowing that
interact with stream/table theory:
Window assignment

This effectively just means placing a record into one or more windows.

Window merging
This is the logic that makes dynamic, data-driven types of windows, such
as sessions, possible.

The effect of window assignment is quite straightforward. When a record is
conceptually placed into a window, the definition of the window is essentially
combined with the user-assigned key for that record to create an implicit
composite key used at grouping time. Simple.

For completeness, let’s take another look at the original windowing example
from Chapter 3, but from a streams and tables perspective. If you recall, the
code snippet looked something like Example 6-2 (with parsing not elided this
time).
Example 6-2. Summation pipeline
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES)))
 .apply(Sum.integersPerKey());

And the original visualization looked like that shown in Figure 6-5.

Figure 6-5. Event-time/processing-time view of windowed summation on a batch engine

10

00:00 / 00:00

161

And now, Figure 6-6 shows the streams and tables version.

Figure 6-6. Streams and tables view of windowed summation on a batch engine

As you might expect, this looks remarkably similar to Figure 6-4, but with
four groupings in the table (corresponding to the four windows occupied by
the data) instead of just one. But as before, we must wait until the end of our
bounded input is reached before emitting results. We look at how to address
this for unbounded data in the next section, but first let’s touch briefly on
merging windows.

Window merging
Moving on to merging, we’ll find that the effect of window merging is more
complicated than window assignment, but still straightforward when you
think about the logical operations that would need to happen. When grouping
a stream into windows that can merge, that grouping operation has to take
into account all of the windows that could possibly merge together. Typically,
this is limited to windows whose data all have the same key (because we’ve
already established that windowing modifies grouping to not be just by key,
but also key and window). For this reason, the system doesn’t really treat the
key/window pair as a flat composite key, but rather as a hierarchical key, with
the user-assigned key as the root, and the window a child component of that
root. When it comes time to actually group data together, the system first
groups by the root of the hierarchy (the key assigned by the user). After the
data have been grouped by key, the system can then proceed with grouping by
window within that key (using the child components of the hierarchical
composite keys). This act of grouping by window is where window merging
happens.

What’s interesting from a streams and tables perspective is how this window
merging changes the mutations that are ultimately applied to a table; that is,
how it modifies the changelog that dictates the contents of the table over time.
With nonmerging windows, each new element being grouped results in a
single mutation to the table (to add that element to the group for the element’s
key+window). With merging windows, the act of grouping a new element can

00:00 / 00:00

162

result in one or more existing windows being merged with the new window.
So, the merging operation must inspect all of the existing windows for the
current key, figure out which windows can merge with this new window, and
then atomically commit deletes for the old unmerged windows in conjunction
with an insert for the new merged window into the table. This is why systems
that support merging windows typically define the unit of
atomicity/parallelization as key, rather than key+window. Otherwise, it would
be impossible (or at least much more expensive) to provide the strong
consistency needed for correctness guarantees. When you begin to look at it
in this level of detail, you can see why it’s so nice to have the system taking
care of the nasty business of dealing with window merges. For an even closer
view of window merging semantics, I refer you to section 2.2.2 of “The
Dataflow Model”.

At the end of the day, windowing is really just a minor alteration to the
semantics of grouping, which means it’s a minor alteration to the semantics of
stream-to-table conversion. For window assignment, it’s as simple as
incorporating the window into an implicit composite key used at grouping
time. When window merging becomes involved, that composite key is treated
more like a hierarchical key, allowing the system to handle the nasty business
of grouping by key, figuring out window merges within that key, and then
atomically applying all the necessary mutations to the corresponding table for
us. Hooray for layers of abstraction!

All that said, we still haven’t actually addressed the problem of converting a
table to a stream in a more incremental fashion in the case of unbounded data.
For that, we need to revisit triggers.

When: Triggers
We learned in Chapter 3 that we use triggers to dictate when the contents of a
window will be materialized (with watermarks providing a useful signal of
input completeness for certain types of triggers). After data have been
grouped together into a window, we use triggers to dictate when that data
should be sent downstream. In streams/tables terminology, we understand that
grouping means stream-to-table conversion. From there, it’s a relatively small
leap to see that triggers are the complement to grouping; in other words, that
“ungrouping” operation we were grasping for earlier. Triggers are what drive
table-to-stream conversion.

In streams/tables terminology, triggers are special procedures applied to a

163

http://bit.ly/2sXgVJ3

table that allow for data within that table to be materialized in response to
relevant events. Stated that way, they actually sound suspiciously similar to
classic database triggers. And indeed, the choice of name here was no
coincidence; they are essentially the same thing. When you specify a trigger,
you are in effect writing code that then is evaluated for every row in the state
table as time progresses. When that trigger fires, it takes the corresponding
data that are currently at rest in the table and puts them into motion, yielding a
new stream.

Let’s return to our examples. We’ll begin with the simple per-record trigger
from Chapter 2, which simply emits a new result every time a new record
arrives. The code and event-time/processing-time visualization for that
example is shown in Example 6-3. Figure 6-7 presents the results.
Example 6-3. Triggering repeatedly with every record
PCollection<String>> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(Repeatedly(AfterCount(1))));
 .apply(Sum.integersPerKey());

Figure 6-7. Streams and tables view of windowed summation on a batch engine

As before, new results are materialized every time a new record is
encountered. Rendered in a streams and tables type of view, this diagram
would look like Figure 6-8.

Figure 6-8. Streams and tables view of windowed summation with per-record triggering on a streaming
engine

An interesting side effect of using per-record triggers is how it somewhat
masks the effect of data being brought to rest, given that they are then
immediately put back into motion again by the trigger. Even so, the aggregate

00:00 / 00:00

00:00 / 00:00

164

artifact from the grouping remains at rest in the table, as the ungrouped
stream of values flows away from it.

To get a better sense of the at-rest/in-motion relationship, let’s skip forward in
our triggering examples to the basic watermark completeness streaming
example from Chapter 2, which simply emitted results when complete (due to
the watermark passing the end of the window). The code and event-
time/processing-time visualization for that example are presented in
Example 6-4 (note that I’m only showing the heuristic watermark version
here, for brevity and ease of comparison) and Figure 6-9 illustrates the results.
Example 6-4. Watermark completeness trigger
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark()))
 .apply(Sum.integersPerKey());

Figure 6-9. Event-time/processing-time view of windowed summation with a heuristic watermark on a
streaming engine

Thanks to the trigger specified in Example 6-4, which declares that windows
should be materialized when the watermark passes them, the system is able to
emit results in a progressive fashion as the otherwise unbounded input to the
pipeline becomes more and more complete. Looking at the streams and tables
version in Figure 6-10, it looks as you might expect.

Figure 6-10. Streams and tables view of windowed summation with a heuristic watermark on a
streaming engine

In this version, you can see very clearly the ungrouping effect triggers have
on the state table. As the watermark passes the end of each window, it pulls
the result for that window out of the table and sets it in motion downstream,

00:00 / 00:00

00:00 / 00:00

165

separate from all the other values in the table. We of course still have the late
data issue from before, which we can solve again with the more
comprehensive trigger shown in Example 6-5.
Example 6-5. Early, on-time, and late firings via the early/on-time/late API
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

The event-time/processing-time diagram looks like Figure 6-11.

Figure 6-11. Event-time/processing-time view of windowed summation on a streaming engine with
early/on-time/late trigger

Whereas the streams and tables version looks like that shown in Figure 6-12.

Figure 6-12. Streams and tables view of windowed summation on a streaming engine with early/on-
time/late trigger

This version makes even more clear the ungrouping effect triggers have,
rendering an evolving view of the various independent pieces of the table into
a stream, as dictated by the triggers specified in Example 6-6.

The semantics of all the concrete triggers we’ve talked about so far (event-
time, processing-time, count, composites like early/on-time/late, etc.) are just
as you would expect when viewed from the streams/tables perspective, so
they aren’t worth further discussion. However, we haven’t yet spent much
time talking about what triggers look like in a classic batch processing
scenario. Now that we understand what the underlying streams/tables

00:00 / 00:00

00:00 / 00:00

166

topology of a batch pipeline looks like, this is worth touching upon briefly.

At the end of the day, there’s really only one type of trigger used in classic
batch scenarios: one that fires when the input is complete. For the initial
MapRead stage of the MapReduce job we looked at earlier, that trigger would
conceptually fire for all of the data in the input table as soon as the pipeline
launched, given that the input for a batch job is assumed to be complete from
the get go. That input source table would thus be converted into a stream of
individual elements, after which the Map stage could begin processing them.

For table-to-stream conversions in the middle of the pipeline, such as the
ReduceRead stage in our example, the same type of trigger is used. In this
case, however, the trigger must actually wait for all of the data in the table to
be complete (i.e., what is more commonly referred to as all of the data being
written to the shuffle), much as our example batch pipelines in Figures 6-4
and 6-6 waited for the end of the input before emitting their final results.

Given that classic batch processing effectively always makes use of the input-
data-complete trigger, you might ask what any custom triggers specified by
the author of the pipeline might mean in a batch scenario. The answer here
really is: it depends. There are two aspects worth discussing:
Trigger guarantees (or lack thereof)

Most existing batch processing systems have been designed with this
lock-step read-process-group-write-repeat sequence in mind. In such
circumstances, it’s difficult to provide any sort of finer-grained trigger
abilities, because the only place they would manifest any sort of change
would be at the final shuffle stage of the pipeline. This doesn’t mean that
the triggers specified by the user aren’t honored, however; the semantics
of triggers are such that it’s possible to resort to lower common
denominators when appropriate.

For example, an AfterWatermark trigger is meant to trigger after the
watermark passes the end of a window. It makes no guarantees how far
beyond the end of the window the watermark may be when it fires.
Similarly, an AfterCount(N) trigger only guarantees that at least N
elements have been processed before triggering; N might very well be all
of the elements in the input set.

Note that this clever wording of trigger names wasn’t chosen simply to
accommodate classic batch systems within the model; it’s a very
necessary part of the model itself, given the natural asynchronicity and

11

167

nondeterminism of triggering. Even in a finely tuned, low-latency, true-
streaming system, it’s essentially impossible to guarantee that an
AfterWatermark trigger will fire while the watermark is precisely at the
end of any given window, except perhaps under the most extremely
limited circumstances (e.g., a single machine processing all of the data for
the pipeline with a relatively modest load). And even if you could
guarantee it, what really would be the point? Triggers provide a means of
controlling the flow of data from a table into a stream, nothing more.

The blending of batch and streaming
Given what we’ve learned in this writeup, it should be clear that the main
semantic difference between batch and streaming systems is the ability to
trigger tables incrementally. But even that isn’t really a semantic
difference, but more of a latency/throughput trade-off (because batch
systems typically give you higher throughput at the cost of higher latency
of results).

This goes back to something I said in “Batch and Streaming Efficiency
Differences”: there’s really not that much difference between batch and
streaming systems today except for an efficiency delta (in favor of batch)
and a natural ability to deal with unbounded data (in favor of streaming). I
argued then that much of that efficiency delta comes from the
combination of larger bundle sizes (an explicit compromise of latency in
favor of throughput) and more efficient shuffle implementations (i.e.,
stream → table → stream conversions). From that perspective, it should
be possible to provide a system that seamlessly integrates the best of both
worlds: one which provides the ability to handle unbounded data naturally
but can also balance the tensions between latency, throughput, and cost
across a broad spectrum of use cases by transparently tuning the bundle
sizes, shuffle implementations, and other such implementation details
under the covers.

This is precisely what Apache Beam already does at the API level. The
argument being made here is that there’s room for unification at the
execution-engine level, as well. In a world like that, batch and streaming
will no longer be a thing, and we’ll be able to say goodbye to both batch
and streaming as independent concepts once and for all. We’ll just have
general data processing systems that combine the best ideas from both
branches in the family tree to provide an optimal experience for the
specific use case at hand. Some day.

12

168

At this point, we can stick a fork in the trigger section. It’s done. We have
only one more brief stop on our way to having a holistic view of the
relationship between the Beam Model and streams-and-tables theory:
accumulation.

How: Accumulation
In Chapter 2, we learned that the three accumulation modes (discarding,
accumulating, accumulating and retracting) tell us how refinements of
results relate when a window is triggered multiple times over the course of its
life. Fortunately, the relationship to streams and tables here is pretty
straightforward:

Discarding mode requires the system to either throw away the
previous value for the window when triggering or keep around a
copy of the previous value and compute the delta the next time the
window triggers. (This mode might have better been called Delta
mode.)

Accumulating mode requires no additional work; the current value
for the window in the table at triggering time is what is emitted.
(This mode might have better been called Value mode.)

Accumulating and retracting mode requires keeping around copies of
all previously triggered (but not yet retracted) values for the window.
This list of previous values can grow quite large in the case of
merging windows like sessions, but is vital to cleanly reverting the
effects of those previous trigger firings in cases where the new value
cannot simply be used to overwrite a previous value. (This mode
might have better been called Value and Retractions mode.)

The streams-and-tables visualizations of accumulation modes add little
additional insight into their semantics, so we won’t investigate them here.

A Holistic View of Streams and Tables in the Beam Model
Having addressed the four questions, we can now take a holistic view of
streams and tables in a Beam Model pipeline. Let’s take our running example
(the team scores calculation pipeline) and see what its structure looks like at
the streams-and-table level. The full code for the pipeline might look
something like Example 6-6 (repeating Example 6-4).

13

14

169

Example 6-6. Our full score-parsing pipeline
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

Breaking that apart into stages separated by the intermediate PCollection
types (where I’ve used more semantic “type” names like Team and User
Score than real types for clarity of what is happening at each stage), you
would arrive at something like that depicted in Figure 6-13.

170

Figure 6-13. Logical phases of a team score summation pipeline, with intermediate PCollection types

When you actually run this pipeline, it first goes through an optimizer, whose
job is to convert this logical execution plan into an optimized, physical
execution plan. Each execution engine is different, so actual physical
execution plans will vary between runners. But a believable strawperson plan
might look something like Figure 6-14.

171

Figure 6-14. Theoretical physical phases of a team score summation pipeline, with intermediate
PCollection types

There’s a lot going on here, so let’s walk through all of it. There are three
main differences between Figures 6-13 and 6-14 that we’ll be discussing:
Logical versus physical operations

As part of building a physical execution plan, the underlying engine must
convert the logical operations provided by the user into a sequence of
primitive operations supported by the engine. In some cases, those
physical equivalents look essentially the same (e.g., Parse), and in others,
they’re very different.

172

Physical stages and fusion
It’s often inefficient to execute each logical phase as a fully independent
physical stage in the pipeline (with attendant serialization, network
communication, and deserialization overhead between each). As a result,
the optimizer will typically try to fuse as many physical operations as
possible into a single physical stage.

Keys, values, windows, and partitioning
To make it more evident what each physical operation is doing, I’ve
annotated the intermediate PCollections with the type of key, value,
window, and data partitioning in effect at each point.

Let’s now walk through each logical operation in detail and see what it
translated to in the physical plan and how they all relate to streams and tables:

ReadFromSource

Other than being fused with the physical operation immediately following
it (Parse), not much interesting happens in translation for
ReadFromSource. As far as the characteristics of our data at this point,
because the read is essentially consuming raw input bytes, we basically
have raw strings with no keys, no windows, and no (or random)
partitioning. The original data source can be either a table (e.g., a
Cassandra table) or a stream (e.g., RabbitMQ) or something a little like
both (e.g., Kafka in log compaction mode). But regardless, the end result
of reading from the input source is a stream.

Parse

The logical Parse operation also translates in a relatively straightforward
manner to the physical version. Parse takes the raw strings and extracts a
key (team ID) and value (user score) from them. It’s a nongrouping
operation, and thus the stream it consumed remains a stream on the other
side.

Window+Trigger

This logical operation is spread out across a number of distinct physical
operations. The first is window assignment, in which each element is
assigned to a set of windows. That happens immediately in the
AssignWindows operation, which is a nongrouping operation that simply
annotates each element in the stream with the window(s) it now belongs

173

to, yielding another stream on the other side.

The second is window merging, which we learned earlier in the chapter
happens as part of the grouping operation. As such, it gets sunk down into
the GroupMergeAndCombine operation later in the pipeline. We discuss
that operation when we talk about the logical Sum operation next.

And finally, there’s triggering. Triggering happens after grouping and is
the way that we’ll convert the table created by grouping back into a
stream. As such, it gets sunk into its own operation, which follows
GroupMergeAndCombine.

Sum

Summation is really a composite operation, consisting of a couple pieces:
partitioning and aggregation. Partitioning is a nongrouping operation that
redirects the elements in the stream in such a way that elements with the
same keys end up going to the same physical machine. Another word for
partitioning is shuffling, though that term is a bit overloaded because
“Shuffle” in the MapReduce sense is often used to mean both partitioning
and grouping (and sorting, for that matter). Regardless, partitioning
physically alters the stream in way that makes it groupable but doesn’t do
anything to actually bring the data to rest. As a result, it’s a nongrouping
operation that yields another stream on the other side.

After partitioning comes grouping. Grouping itself is a composite
operation. First comes grouping by key (enabled by the previous partition-
by-key operation). Next comes window merging and grouping by
window, as we described earlier. And finally, because summation is
implemented as a CombineFn in Beam (essentially an incremental
aggregation operation), there’s combining, where individual elements are
summed together as they arrive. The specific details are not terribly
important for our purposes here. What is important is the fact that, since
this is (obviously) a grouping operation, our chain of streams now comes
to rest in a table containing the summed team totals as they evolve over
time.

WriteToSink

Lastly, we have the write operation, which takes the stream yielded by
triggering (which was sunk below the GroupMergeAndCombine operation,
as you might recall) and writes it out to our output data sink. That data

174

itself can be either a table or stream. If it’s a table, WriteToSink will need
to perform some sort of grouping operation as part of writing the data into
the table. If it’s a stream, no grouping will be necessary (though
partitioning might still be desired; for example, when writing into
something like Kafka).

The big takeaway here is not so much the precise details of everything that’s
going on in the physical plan, but more the overall relationship of the Beam
Model to the world of streams and tables. We saw three types of operations:
nongrouping (e.g., Parse), grouping (e.g., GroupMergeAndCombine), and
ungrouping (e.g., Trigger). The nongrouping operations always consumed
streams and produced streams on the other side. The grouping operations
always consumed streams and yielded tables. And the ungrouping operations
consumed tables and yielded streams. These insights, along with everything
else we’ve learned along the way, are enough for us to formulate a more
general theory about the relationship of the Beam Model to streams and
tables.

A General Theory of Stream and Table
Relativity
Having surveyed how stream processing, batch processing, the four
what/where/when/how questions, and the Beam Model as a whole relate to
stream and table theory, let’s now attempt to articulate a more general
definition of stream and table relativity.

A general theory of stream and table relativity​:

Data processing pipelines (both batch and streaming) consist of
tables, streams, and operations upon those tables and streams.

Tables are data at rest, and act as a container for data to accumulate
and be observed over time.

Streams are data in motion, and encode a discretized view of the
evolution of a table over time.

Operations act upon a stream or table and yield a new stream or
table. They are categorized as follows:

stream → stream: Nongrouping (element-wise) operations

175

Applying nongrouping operations to a stream alters the data
in the stream while leaving them in motion, yielding a new
stream with possibly different cardinality.

stream → table: Grouping operations

Grouping data within a stream brings those data to rest,
yielding a table that evolves over time.

Windowing incorporates the dimension of event
time into such groupings.

Merging windows dynamically combine over time,
allowing them to reshape themselves in response to
the data observed and dictating that key remain the
unit of atomicity/parallelization, with window
being a child component of grouping within that
key.

table → stream: Ungrouping (triggering) operations

Triggering data within a table ungroups them into motion,
yielding a stream that captures a view of the table’s
evolution over time.

Watermarks provide a notion of input completeness
relative to event time, which is a useful reference
point when triggering event-timestamped data,
particularly data grouped into event-time windows
from unbounded streams.

The accumulation mode for the trigger determines
the nature of the stream, dictating whether it
contains deltas or values, and whether retractions
for previous deltas/values are provided.

table → table: (none)

There are no operations that consume a table and yield a
table, because it’s not possible for data to go from rest and
back to rest without being put into motion. As a result, all
modifications to a table are via conversion to a stream and
back again.

176

What I love about these rules is that they just make sense. They have a very
natural and intuitive feeling about them, and as a result they make it so much
easier to understand how data flow (or don’t) through a sequence of
operations. They codify the fact that data exist in one of two constitutions at
any given time (streams or tables), and they provide simple rules for
reasoning about the transitions between those states. They demystify
windowing by showing how it’s just a slight modification of a thing everyone
already innately understands: grouping. They highlight why grouping
operations in general are always such a sticking point for streaming (because
they bring data in streams to rest as tables) but also make it very clear what
sorts of operations are needed to get things unstuck (triggers; i.e., ungrouping
operations). And they underscore just how unified batch and stream
processing really are, at a conceptual level.

When I set out to write this chapter, I wasn’t entirely sure what I was going to
end up with, but the end result was much more satisfying than I’d imagined it
might be. In the chapters to come, we use this theory of stream and table
relativity again and again to help guide our analyses. And every time, its
application will bring clarity and insight that would otherwise have been
much harder to gain. Streams and tables are the best.

Summary
In this chapter, we first established the basics of stream and table theory. We
first defined streams and tables relatively:
streams → tables

The aggregation of a stream of updates over time yields a table.

tables → streams
The observation of changes to a table over time yields a stream.

We next defined them independently:

Tables are data at rest.

Streams are data in motion.

We then assessed the classic MapReduce model of batch computation from a
streams and tables perspective and came to the conclusion that the following
four steps describe batch processing from that perspective:

177

1. Tables are read in their entirety to become streams.

2. Streams are processed into new streams until a grouping operation is
hit.

3. Grouping turns the stream into a table.

4. Steps 1 through 3 repeat until you run out of operations in the
pipeline.

From this analysis, we were able to see that streams are just as much a part of
batch processing as they are stream processing, and also that the idea of data
being a stream is an orthogonal one from whether the data in question are
bounded or unbounded.

Next, we spent a good deal of time considering the relationship between
streams and tables and the robust, out-of-order stream processing semantics
afforded by the Beam Model, ultimately arriving at the general theory of
stream and table relativity we enumerated in the previous section. In addition
to the basic definitions of streams and tables, the key insight in that theory is
that there are four (really, just three) types of operations in a data processing
pipeline:
stream → stream

Nongrouping (element-wise) operations

stream → table
Grouping operations

table → stream
Ungrouping (triggering) operations

table → table
(nonexistent)

By classifying operations in this way, it becomes trivial to understand how
data flow through (and linger within) a given pipeline over time.

Finally, and perhaps most important of all, we learned this: when you look at
things from the streams-and-tables point of view, it becomes abundantly clear
how batch and streaming really are just the same thing conceptually. Bounded
or unbounded, it doesn’t matter. It’s streams and tables from top to bottom.

</bad-physics-jokes>

178

 If you didn’t go to college for computer science and you’ve made it this far
in the book, you are likely either 1) my parents, 2) masochistic, or 3) very
smart (and for the record, I’m not implying these groups are necessarily
mutually exclusive; figure that one out if you can, Mom and Dad! <winky-
smiley/>).

 And note that in some cases, the tables themselves can accept time as a
query parameter, allowing you to peer backward in time to snapshots of the
table as it existed in the past.

 Note that no guarantees are made about the keys of two successive records
observed by a single mapper, because no key-grouping has occurred yet. The
existence of the key here is really just to allow keyed datasets to be consumed
in a natural way, and if there are no obvious keys for the input data, they’ll all
just share what is effectively a global null key.

 Calling the inputs to a batch job “static” might be a bit strong. In reality, the
dataset being consumed can be constantly changing as it’s processed; that is,
if you’re reading directly from an HBase/Bigtable table within a timestamp
range in which the data aren’t guaranteed to be immutable. But in most cases,
the recommended approach is to ensure that you’re somehow processing a
static snapshot of the input data, and any deviation from that assumption is at
your own peril.

 Note that grouping a stream by key is importantly distinct from simply
partitioning that stream by key, which ensures that all records with the same
key end up being processed by the same machine but doesn’t do anything to
put the records to rest. They instead remain in motion and thus continue on as
a stream. A grouping operation is more like a partition-by-key followed by a
write to the appropriate group for that partition, which is what puts them to
rest and turns the stream into a table.

 One giant difference, from an implementation perspective at least, being that
ReduceWrite, knowing that keys have already been grouped together by
MapWrite, and further knowing that Reduce is unable to alter keys for the
case in which its outputs remain keyed, can simply accumulate the outputs
generated by reducing the values for a single key in order to group them
together, which is much simpler than the full-blown shuffle implementation
required for a MapWrite phase.

 Another way of looking at it is that there are two types of tables: updateable
and appendable; this is the way the Flink folks have framed it for their Table

1

2

3

4

5

6

7

179

API. But even though that’s a great intuitive way of capturing the observed
semantics of the two situations, I think it obscures the underlying nature of
what’s actually happening that causes a stream to come to rest as a table; that
is, grouping.

 Though as we can clearly see from this example, it’s not just a streaming
thing; you can get the same effect with a batch system if its state tables are
world readable.

 This is particularly painful if a sink for your storage system of choice
doesn’t exist yet; building proper sinks that can uphold consistency
guarantees is a surprisingly subtle and difficult task.

 This also means that if you place a value into multiple windows—for
example, sliding windows—the value must conceptually be duplicated into
multiple, independent records, one per window. Even so, it’s possible in some
cases for the underlying system to be smart about how it treats certain types
of overlapping windows, thus optimize away the need for actually duplicating
the value. Spark, for example, does this for sliding windows.

 Note that this high-level conceptual view of how things work in batch
pipelines belies the complexity of efficiently triggering an entire table of data
at once, particularly when that table is sizeable enough to require a plurality
of machines to process. The SplittableDoFn API recently added to Beam
provides some insight into the mechanics involved.

 And yes, if you blend batch and streaming together you get Beam, which is
where that name came from originally. For reals.

 This is why you should always use an Oxford comma.

 Note that in the case of merging windows, in addition to merging the
current values for the two windows to yield a merged current value, the
previous values for those two windows would need to be merged, as well, to
allow for the later calculation of a merged delta come triggering time.

8

9

10

11

12

13

14

180

https://s.apache.org/splittable-do-fn

Chapter 7. The Practicalities of
Persistent State

Why do people write books? When you factor out the joy of creativity, a
certain fondness for grammar and punctuation, and perhaps the occasional
touch of narcissism, you’re basically left with the desire to capture an
otherwise ephemeral idea so that it can be revisited in the future. At a very
high level, I’ve just motivated and explained persistent state in data
processing pipelines.

Persistent state is, quite literally, the tables we just talked about in Chapter 6,
with the additional requirement that the tables be robustly stored in a media
relatively immune to loss. Stored on local disk counts, as long as you don’t
ask your Site Reliability Engineers. Stored on a replicated set of disks is
better. Stored on a replicated set of disks in distinct physical locations is
better still. Stored in memory once definitely doesn’t count. Stored in
replicated memory across multiple machines with UPS power backup and
generators onsite maybe does. You get the picture.

In this chapter, our objective is to do the following:

Motivate the need for persistent state within pipelines

Look at two forms of implicit state often found within pipelines

Consider a real-world use case (advertising conversion attribution)
that lends itself poorly to implicit state, use that to motivate the
salient features of a general, explicit form of persistent state
management

Explore a concrete manifestation of one such state API, as found in
Apache Beam

Motivation
To begin, let’s more precisely motivate persistent state. We know from
Chapter 6 that grouping is what gives us tables. And the core of what I
postulated at the beginning of this chapter was correct: the point of persisting
these tables is to capture the otherwise ephemeral data contained therein. But

181

why is that necessary?

The Inevitability of Failure
The answer to that question is most clearly seen in the case of processing
unbounded input data, so we’ll start there. The main issue is that pipelines
processing unbounded data are effectively intended to run forever. But
running forever is a far more demanding Service-Level Objective than can be
achieved by the environments in which these pipelines typically execute.
Long-running pipelines will inevitably see interruptions thanks to machine
failures, planned maintenance, code changes, and the occasional
misconfigured command that takes down an entire cluster of production
pipelines. To ensure that they can resume where they left off when these
kinds of things happen, long-running pipelines need some sort of durable
recollection of where they were before the interruption. That’s where
persistent state comes in.

Let’s expand on that idea a bit beyond unbounded data. Is this only relevant
in the unbounded case? Do batch pipelines use persistent state, and why or
why not? As with nearly every other batch-versus-streaming question we’ve
come across, the answer has less to do with the nature of batch and streaming
systems themselves (perhaps unsurprising given what we learned in
Chapter 6), and more to do with the types of datasets they historically have
been used to process.

Bounded datasets by nature are finite in size. As a result, systems that process
bounded data (historically batch systems) have been tailored to that use case.
They often assume that the input can be reprocessed in its entirety upon
failure. In other words, if some piece of the processing pipeline fails and if the
input data are still available, we can simply restart the appropriate piece of the
processing pipeline and let it read the same input again. This is called
reprocessing the input.

They might also assume failures are infrequent and thus optimize for the
common case by persisting as little as possible, accepting the extra cost of
recomputation upon failure. For particularly expensive, multistage pipelines,
there might be some sort of per-stage global checkpointing that allows for
more efficiently resuming execution (typically as part of a shuffle), but it’s
not a strict requirement and might not be present in many systems.

Unbounded datasets, on the other hand, must be assumed to have infinite size.
As a result, systems that process unbounded data (historically streaming

182

systems) have been built to match. They never assume that all of the data will
be available for reprocessing, only some known subset of it. To provide at-
least-once or exactly-once semantics, any data that are no longer available for
reprocessing must be accounted for in durable checkpoints. And if at-most-
once is all you’re going for, you don’t need checkpointing.

At the end of the day, there’s nothing batch- or streaming-specific about
persistent state. State can be useful in both circumstances. It just happens to
be critical when processing unbounded data, so you’ll find that streaming
systems typically provide more sophisticated support for persistent state.

Correctness and Efficiency
Given the inevitability of failures and the need to cope with them, persistent
state can be seen as providing two things:

A basis for correctness in light of ephemeral inputs. When
processing bounded data, it’s often safe to assume inputs stay around
forever; with unbounded data, this assumption typically falls short
of reality. Persistent state allows you to keep around the intermediate
bits of information necessary to allow processing to continue when
the inevitable happens, even after your input source has moved on
and forgotten about records it gave you previously.

A way to minimize work duplicated and data persisted as part of
coping with failures. Regardless of whether your inputs are
ephemeral, when your pipeline experiences a machine failure, any
work on the failed machine that wasn’t checkpointed somewhere
must be redone. Depending upon the nature of the pipeline and its
inputs, this can be costly in two dimensions: the amount of work
performed during reprocessing, and the amount of input data stored
to support reprocessing.

Minimizing duplicated work is relatively straightforward. By
checkpointing partial progress within a pipeline (both the
intermediate results computed as well as the current location within
the input as of checkpointing time), it’s possible to greatly reduce the
amount of work repeated when failures occur because none of the
operations that came before the checkpoint need to be replayed from
durable inputs. Most commonly, this involves data at rest (i.e.,
tables), which is why we typically refer to persistent state in the

1

183

context of tables and grouping. But there are persistent forms of
streams (e.g., Kafka and its relatives) that serve this function, as well.

Minimizing the amount of data persisted is a larger discussion, one
that will consume a sizeable chunk of this chapter. For now, at least,
suffice it to say that, for many real-world use cases, rather than
remembering all of the raw inputs within a checkpoint for any given
stage in the pipeline, it’s often practical to instead remember some
partial, intermediate form of the ongoing calculation that consumes
less space than all of the original inputs (for example, when
computing a mean, the total sum and the count of values seen are
much more compact than the complete list of values contributing to
that sum and count). Not only can checkpointing these intermediate
data drastically reduce the amount of data that you need to remember
at any given point in the pipeline, it also commensurately reduces the
amount of reprocessing needed for that specific stage to recover from
a failure.

Furthermore, by intelligently garbage-collecting those bits of
persistent state that are no longer needed (i.e., state for records which
are known to have been processed completely by the pipeline
already), the amount of data stored in persistent state for a given
pipeline can be kept to a manageable size over time, even when the
inputs are technically infinite. This is how pipelines processing
unbounded data can continue to run effectively forever, while still
providing strong consistency guarantees but without a need for
complete recall of the original inputs to the pipeline.

At the end of the day, persistent state is really just a means of providing
correctness and efficient fault tolerance in data processing pipelines. The
amount of support needed in either of those dimensions depends greatly upon
the natures of the inputs to the pipeline and the operations being performed.
Unbounded inputs tend to require more correctness support than bounded
inputs. Computationally expensive operations tend to demand more efficiency
support than computationally cheap operations.

Implicit State
Let’s now begin to talk about the practicalities of persistent state. In most
cases, this essentially boils down to finding the right balance between always

184

persisting everything (good for consistency, bad for efficiency) and never
persisting anything (bad for consistency, good for efficiency). We’ll begin at
the always-persisting-everything end of the spectrum, and work our way in
the other direction, looking at ways of trading off complexity of
implementation for efficiency without compromising consistency (because
compromising consistency by never persisting anything is the easy way out
for cases in which consistency doesn’t matter, and a nonoption, otherwise).
As before, we use the Apache Beam APIs to concretely ground our
discussions, but the concepts we discuss are applicable across most systems in
existence today.

Also, because there isn’t much you can do to reduce the size of raw inputs,
short of perhaps compressing the data, our discussion centers around the ways
data are persisted within the intermediate state tables created as part of
grouping operations within a pipeline. The inherent nature of grouping
multiple records together into some sort of composite will provide us with
opportunities to eke out gains in efficiency at the cost of implementation
complexity.

Raw Grouping
The first step in our exploration, at the always-persisting-everything end of
the spectrum, is the most straightforward implementation of grouping within
a pipeline: raw grouping of the inputs. The grouping operation in this case is
typically akin to list appending: any time a new element arrives in the group,
it’s appended to the list of elements seen for that group.

In Beam, this is exactly what you get when you apply a GroupByKey
transform to a PCollection. The stream representing that PCollection in
motion is grouped by key to yield a table at rest containing the records from
the stream, grouped together as lists of values with identical keys. This
shows up in the PTransform signature for GroupByKey, which declares the
input as a PCollection of K/V pairs, and the output as a collection of
K/Iterable<V> pairs:

class GroupByKey<K, V> extends PTransform<
 PCollection<KV<K, V>>, PCollection<KV<K, Iterable<V>>>>>

Every time a trigger fires for a key+window in that table, it will emit a new
pane for that key+window, with the value being the Iterable<V> we see in
the preceding signature.

2

185

Let’s look at an example in action in Example 7-1. We’ll take the summation
pipeline from Example 6-5 (the one with fixed windowing and early/on-
time/late triggers) and convert it to use raw grouping instead of incremental
combination (which we discuss a little later in this chapter). We do this by
first applying a GroupByKey transformation to the parsed user/score key/value
pairs. The GroupByKey operation performs raw grouping, yielding a
PCollection with key/value pairs of users and Iterable<Integer> groups
of scores. We then sum up all of the Integers in each iterable by using a
simple MapElements lambda that converts the Iterable<Integer> into an
IntStream<Integer> and calls sum on it.
Example 7-1. Early, on-time, and late firings via the early/on-time/late API
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> groupedScores = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(GroupBy.<String, Integer>create());
PCollection<KV<Team, Integer>> totals = input
 .apply(MapElements.via((KV<String, Iterable<Integer>> kv) ->
 StreamSupport.intStream(
 kv.getValue().spliterator(), false).sum()));

Looking at this pipeline in action, we would see something like that depicted
in Figure 7-1.

186

Figure 7-1. Summation via raw grouping of inputs with windowing and early/on-time/late triggering.
The raw inputs are grouped together and stored in the table via the GroupByKey transformation. After
being triggered, the MapElements lambda sums the raw inputs within a single pane together to yield

per-team scores.

Comparing this to Figure 6-10 (which was using incremental combining,
discussed shortly), it’s clear to see this is a lot worse. First, we’re storing a lot
more data: instead of a single integer per window, we now store all the inputs
for that window. Second, if we have multiple trigger firings, we’re
duplicating effort by re-summing inputs we already added together for
previous trigger firings. And finally, if the grouping operation is the point at
which we checkpoint our state to persistent storage, upon machine failure we
again must recompute the sums for any retriggerings of the table. That’s a lot
of duplicated data and computation. Far better would be to incrementally
compute and checkpoint the actual sums, which is an example of incremental
combining.

Incremental Combining
The first step in our journey of trading implementation complexity for
efficiency is incremental combining. This concept is manifested in the Beam
API via the CombineFn class. In a nutshell, incremental combining is a form
of automatic state built upon a user-defined associative and commutative

00:00 / 00:18

187

combining operator (if you’re not sure what I mean by these two terms, I
define them more precisely in a moment). Though not strictly necessary for
the discussion that follows, the important parts of the CombineFn API look
like Example 7-2.
Example 7-2. Abbreviated CombineFn API from Apache Beam
class CombineFn<InputT, AccumT, OutputT> {
 // Returns an accumulator representing the empty value.
 AccumT createAccumulator();

 // Adds the given input value into the given accumulator
 AccumT addInput(AccumT accumulator, InputT input);

 // Merges the given accumulators into a new, combined accumulator
 AccumT mergeAccumulators(Iterable<AccumT> accumulators);

 // Returns the output value for the given accumulator
 OutputT extractOutput(AccumT accumulator);
}

A CombineFn accepts inputs of type InputT, which can be combined together
into partial aggregates called accumulators, of type AccumT. These
accumulators themselves can also be combined together into new
accumulators. And finally, an accumulator can be transformed into an output
value of type OutputT. For something like an average, the inputs might be
integers, the accumulators pairs of integers (i.e., Pair<sum of inputs,

count of inputs>), and the output a single floating-point value representing
the mean value of the combined inputs.

But what does all this structure buy us? Conceptually, the basic idea with
incremental combining is that many types of aggregations (sum, mean, etc.)
exhibit the following properties:

Incremental aggregations possess an intermediate form that captures
the partial progress of combining a set of N inputs more compactly
than the full list of those inputs themselves (i.e., the AccumT type in
CombineFn). As discussed earlier, for mean, this is a sum/count pair.
Basic summation is even simpler, with a single number as its
accumulator. A histogram would have a relatively complex
accumulator composed of buckets, where each bucket contains a
count for the number of values seen within some specific range. In
all three cases, however, the amount of space consumed by an
accumulator that represents the aggregation of N elements remains
significantly smaller than the amount of space consumed by the

188

original N elements themselves, particularly as the size of N grows.

Incremental aggregations are indifferent to ordering across two
dimensions:

Individual elements, meaning:

COMBINE(a, b) == COMBINE(b, a)

Groupings of elements, meaning:

COMBINE(COMBINE(a, b), c) == COMBINE(a,
COMBINE(b, c))

These properties are known as commutativity and associativity,
respectively. In concert, they effectively mean that we are free to
combine elements and partial aggregates in any arbitrary order and
with any arbitrary subgrouping. This allows us to optimize the
aggregation in two ways:

Incrementalization

Because the order of individual inputs doesn’t matter, we don’t
need to buffer all of the inputs ahead of time and then process
them in some strict order (e.g., in order of event time; note,
however, that this remains independent of shuffling elements by
event time into proper event-time windows before aggregating);
we can simply combine them one-by-one as they arrive. This not
only greatly reduces the amount of data that must be buffered
(thanks to the first property of our operation, which stated the
intermediate form was a more compact representation of partial
aggregation than the raw inputs themselves), but also spreads the
computation load more evenly over time (versus aggregating a
burst of inputs all at once after the full input set has been
buffered).

Parallelization

Because the order in which partial subgroups of inputs are
combined doesn’t matter, we’re free to arbitrarily distribute the
computation of those subgroups. More specifically, we’re free to
spread the computation of those subgroups across a plurality of
machines. This optimization is at the heart of MapReduce’s
Combiners (the genesis of Beam’s CombineFn).

3

189

MapReduce’s Combiner optimization is essential to solving the
hot-key problem, where some sort of grouping computation is
performed on an input stream that is too large to be reasonably
processed by a single physical machine. A canonical example is
breaking down high-volume analytics data (e.g., web traffic to a
popular website) across a relatively low number of dimensions
(e.g., by web browser family: Chrome, Firefox, Safari, etc.). For
websites with a particularly high volume of traffic, it’s often
intractable to calculate stats for any single web browser family on
a single machine, even if that’s the only thing that machine is
dedicated to doing; there’s simply too much traffic to keep up
with. But with an associative and commutative operation like
summation, it’s possible to spread the initial aggregation across
multiple machines, each of which computes a partial aggregate.
The set of partial aggregates generated by those machines (whose
size is now many of orders magnitude smaller than the original
inputs) might then be further combined together on a single
machine to yield the final aggregate result.

As an aside, this ability to parallelize also yields one additional
benefit: the aggregation operation is naturally compatible with
merging windows. When two windows merge, their values must
somehow be merged, as well. With raw grouping, this means
merging the two full lists of buffered values together, which has a
cost of O(N). But with a CombineFn, it’s a simple combination of
two partial aggregates, typically an O(1) operation.

For the sake of completeness, consider again Example 6-5, shown in
Example 7-3, which implements a summation pipeline using incremental
combination.
Example 7-3. Grouping and summation via incremental combination, as in
Example 6-5
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(
 AfterWatermark()
 .withEarlyFirings(AlignedDelay(ONE_MINUTE))
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

190

When executed, we get what we saw Figure 6-10 (shown here in Figure 7-2).
Compared to Figure 7-1, this is clearly a big improvement, with much greater
efficiency in terms of amount of data stored and amount of computation
performed.

Figure 7-2. Grouping and summation via incremental combination. In this version, incremental sums
are computed and stored in the table rather than lists of inputs, which must later be summed together

independently.

By providing a more compact intermediate representation for a grouping
operation, and by relaxing requirements on ordering (both at the element and
subgroup levels), Beam’s CombineFn trades off a certain amount of
implementation complexity in exchange for increases in efficiency. In doing
so, it provides a clean solution for the hot-key problem and also plays nicely
with the concept of merging windows.

One shortcoming, however, is that your grouping operation must fit within a
relatively restricted structure. This is all well and good for sums, means, and
so on, but there are plenty of real-world use cases in which a more general
approach, one which allows precise control over trade-offs of complexity and
efficiency, is needed. We’ll look next at what such a general approach entails.

Generalized State
Though both of the implicit approaches we’ve looked at so far have their
merits, they each fall short in one dimension: flexibility. The raw grouping
method requires you to always buffer up the raw inputs to the grouping
operation before processing the group in whole, so there’s no way to partially
process some of the data along the way; it’s all or nothing. The incremental
combining approach specifically allows for partial processing but with the
restriction that the processing in question be commutative and associative and
happen as records arrive one-by-one.

If we want to support a more generalized approach to streaming persistent
state, we need something more flexible. Specifically, we need flexibility in
three dimensions:

00:00 / 00:00

191

Flexibility in data structures; that is, an ability to structure the data
we write and read in ways that are most appropriate and efficient for
the task at hand. Raw grouping essentially provides an appendable
list, and incremental combination essentially provides a single value
that is always written and read in its entirety. But there are myriad
other ways in which we might want to structure our persistent data,
each with different types of access patterns and associated costs:
maps, trees, graphs, sets, and so on. Supporting a variety of persistent
data types is critical for efficiency.

Beam supports flexibility in data types by allowing a single DoFn to
declare multiple state fields, each of a specific type. In this way,
logically independent pieces of state (e.g., visits and impressions)
can be stored separately, and semantically different types of state
(e.g., maps and lists) can be accessed in ways that are natural given
their types of access patterns.

Flexibility in write and read granularity; that is, an ability to tailor
the amount and type of data written or read at any given time for
optimal efficiency. What this boils down to is the ability to write and
read precisely the necessary amount of data at any given point of
time: no more, and no less (and in parallel as much as possible).

This goes hand in hand with the previous point, given that dedicated
data types allow for focused types of access patterns (e.g., a set-
membership operation that can use something like a Bloom filter
under the covers to greatly minimize the amount of data read in
certain circumstances). But it goes beyond it, as well; for example,
allowing multiple large reads to be dispatched in parallel (e.g., via
futures).

In Beam, flexibly granular writes and reads are enabled via datatype-
specific APIs that provide fine-grained access capabilities, combined
with an asynchronous I/O mechanism that allows for writes and
reads to be batched together for efficiency.

Flexibility in scheduling of processing; that is, an ability to bind the
time at which specific types of processing occur to the progress of
time in either of the two time domains we care about: event-time
completeness and processing time. Triggers provide a restricted set
of flexibility here, with completeness triggers providing a way to

192

bind processing to the watermark passing the end of the window, and
repeated update triggers providing a way to bind processing to
periodic progress in the processing-time domain. But for certain use
cases (e.g., certain types of joins, for which you don’t necessarily
care about input completeness of the entire window, just input
completeness up to the event-time of a specific record in the join),
triggers are insufficiently flexible. Hence, our need for a more
general solution.

In Beam, flexible scheduling of processing is provided via timers. A
timer is a special type of state that binds a specific point in time in
either supported time domain (event time or processing time) with a
method to be called when that point in time is reached. In this way,
specific bits of processing can be delayed until a more appropriate
time in the future.

The common thread among these three characteristics is flexibility. A specific
subset of use cases are served very well by the relatively inflexible
approaches of raw grouping or incremental combination. But when tackling
anything outside their relatively narrow domain of expertise, those options
often fall short. When that happens, you need the power and flexibility of a
fully general-state API to let you tailor your utilization of persistent state
optimally.

To think of it another way, raw grouping and incremental combination are
relatively high-level abstractions that enable the pithy expression of pipelines
with (in the case of combiners, at least) some good properties for automatic
optimizations. But sometimes you need to go low level to get the behavior or
performance you need. That’s what generalized state lets you do.

Case Study: Conversion Attribution
To see this in action, let’s now look at a use case that is poorly served by both
raw grouping and incremental combination: conversion attribution. This is a
technique that sees widespread use across the advertising world to provide
concrete feedback on the effectiveness of advertisements. Though relatively
easy to understand, its somewhat diverse set of requirements doesn’t fit nicely
into either of the two types of implicit state we’ve considered so far.

Imagine that you have an analytics pipeline that monitors traffic to a website
in conjunction with advertisement impressions that directed traffic to that site.

4

193

The goal is to provide attribution of specific advertisements shown to a user
toward the achievement of some goal on the site itself (which often might lie
many steps beyond the initial advertisement landing page), such as signing up
for a mailing list or purchasing an item.

Figure 7-3 shows an example set of website visits, goals, and ad impressions,
with one attributed conversion highlighted in red. Building up conversion
attributions over an unbounded, out-of-order stream of data requires keeping
track of impressions, visits, and goals seen so far. That’s where persistent
state comes in.

Figure 7-3. Example conversion attribution

In this diagram, a user’s traversal of various pages on a website is represented
as a graph. Impressions are advertisements that were shown to the user and
clicked, resulting in the user visiting a page on the site. Visits represent a
single page viewed on the site. Goals are specific visited pages that have been
identified as a desired destination for users (e.g., completing a purchase, or
signing up for a mailing list). The goal of conversion attribution is to identify
ad impressions that resulted in the user achieving some goal on the site. In
this figure, there is one such conversion highlighted in red. Note that events
might arrive out of order, hence the event-time axis in the diagram and the
watermark reference point indicating the time up to which input is believed to

194

be correct.

A lot goes into building a robust, large-scale attribution pipeline, but there are
a few aspects worth calling out explicitly. Any such pipeline we attempt to
build must do the following:
Handle out-of-order data

Because the website traffic and ad impression data come from separate
systems, both of which are implemented as distributed collection services
themselves, the data might arrive wildly out of order. Thus, our pipeline
must be resilient to such disorder.

Handle high volumes of data
Not only must we assume that this pipeline will be processing data for a
large number of independent users, but depending upon the volume of a
given ad campaign and the popularity of a given website, we might need
to store a large amount of impression and/or traffic data as we attempt to
build evidence of attribution. For example, it would not be unheard of to
store 90 days worth of visit, impression, and goal tree data per user to
allow us to build up attributions that span multiple months’ worth of
activity.

Protect against spam
Given that money is involved, correctness is paramount. Not only must
we ensure that visits and impressions are accounted for exactly once
(something we’ll get more or less for free by simply using an execution
engine that supports effectively-once processing), but we must also guard
our advertisers against spam attacks that attempt to charge advertisers
unfairly. For example, a single ad that is clicked multiple times in a row
by the same user will arrive as multiple impressions, but as long as those
clicks occur within a certain amount of time of one another (e.g., within
the same day), they must be attributed only once. In other words, even if
the system guarantees we’ll see every individual impression once, we
must also perform some manual deduplication across impressions that are
technically different events but which our business logic dictates we
interpret as duplicates.

Optimize for performance
Above all, because of the potential scale of this pipeline, we must always
keep an eye toward optimizing the performance of our pipeline. Persistent

5

195

state, because of the inherent costs of writing to persistent storage, can
often be the performance bottleneck in such a pipeline. As such, the
flexibility characteristics we discussed earlier will be critical in ensuring
our design is as performant as possible.

Conversion Attribution with Apache Beam
Now that we understand the basic problem that we’re trying to solve and have
some of the important requirements squarely in mind, let’s use Beam’s State
and Timers API to build a basic conversion attribution transformation. We’ll
write this just like we would any other DoFn in Beam, but we’ll make use of
state and timer extensions that allow us to write and read persistent state and
timer fields. Those of you that want to follow along in real code can find the
full implementation on GitHub.

Note that, as with all grouping operations in Beam, usage of the State API is
scoped to the current key and window, with window lifetimes dictated by the
specified allowed lateness parameter; in this example, we’ll be operating
within a single global window. Parallelism is linearized per key, as with most
DoFns. Also note that, for simplicity, we’ll be eliding the manual garbage
collection of visits and impressions falling outside of our 90-day horizon that
would be necessary to keep the persisted state from growing forever.

To begin, let’s define a few POJO classes for visits, impressions, a
visit/impression union (used for joining), and completed attributions, as
shown in Example 7-4.
Example 7-4. POJO definitions of Visit, Impression, VisitOrImpression, and
Attribution objects
@DefaultCoder(AvroCoder.class)
class Visit {
 @Nullable private String url;
 @Nullable private Instant timestamp;
 // The referring URL. Recall that we’ve constrained the problem in this
 // example to assume every page on our website has exactly one possible
 // referring URL, to allow us to solve the problem for simple trees
 // rather than more general DAGs.
 @Nullable private String referer;
 @Nullable private boolean isGoal;

 @SuppressWarnings("unused")
 public Visit() {
 }

 public Visit(String url, Instant timestamp, String referer,
 boolean isGoal) {

196

http://bit.ly/2yeAGAQ

 this.url = url;
 this.timestamp = timestamp;
 this.referer = referer;
 this.isGoal = isGoal;
 }

 public String url() { return url; }
 public Instant timestamp() { return timestamp; }
 public String referer() { return referer; }
 public boolean isGoal() { return isGoal; }

 @Override
 public String toString() {
 return String.format("{ %s %s from:%s%s }", url, timestamp, referer,
 isGoal ? " isGoal" : "");
 }
}

@DefaultCoder(AvroCoder.class)
class Impression {
 @Nullable private Long id;
 @Nullable private String sourceUrl;
 @Nullable private String targetUrl;
 @Nullable private Instant timestamp;

 public static String sourceAndTarget(String source, String target) {
 return source + ":" + target;
 }

 @SuppressWarnings("unused")
 public Impression() {
 }

 public Impression(Long id, String sourceUrl, String targetUrl,
 Instant timestamp) {
 this.id = id;
 this.sourceUrl = sourceUrl;
 this.targetUrl = targetUrl;
 this.timestamp = timestamp;
 }

 public Long id() { return id; }
 public String sourceUrl() { return sourceUrl; }
 public String targetUrl() { return targetUrl; }
 public String sourceAndTarget() {
 return sourceAndTarget(sourceUrl, targetUrl);
 }
 public Instant timestamp() { return timestamp; }

 @Override
 public String toString() {
 return String.format("{ %s source:%s target:%s %s }",
 id, sourceUrl, targetUrl, timestamp);
 }
}

197

@DefaultCoder(AvroCoder.class)
class VisitOrImpression {
 @Nullable private Visit visit;
 @Nullable private Impression impression;

 @SuppressWarnings("unused")
 public VisitOrImpression() {
 }

 public VisitOrImpression(Visit visit, Impression impression) {
 this.visit = visit;
 this.impression = impression;
 }

 public Visit visit() { return visit; }
 public Impression impression() { return impression; }
}

@DefaultCoder(AvroCoder.class)
class Attribution {
 @Nullable private Impression impression;
 @Nullable private List<Visit> trail;
 @Nullable private Visit goal;

 @SuppressWarnings("unused")
 public Attribution() {
 }

 public Attribution(Impression impression, List<Visit> trail, Visit goal) {
 this.impression = impression;
 this.trail = trail;
 this.goal = goal;
 }

 public Impression impression() { return impression; }
 public List<Visit> trail() { return trail; }
 public Visit goal() { return goal; }

 @Override
 public String toString() {
 StringBuilder builder = new StringBuilder();
 builder.append("imp=" + impression.id() + " " + impression.sourceUrl());
 for (Visit visit : trail) {
 builder.append(" → " + visit.url());
 }
 builder.append(" → " + goal.url());
 return builder.toString();
 }
}

We next define a Beam DoFn to consume a flattened collection of Visits and
Impressions, keyed by the user. In turn, it will yield a collection of
Attributions. Its signature looks like Example 7-5.

198

Example 7-5. DoFn signature for our conversion attribution transformation​
class AttributionFn extends DoFn<KV<String, VisitOrImpression>, Attribution>

Within that DoFn, we need to implement the following logic:

1. Store all visits in a map keyed by their URL so that we can easily
look them up when tracing visit trails backward from a goal.

2. Store all impressions in a map keyed by the URL they referred to, so
we can identify impressions that initiated a trail to a goal.

3. Any time we see a visit that happens to be a goal, set an event-time
timer for the timestamp of the goal. Associated with this timer will
be a method that performs goal attribution for the pending goal. This
will ensure that attribution only happens once the input leading up to
the goal is complete.

4. Because Beam lacks support for a dynamic set of timers (currently
all timers must be declared at pipeline definition time, though each
individual timer can be set and reset for different points in time at
runtime), we also need to keep track of the timestamps for all of the
goals we still need to attribute. This will allow us to have a single
attribution timer set for the minimum timestamp of all pending goals.
After we attribute the goal with the earliest timestamp, we set the
timer again with the timestamp of the next earliest goal.

Let’s now walk through the implementation in pieces. First up, we need to
declare specifications for all of our state and timer fields within the DoFn. For
state, the specification dictates the type of data structure for the field itself
(e.g., map or list) as well as the type(s) of data contained therein, and their
associated coder(s); for timers, it dictates the associated time domain. Each
specification is then assigned a unique ID string (via the @StateID/@TimerId
annotations), which will allow us to dynamically associate these
specifications with parameters and methods later on. For our use case, we’ll
define (in Example 7-6) the following:

Two MapState specifications for visits and impressions

A single SetState specification for goals

A ValueState specification for keeping track of the minimum
pending goal timestamp

199

A Timer specification for our delayed attribution logic

Example 7-6. State field specifications
class AttributionFn extends DoFn<KV<String, VisitOrImpression>, Attribution> {
 @StateId("visits")
 private final StateSpec<MapState<String, Visit>> visitsSpec =
 StateSpecs.map(StringUtf8Coder.of(), AvroCoder.of(Visit.class));

 // Impressions are keyed by both sourceUrl (i.e., the query) and targetUrl
 // (i.e., the click), since a single query can result in multiple impressions.
 // The source and target are encoded together into a single string by the
 // Impression.sourceAndTarget method.
 @StateId("impressions")
 private final StateSpec<MapState<String, Impression>> impSpec =
 StateSpecs.map(StringUtf8Coder.of(), AvroCoder.of(Impression.class));

 @StateId("goals")
 private final StateSpec<SetState<Visit>> goalsSpec =
 StateSpecs.set(AvroCoder.of(Visit.class));

 @StateId("minGoal")
 private final StateSpec<ValueState<Instant>> minGoalSpec =
 StateSpecs.value(InstantCoder.of());

 @TimerId("attribution")
 private final TimerSpec timerSpec =
 TimerSpecs.timer(TimeDomain.EVENT_TIME);

... continued in Example 7-7 below ...

Next up, we implement our core @ProcessElement method. This is the
processing logic that will run every time a new record arrives. As noted
earlier, we need to record visits and impressions to persistent state as well as
keep track of goals and manage the timer that will bind our attribution logic to
the progress of event-time completeness as tracked by the watermark. Access
to state and timers is provided via parameters passed to our
@ProcessElement method, and the Beam runtime invokes our method with
appropriate parameters indicated by @StateId and @TimerId annotations.
The logic itself is then relatively straightforward, as demonstrated in
Example 7-7.
Example 7-7. @ProcessElement implementation
... continued from Example 7-6 above ...

@ProcessElement
public void processElement(
 @Element KV<String, VisitOrImpression> kv,
 @StateId("visits") MapState<String, Visit> visitsState,
 @StateId("impressions") MapState<String, Impression> impressionsState,
 @StateId("goals") SetState<Visit> goalsState,

200

 @StateId("minGoal") ValueState<Instant> minGoalState,
 @TimerId("attribution") Timer attributionTimer) {
 Visit visit = kv.getValue().visit();
 Impression impression = kv.getValue().impression();

 if (visit != null) {
 if (!visit.isGoal()) {
 LOG.info("Adding visit: {}", visit);
 visitsState.put(visit.url(), visit);
 } else {
 LOG.info("Adding goal (if absent): {}", visit);
 goalsState.addIfAbsent(visit);
 Instant minTimestamp = minGoalState.read();
 if (minTimestamp == null || visit.timestamp().isBefore(minTimestamp)) {
 LOG.info("Setting timer from {} to {}",
 Utils.formatTime(minTimestamp),
 Utils.formatTime(visit.timestamp()));
 attributionTimer.set(visit.timestamp());
 minGoalState.write(visit.timestamp());
 }
 LOG.info("Done with goal");
 }
 }
 if (impression != null) {
 // Dedup logical impression duplicates with the same source and target URL.
 // In this case, first one to arrive (in processing time) wins. A more
 // robust approach might be to pick the first one in event time, but that
 // would require an extra read before commit, so the processing-time
 // approach may be slightly more performant.
 LOG.info("Adding impression (if absent): {} → {}",
 impression.sourceAndTarget(), impression);
 impressionsState.putIfAbsent(impression.sourceAndTarget(), impression);
 }
}

... continued in Example 7-8 below ...

Note how this ties back to our three desired capabilities in a general state API:
Flexibility in data structures

We have maps, a set, a value, and a timer. They allow us to efficiently
manipulate our state in ways that are effective for our algorithm.

Flexibility in write and read granularity

Our @ProcessElement method is called for every single visit and
impression we process. As such, we need it to be as efficient as possible.
We take advantage of the ability to make fine-grained, blind writes only to
the specific fields we need. We also only ever read from state within our
@ProcessElement method in the uncommon case of encountering a new
goal. And when we do, we read only a single integer value, without

201

touching the (potentially much larger) maps and list.

Flexibility in scheduling of processing
Thanks to timers, we’re able to delay our complex goal attribution logic
(defined next) until we’re confident we’ve received all the necessary input
data, minimizing duplicated work and maximizing efficiency.

Having defined the core processing logic, let’s now look at our final piece of
code, the goal attribution method. This method is annotated with an @TimerId
annotation to identify it as the code to execute when the corresponding
attribution timer fires. The logic here is significantly more complicated than
the @ProcessElement method:

1. First, we need to load the entirety of our visit and impression maps,
as well as our set of goals. We need the maps to piece our way
backward through the attribution trail we’ll be building, and we need
the goals to know which goals we’re attributing as a result of the
current timer firing, as well as the next pending goal we want to
schedule for attribution in the future (if any).

2. After we’ve loaded our state, we process goals for this timer one at a
time in a loop, repeatedly:

Checking to see if any impressions referred the user to the
current visit in the trail (beginning with the goal). If so,
we’ve completed attribution of this goal and can break out
of the loop and emit the attribution trail.

Checking next to see if any visits were the referrer for the
current visit. If so, we’ve found a back pointer in our trail,
so we traverse it and start the loop over.

If no matching impressions or visits are found, we have a
goal that was reached organically, with no associated
impression. In this case, we simply break out of the loop and
move on to the next goal, if any.

3. After we’ve exhausted our list of goals ready for attribution, we set a
timer for the next pending goal in the list (if any) and reset the
corresponding ValueState tracking the minimum pending goal
timestamp.

202

To keep things concise, we first look at the core goal attribution logic, shown
in Example 7-8, which roughly corresponds to point 2 in the preceding list.
Example 7-8. Goal attribution logic
... continued from Example 7-7 above ...

private Impression attributeGoal(Visit goal,
 Map<String, Visit> visits,
 Map<String, Impression> impressions,
 List<Visit> trail) {
 Impression impression = null;
 Visit visit = goal;
 while (true) {
 String sourceAndTarget = Impression.sourceAndTarget(
 visit.referer(), visit.url());
 LOG.info("attributeGoal: visit={} sourceAndTarget={}",
 visit, sourceAndTarget);
 if (impressions.containsKey(sourceAndTarget)) {
 LOG.info("attributeGoal: impression={}", impression);
 // Walked entire path back to impression. Return success.
 return impressions.get(sourceAndTarget);
 } else if (visits.containsKey(visit.referer())) {
 // Found another visit in the path, continue searching.
 visit = visits.get(visit.referer());
 trail.add(0, visit);
 } else {
 LOG.info("attributeGoal: not found");
 // Referer not found, trail has gone cold. Return failure.
 return null;
 }
 }
}

... continued in Example 7-9 below ...

The rest of the code (eliding a few simple helper methods), which handles
initializing and fetching state, invoking the attribution logic, and handling
cleanup to schedule any remaining pending goal attribution attempts, looks
like Example 7-9.
Example 7-9. Overall @TimerId handling logic for goal attribution
... continued from Example 7-8 above ...

@OnTimer("attribution")
public void attributeGoal(
 @Timestamp Instant timestamp,
 @StateId("visits") MapState<String, Visit> visitsState,
 @StateId("impressions") MapState<String, Impression> impressionsState,
 @StateId("goals") SetState<Visit> goalsState,
 @StateId("minGoal") ValueState<Instant> minGoalState,
 @TimerId("attribution") Timer attributionTimer,
 OutputReceiver<Attribution> output) {
 LOG.info("Processing timer: {}", Utils.formatTime(timestamp));

203

 // Batch state reads together via futures.
 ReadableState<Iterable<Map.Entry<String, Visit> > > visitsFuture
 = visitsState.entries().readLater();
 ReadableState<Iterable<Map.Entry<String, Impression> > > impressionsFuture
 = impressionsState.entries().readLater();
 ReadableState<Iterable<Visit>> goalsFuture = goalsState.readLater();

 // Accessed the fetched state.
 Map<String, Visit> visits = buildMap(visitsFuture.read());
 Map<String, Impression> impressions = buildMap(impressionsFuture.read());
 Iterable<Visit> goals = goalsFuture.read();

 // Find the matching goal
 Visit goal = findGoal(timestamp, goals);

 // Attribute the goal
 List<Visit> trail = new ArrayList<>();
 Impression impression = attributeGoal(goal, visits, impressions, trail);
 if (impression != null) {
 output.output(new Attribution(impression, trail, goal));
 impressions.remove(impression.sourceAndTarget());
 }
 goalsState.remove(goal);

 // Set the next timer, if any.
 Instant minGoal = minTimestamp(goals, goal);
 if (minGoal != null) {
 LOG.info("Setting new timer at {}", Utils.formatTime(minGoal));
 minGoalState.write(minGoal);
 attributionTimer.set(minGoal);
 } else {
 minGoalState.clear();
 }
}

This code block ties back to the three desired capabilities of a general state
API in very similar ways as the @ProcessElement method, with one
noteworthy difference:
Flexibility in write and read granularity

We were able to make a single, coarse-grained read up front to load all of
the data in the maps and set. This is typically much more efficient than
loading each field separately, or even worse loading each field element by
element. It also shows the importance of being able to traverse the
spectrum of access granularities, from fine-grained to coarse-grained.

And that’s it! We’ve implemented a basic conversion attribution pipeline, in a
way that’s efficient enough to be operated at respectable scales using a
reasonable amount of resources. And importantly, it functions properly in the

204

face of out-of-order data. If you look at the dataset used for the unit test in
Example 7-10, you can see it presents a number of challenges, even at this
small scale:

Tracking and attributing multiple distinct conversions across a shared
set of URLs.

Data arriving out of order, and in particular, goals arriving (in
processing time) before visits and impressions that lead to them, as
well as other goals which occurred earlier.

Source URLs that generate multiple distinct impressions to different
target URLs.

Physically distinct impressions (e.g., multiple clicks on the same
advertisement) that must be deduplicated to a single logical
impression.

Example 7-10. Example dataset for validating conversion attribution logic
private static TestStream<KV<String, VisitOrImpression>> createStream() {
 // Impressions and visits, in event-time order, for two (logical) attributable
 // impressions and one unattributable impression.
 Impression signupImpression = new Impression(
 123L, "http://search.com?q=xyz",
 "http://xyz.com/", Utils.parseTime("12:01:00"));
 Visit signupVisit = new Visit(
 "http://xyz.com/", Utils.parseTime("12:01:10"),
 "http://search.com?q=xyz", false/*isGoal*/);
 Visit signupGoal = new Visit(
 "http://xyz.com/join-mailing-list", Utils.parseTime("12:01:30"),
 "http://xyz.com/", true/*isGoal*/);

 Impression shoppingImpression = new Impression(
 456L, "http://search.com?q=thing",
 "http://xyz.com/thing", Utils.parseTime("12:02:00"));
 Impression shoppingImpressionDup = new Impression(
 789L, "http://search.com?q=thing",
 "http://xyz.com/thing", Utils.parseTime("12:02:10"));
 Visit shoppingVisit1 = new Visit(
 "http://xyz.com/thing", Utils.parseTime("12:02:30"),
 "http://search.com?q=thing", false/*isGoal*/);
 Visit shoppingVisit2 = new Visit(
 "http://xyz.com/thing/add-to-cart", Utils.parseTime("12:03:00"),
 "http://xyz.com/thing", false/*isGoal*/);
 Visit shoppingVisit3 = new Visit(
 "http://xyz.com/thing/purchase", Utils.parseTime("12:03:20"),
 "http://xyz.com/thing/add-to-cart", false/*isGoal*/);
 Visit shoppingGoal = new Visit(
 "http://xyz.com/thing/receipt", Utils.parseTime("12:03:45"),
 "http://xyz.com/thing/purchase", true/*isGoal*/);

205

http://bit.ly/2sY4goW

 Impression unattributedImpression = new Impression(
 000L, "http://search.com?q=thing",
 "http://xyz.com/other-thing", Utils.parseTime("12:04:00"));
 Visit unattributedVisit = new Visit(
 "http://xyz.com/other-thing", Utils.parseTime("12:04:20"),
 "http://search.com?q=other thing", false/*isGoal*/);

 // Create a stream of visits and impressions, with data arriving out of order.
 return TestStream.create(
 KvCoder.of(StringUtf8Coder.of(), AvroCoder.of(VisitOrImpression.class)))
 .advanceWatermarkTo(Utils.parseTime("12:00:00"))
 .addElements(visitOrImpression(shoppingVisit2, null))
 .addElements(visitOrImpression(shoppingGoal, null))
 .addElements(visitOrImpression(shoppingVisit3, null))
 .addElements(visitOrImpression(signupGoal, null))
 .advanceWatermarkTo(Utils.parseTime("12:00:30"))
 .addElements(visitOrImpression(null, signupImpression))
 .advanceWatermarkTo(Utils.parseTime("12:01:00"))
 .addElements(visitOrImpression(null, shoppingImpression))
 .addElements(visitOrImpression(signupVisit, null))
 .advanceWatermarkTo(Utils.parseTime("12:01:30"))
 .addElements(visitOrImpression(null, shoppingImpressionDup))
 .addElements(visitOrImpression(shoppingVisit1, null))
 .advanceWatermarkTo(Utils.parseTime("12:03:45"))
 .addElements(visitOrImpression(null, unattributedImpression))
 .advanceWatermarkTo(Utils.parseTime("12:04:00"))
 .addElements(visitOrImpression(unattributedVisit, null))
 .advanceWatermarkToInfinity();
}

And remember, we’re working here on a relatively constrained version of
conversion attribution. A full-blown impelementation would have additional
challenges to deal with (e.g., garbage collection, DAGs of visits instead of
trees). Regardless, this pipeline provides a nice contrast to the oftentimes
insufficiently flexible approaches provided by raw grouping an incremental
combination. By trading off some amount of implementation complexity, we
were able to find the necessary balance of efficiency, without compromising
on correctness. Additionally, this pipeline highlights the more imperative
approach towards stream processing that state and timers afford (think C or
Java), which is a nice complement to the more functional approach afforded
by windowing and triggers (think Haskell).

Summary
In this chapter, we’ve looked closely at why persistent state is important,
coming to the conclusion that it provides a basis for correctness and
efficiency in long-lived pipelines. We then looked at the two most common

206

types of implicit state encountered in data processing systems: raw grouping
and incremental combination. We learned that raw grouping is
straightforward but potentially inefficient and that incremental combination
greatly improves efficiency for operations that are commutative and
associative. Finally, we looked a relatively complex, but very practical use
case (and implementation via Apache Beam Java) grounded in real-world
experience, and used that to highlight the important characteristics needed in
a general state abstraction:

Flexibility in data structures, allowing for the use of data types
tailored to specific use cases at hand.

Flexibility in write and read granularity, allowing the amount of data
written and read at any point to be tailored to the use case,
minimizing or maximizing I/O as appropriate.

Flexibility in scheduling of processing, allowing certain portions of
processing to be delayed until a more appropriate point in time, such
as when the input is believed to be complete up to a specific point in
event time.

 For some definition of “forever,” typically at least “until we successfully
complete execution of our batch pipeline and no longer require the inputs.”

 Recall that Beam doesn’t currently expose these state tables directly; you
must trigger them back into a stream to observe their contents as a new
PCollection.

 Or, as my colleague Kenn Knowles points out, if you take the definition as
being commutativity across sets, the three-parameter version of
commutativity is actually sufficient to also imply associativity: COMBINE(a,
b, c) == COMBINE(a, c, b) == COMBINE(b, a, c) == COMBINE(b, c,
a) == COMBINE(c, a, b) == COMBINE(c, b, a). Math is fun.

 And indeed, timers are the underlying feature used to implement most of the
completeness and repeated updated triggers we discussed in Chapter 2 as well
as garbage collection based on allowed lateness.

 Thanks to the nature of web browsing, the visit trails we’ll be analyzing are
trees of URLs linked by HTTP referrer fields. In reality, they would end up
being directed graphs, but for the sake of simplicity, we’ll assume each page
on our website has incoming links from exactly one other referring page on

1

2

3

4

5

207

the site, thus yielding a simpler tree structure. Generalizing to graphs is a
natural extension of the tree-based implementation, and only further drives
home the points being made.

208

Chapter 8. Streaming SQL

Let’s talk SQL. In this chapter, we’re going to start somewhere in the middle
with the punchline, jump back in time a bit to establish additional context,
and finally jump back to the future to wrap everything up with a nice bow.
Imagine Quentin Tarantino held a degree in computer science and was super
pumped to tell the world about the finer points of streaming SQL, and so he
offered to ghostwrite this chapter with me; it’s sorta like that. Minus the
violence.

What Is Streaming SQL?
I would argue that the answer to this question has eluded our industry for
decades. In all fairness, the database community has understood maybe 99%
of the answer for quite a while now. But I have yet to see a truly cogent and
comprehensive definition of streaming SQL that encompasses the full breadth
of robust streaming semantics. That’s what we’ll try to come up with here,
although it would be hubris to assume we’re 100% of the way there now.
Maybe 99.1%? Baby steps.

Regardless, I want to point out up front that most of what we’ll discuss in this
chapter is still purely hypothetical as of the time of writing. This chapter and
the one that follows (covering streaming joins) both describe an idealistic
vision for what streaming SQL could be. Some pieces are already
implemented in systems like Apache Calcite, Apache Flink, and Apache
Beam. Many others aren’t implemented anywhere. Along the way, I’ll try to
call out a few of the things that do exist in concrete form, but given what a
moving target that is, your best bet is to simply consult the documentation for
your specific system of interest.

On that note, it’s also worth highlighting that the vision for streaming SQL
presented here is the result of a collaborative discussion between the Calcite,
Flink, and Beam communities. Julian Hyde, the lead developer on Calcite,
has long pitched his vision for what streaming SQL might look like. In 2016,
members of the Flink community integrated Calcite SQL support into Flink
itself, and began adding streaming-specific features such as windowing
constructs to the Calcite SQL dialect. Then, in 2017, all three communities
began a discussion to try to come to agreement on what language extensions

209

http://bit.ly/2JTzR4V
http://s.apache.org/streaming-sql-spec

and semantics for robust stream processing in Calcite SQL should look like.
This chapter attempts to distill the ideas from that discussion down into a
clear and cohesive narrative about integrating streaming concepts into SQL,
regardless of whether it’s Calcite or some other dialect.

Relational Algebra
When talking about what streaming means for SQL, it’s important to keep in
mind the theoretical foundation of SQL: relational algebra. Relational algebra
is simply a mathematical way of describing relationships between data that
consist of named, typed tuples. At the heart of relational algebra is the relation
itself, which is a set of these tuples. In classic database terms, a relation is
something akin to a table, be it a physical database table, the result of a SQL
query, a view (materialized or otherwise), and so on; it’s a set of rows
containing named and typed columns of data.

One of the more critical aspects of relational algebra is its closure property:
applying any operator from the relational algebra to any valid relation always
yields another relation. In other words, relations are the common currency of
relational algebra, and all operators consume them as input and produce them
as output.

Historically, many attempts to support streaming in SQL have fallen short of
satisfying the closure property. They treat streams separately from classic
relations, providing new operators to convert between the two, and restricting
the operations that can be applied to one or the other. This significantly raises
the bar of adoption for any such streaming SQL system: would-be users must
learn the new operators and understand the places where they’re applicable,
where they aren’t, and similarly relearn the rules of applicability in this new
world for any old operators. What’s worse, most of these systems still fall
short of providing the full suite of streaming semantics that we would want,
such as support for robust out-of-order processing and strong temporal join
support (the latter of which we cover in Chapter 9). As a result, I would argue
that it’s basically impossible to name any existing streaming SQL
implementation that has achieved truly broad adoption. The additional
cognitive overhead and restricted capabilities of such streaming SQL systems
have ensured that they remain a niche enterprise.

To change that, to truly bring streaming SQL to the forefront, what we need is
a way for streaming to become a first-class citizen within the relational
algebra itself, such that the entire standard relational algebra can apply

1

210

naturally in both streaming and nonstreaming use cases. That isn’t to say that
streams and tables should be treated as exactly the same thing; they most
definitely are not the same, and recognizing that fact lends clarity to
understanding and power to navigating the stream/table relationship, as we’ll
see shortly. But the core algebra should apply cleanly and naturally to both
worlds, with minimal extensions beyond the standard relational algebra only
in the cases where absolutely necessary.

Time-Varying Relations
To cut to the chase, the punchline I referred to at the beginning of the chapter
is this: the key to naturally integrating streaming into SQL is to extend
relations, the core data objects of relational algebra, to represent a set of data
over time rather than a set of data at a specific point in time. More succinctly,
instead of point-in-time relations, we need time-varying relations.

But what are time-varying relations? Let’s first define them in terms of classic
relational algebra, after which we’ll also consider their relationship to stream
and table theory.

In terms of relational algebra, a time-varying relation is really just the
evolution of a classic relation over time. To understand what I mean by that,
imagine a raw dataset consisting of user events. Over time, as users generate
new events, the dataset continues to grow and evolve. If you observe that set
at a specific point in time, that’s a classic relation. But if you observe the
holistic evolution of the set over time, that’s a time-varying relation.

Put differently, if classic relations are like two-dimensional tables consisting
of named, typed columns in the x-axis and rows of records in the y-axis, time-
varying relations are like three-dimensional tables with x- and y-axes as
before, but an additional z-axis capturing different versions of the two-
dimensional table over time. As the relation changes, new snapshots of the
relation are added in the z dimension.

Let’s look at an example. Imagine our raw dataset is users and scores; for
example, per-user scores from a mobile game as in most of the other
examples throughout the book. And suppose that our example dataset here
ultimately ends up looking like this when observed at a specific point in time,
in this case 12:07:

| Name | Score | Time |

2

211

Julie	7	12:01
Frank	3	12:03
Julie	1	12:03
Julie	4	12:07

In other words, it recorded the arrivals of four scores over time: Julie’s score
of 7 at 12:01, both Frank’s score of 3 and Julie’s second score of 1 at 12:03,
and, finally, Julie’s third score of 4 at 12:07 (note that the Time column here
contains processing-time timestamps representing the arrival time of the
records within the system; we get into event-time timestamps a little later on).
Assuming these were the only data to ever arrive for this relation, it would
look like the preceding table any time we observed it after 12:07. But if
instead we had observed the relation at 12:01, it would have looked like the
following, because only Julie’s first score would have arrived by that point:

| Name | Score | Time |

| Julie | 7 | 12:01 |

If we had then observed it again at 12:03, Frank’s score and Julie’s second
score would have also arrived, so the relation would have evolved to look like
this:

| Name | Score | Time |

Julie	7	12:01
Frank	3	12:03
Julie	1	12:03

From this example we can begin to get a sense for what the time-varying
relation for this dataset must look like: it would capture the entire evolution of
the relation over time. Thus, if we observed the time-varying relation (or
TVR) at or after 12:07, it would thus look like the following (note the use of a
hypothetical TVR keyword to signal that we want the query to return the full
time-varying relation, not the standard point-in-time snapshot of a classic
relation):

212

[-inf, 12:01)	[12:01, 12:03)								
	Name	Score	Time			Name	Score	Time	
-------------------------	-------------------------								
						Julie	7	12:01	
-------------------------	-------------------------								

[12:03, 12:07)	[12:07, now)								
	Name	Score	Time			Name	Score	Time	
-------------------------	-------------------------								
	Julie	7	12:01			Julie	7	12:01	
	Frank	3	12:03			Frank	3	12:03	
	Julie	1	12:03			Julie	1	12:03	
						Julie	4	12:07	
-------------------------	-------------------------								

Because the printed/digital page remains constrained to two dimensions, I’ve
taken the liberty of flattening the third dimension into a grid of two-
dimensional relations. But you can see how the time-varying relation
essentially consists of a sequence of classic relations (ordered left to right, top
to bottom), each capturing the full state of the relation for a specific range of
time (all of which, by definition, are contiguous).

What’s important about defining time-varying relations this way is that they
really are, for all intents and purposes, just a sequence of classic relations that
each exist independently within their own disjointed (but adjacent) time
ranges, with each range capturing a period of time during which the relation
did not change. This is important, because it means that the application of a
relational operator to a time-varying relation is equivalent to individually
applying that operator to each classic relation in the corresponding sequence.
And taken one step further, the result of individually applying a relational
operator to a sequence of relations, each associated with a time interval, will
always yield a corresponding sequence of relations with the same time
intervals. In other words, the result is a corresponding time-varying relation.
This definition gives us two very important properties:

The full set of operators from classic relational algebra remain valid
when applied to time-varying relations, and furthermore continue to
behave exactly as you’d expect.

213

The closure property of relational algebra remains intact when
applied to time-varying relations.

Or more succinctly, all the rules of classic relational algebra continue to hold
when applied to time-varying relations. This is huge, because it means that
our substitution of time-varying relations for classic relations hasn’t altered
the parameters of the game in any way. Everything continues to work the way
it did back in classic relational land, just on sequences of classic relations
instead of singletons. Going back to our examples, consider two more time-
varying relations over our raw dataset, both observed at some time after
12:07. First a simple filtering relation using a WHERE clause:

[-inf, 12:01)	[12:01, 12:03)								
	Name	Score	Time			Name	Score	Time	
-------------------------	-------------------------								
						Julie	7	12:01	
-------------------------	-------------------------								

[12:03, 12:07)	[12:07, now)								
	Name	Score	Time			Name	Score	Time	
-------------------------	-------------------------								
	Julie	7	12:01			Julie	7	12:01	
	Julie	1	12:03			Julie	1	12:03	
						Julie	4	12:07	
-------------------------	-------------------------								

As you would expect, this relation looks a lot like the preceding one, but with
Frank’s scores filtered out. Even though the time-varying relation captures the
added dimension of time necessary to record the evolution of this dataset over
time, the query behaves exactly as you would expect, given your
understanding of SQL.

For something a little more complex, let’s consider a grouping relation in
which we’re summing up all the per-user scores to generate a total overall
score for each user:

| [-inf, 12:01) | [12:01, 12:03) |

214

| ------------------------- | ------------------------- |
| | Name | Total | Time | | | Name | Total | Time | |
| ------------------------- | ------------------------- |
| | | | | | | Julie | 7 | 12:01 | |
| | | | | | | | | | |
| ------------------------- | ------------------------- |

[12:03, 12:07)	[12:07, now)								
	Name	Total	Time			Name	Total	Time	
-------------------------	-------------------------								
	Julie	8	12:03			Julie	12	12:07	
	Frank	3	12:03			Frank	3	12:03	
-------------------------	-------------------------								

Again, the time-varying version of this query behaves exactly as you would
expect, with each classic relation in the sequence simply containing the sum
of the scores for each user. And indeed, no matter how complicated a query
we might choose, the results are always identical to applying that query
independently to the commensurate classic relations composing the input
time-varying relation. I cannot stress enough how important this is!

All right, that’s all well and good, but time-varying relations themselves are
more of a theoretical construct than a practical, physical manifestation of
data; it’s pretty easy to see how they could grow to be quite huge and
unwieldy for large datasets that change frequently. To see how they actually
tie into real-world stream processing, let’s now explore the relationship
between time-varying relations and stream and table theory.

Streams and Tables
For this comparison, let’s consider again our grouped time-varying relation
that we looked at earlier:

[-inf, 12:01)	[12:01, 12:03)								
	Name	Total	Time			Name	Total	Time	
-------------------------	-------------------------								
						Julie	7	12:01	
-------------------------	-------------------------								

[12:03, 12:07)	[12:07, now)								
	Name	Total	Time			Name	Total	Time	

215

| ------------------------- | ------------------------- |
| | Julie | 8 | 12:03 | | | Julie | 12 | 12:07 | |
| | Frank | 3 | 12:03 | | | Frank | 3 | 12:03 | |
| ------------------------- | ------------------------- |

We understand that this sequence captures the full history of the relation over
time. Given our understanding of tables and streams from Chapter 6, it’s not
too difficult to understand how time-varying relations relate to stream and
table theory.

Tables are quite straightforward: because a time-varying relation is essentially
a sequence of classic relations (each capturing a snapshot of the relation at a
specific point in time), and classic relations are analogous to tables, observing
a time-varying relation as a table simply yields the point-in-time relation
snapshot for the time of observation.

For example, if we were to observe the previous grouped time-varying
relation as a table at 12:01, we’d get the following (note the use of another
hypothetical keyword, TABLE, to explicitly call out our desire for the query to
return a table):

| Name | Total | Time |

| Julie | 7 | 12:01 |

And observing at 12:07 would yield the expected:

| Name | Total | Time |

| Julie | 12 | 12:07 |
| Frank | 3 | 12:03 |

What’s particularly interesting here is that there’s actually support for the idea
of time-varying relations within SQL, even as it exists today. The SQL 2011
standard provides “temporal tables,” which store a versioned history of the
table over time (in essence, time-varying relations) as well an AS OF SYSTEM
TIME construct that allows you to explicitly query and receive a snapshot of

216

the temporal table/time-varying relation at whatever point in time you
specified. For example, even if we performed our query at 12:07, we could
still see what the relation looked like back at 12:03:

| Name | Total | Time |

| Julie | 8 | 12:03 |
| Frank | 3 | 12:03 |

So there’s some amount of precedent for time-varying relations in SQL
already. But I digress. The main point here is that tables capture a snapshot of
the time-varying relation at a specific point in time. Most real-world table
implementations simply track real time as we observe it; others maintain
some additional historical information, which in the limit is equivalent to a
full-fidelity time-varying relation capturing the entire history of a relation
over time.

Streams are slightly different beasts. We learned in Chapter 6 that they too
capture the evolution of a table over time. But they do so somewhat
differently than the time-varying relations we’ve looked at so far. Instead of
holistically capturing snapshots of the entire relation each time it changes,
they capture the sequence of changes that result in those snapshots within a
time-varying relation. The subtle difference here becomes more evident with
an example.

As a refresher, recall again our baseline example TVR query:

[-inf, 12:01)	[12:01, 12:03)								
	Name	Total	Time			Name	Total	Time	
-------------------------	-------------------------								
						Julie	7	12:01	
-------------------------	-------------------------								

[12:03, 12:07)	[12:07, now)								
	Name	Total	Time			Name	Total	Time	
-------------------------	-------------------------								
	Julie	8	12:03			Julie	12	12:07	

217

| | Frank | 3 | 12:03 | | | Frank | 3 | 12:03 | |
| ------------------------- | ------------------------- |

Let’s now observe our time-varying relation as a stream as it exists at a few
distinct points in time. At each step of the way, we’ll compare the original
table rendering of the TVR at that point in time with the evolution of the
stream up to that point. To see what stream renderings of our time-varying
relation look like, we’ll need to introduce two new hypothetical keywords:

A STREAM keyword, similar to the TABLE keyword I’ve already
introduced, that indicates we want our query to return an event-by-
event stream capturing the evolution of the time-varying relation
over time. You can think of this as applying a per-record trigger to
the relation over time.

A special Sys.Undo column that can be referenced from a STREAM
query, for the sake of identifying rows that are retractions. More on
this in a moment.

Thus, starting out from 12:01, we’d have the following:

------------------------- --------------------------------
| Name | Total | Time | | Name | Total | Time | Undo |
------------------------- --------------------------------
| Julie | 7 | 12:01 | | Julie | 7 | 12:01 | |
------------------------- [12:01, 12:01]

The table and stream renderings look almost identical at this point. Mod the
Undo column (discussed in more detail in the next example), there’s only one
difference: whereas the table version is complete as of 12:01 (signified by the
final line of dashes closing off the bottom end of the relation), the stream
version remains incomplete, as signified by the final ellipsis-like line of
periods marking both the open tail of the relation (where additional data
might be forthcoming in the future) as well as the processing-time range of
data observed so far. And indeed, if executed on a real implementation, the

3

218

STREAM query would wait indefinitely for additional data to arrive. Thus, if we
waited until 12:03, three new rows would show up for the STREAM query.
Compare that to a fresh TABLE rendering of the TVR at 12:03:

------------------------- --------------------------------
| Name | Total | Time | | Name | Total | Time | Undo |
------------------------- --------------------------------
| Julie | 8 | 12:03 | | Julie | 7 | 12:01 | |
| Frank | 3 | 12:03 | | Frank | 3 | 12:03 | |
------------------------- | Julie | 7 | 12:03 | undo |
 | Julie | 8 | 12:03 | |
 [12:01, 12:03]

Here’s an interesting point worth addressing: why are there three new rows in
the stream (Frank’s 3 and Julie’s undo-7 and 8) when our original dataset
contained only two rows (Frank’s 3 and Julie’s 1) for that time period? The
answer lies in the fact that here we are observing the stream of changes to an
aggregation of the original inputs; in particular, for the time period from
12:01 to 12:03, the stream needs to capture two important pieces of
information regarding the change in Julie’s aggregate score due to the arrival
of the new 1 value:

The previously reported total of 7 was incorrect.

The new total is 8.

That’s what the special Sys.Undo column allows us to do: distinguish
between normal rows and rows that are a retraction of a previously reported
value.

A particularly nice feature of STREAM queries is that you can begin to see how
all of this relates to the world of classic Online Transaction Processing
(OLTP) tables: the STREAM rendering of this query is essentially capturing a
sequence of INSERT and DELETE operations that you could use to materialize
this relation over time in an OLTP world (and really, when you think about it,
OLTP tables themselves are essentially time-varying relations mutated over

4

219

time via a stream of INSERTs, UPDATEs, and DELETEs).

Now, if we don’t care about the retractions in the stream, it’s also perfectly
fine not to ask for them. In that case, our STREAM query would look like this:

| Name | Total | Time |

Julie	7	12:01
Frank	3	12:03
Julie	8	12:03
.... [12:01, 12:03]

But there’s clearly value in understanding what the full stream looks like, so
we’ll go back to including the Sys.Undo column for our final example.
Speaking of which, if we waited another four minutes until 12:07, we’d be
greeted by two additional rows in the STREAM query, whereas the TABLE query
would continue to evolve as before:

------------------------- --------------------------------
| Name | Total | Time | | Name | Total | Time | Undo |
------------------------- --------------------------------
| Julie | 12 | 12:07 | | Julie | 7 | 12:01 | |
| Frank | 3 | 12:03 | | Frank | 3 | 12:03 | |
------------------------- | Julie | 7 | 12:03 | undo |
 | Julie | 8 | 12:03 | |
 | Julie | 8 | 12:07 | undo |
 | Julie | 12 | 12:07 | |
 [12:01, 12:07]

And by this time, it’s quite clear that the STREAM version of our time-varying
relation is a very different beast from the table version: the table captures a
snapshot of the entire relation at a specific point in time, whereas the stream
captures a view of the individual changes to the relation over time.
Interestingly though, that means that the STREAM rendering has more in

5

220

common with our original, table-based TVR rendering:

[-inf, 12:01)	[12:01, 12:03)								
	Name	Total	Time			Name	Total	Time	
-------------------------	-------------------------								
						Julie	7	12:01	
-------------------------	-------------------------								

[12:03, 12:07)	[12:07, now)								
	Name	Total	Time			Name	Total	Time	
-------------------------	-------------------------								
	Julie	8	12:03			Julie	12	12:07	
	Frank	3	12:03			Frank	3	12:03	
-------------------------	-------------------------								

Indeed, it’s safe to say that the STREAM query simply provides an alternate
rendering of the entire history of data that exists in the corresponding table-
based TVR query. The value of the STREAM rendering is its conciseness: it
captures only the delta of changes between each of the point-in-time relation
snapshots in the TVR. The value of the sequence-of-tables TVR rendering is the
clarity it provides: it captures the evolution of the relation over time in a
format that highlights its natural relationship to classic relations, and in doing
so provides for a simple and clear definition of relational semantics within the
context of streaming as well as the additional dimension of time that
streaming brings.

Another important aspect of the similarities between the STREAM and table-
based TVR renderings is the fact that they are essentially equivalent in the
overall data they encode. This gets to the core of the stream/table duality that
its proponents have long preached: streams and tables are really just two
different sides of the same coin. Or to resurrect the bad physics analogy from
Chapter 6, streams and tables are to time-varying relations as waves and
particles are to light: a complete time-varying relation is both a table and a
stream at the same time; tables and streams are simply different physical
manifestations of the same concept, depending upon the context.

Now, it’s important to keep in mind that this stream/table duality is true only
as long as both versions encode the same information; that is, when you have

6

7

221

full-fidelity tables or streams. In many cases, however, full fidelity is
impractical. As I alluded to earlier, encoding the full history of a time-varying
relation, no matter whether it’s in stream or table form, can be rather
expensive for a large data source. It’s quite common for stream and table
manifestations of a TVR to be lossy in some way. Tables typically encode
only the most recent version of a TVR; those that support temporal or
versioned access often compress the encoded history to specific point-in-time
snapshots, and/or garbage-collect versions that are older than some threshold.
Similarly, streams typically encode only a limited duration of the evolution of
a TVR, often a relatively recent portion of that history. Persistent streams like
Kafka afford the ability to encode the entirety of a TVR, but again this is
relatively uncommon, with data older than some threshold typically thrown
away via a garbage-collection process.

The main point here is that streams and tables are absolutely duals of one
another, each a valid way of encoding a time-varying relation. But in practice,
it’s common for the physical stream/table manifestations of a TVR to be lossy
in some way. These partial-fidelity streams and tables trade off a decrease in
total encoded information for some benefit, usually decreased resource costs.
And these types of trade-offs are important because they’re often what allow
us to build pipelines that operate over data sources of truly massive scale. But
they also complicate matters, and require a deeper understanding to use
correctly. We discuss this topic in more detail later on when we get to SQL
language extensions. But before we try to reason about SQL extensions, it
will be useful to understand a little more concretely the biases present in both
the SQL and non-SQL data processing approaches common today.

Looking Backward: Stream and Table Biases
In many ways, the act of adding robust streaming support to SQL is largely an
exercise in attempting to merge the where, when, and how semantics of the
Beam Model with the what semantics of the classic SQL model. But to do so
cleanly, and in a way that remains true to the look and feel of classic SQL,
requires an understanding of how the two models relate to each other. Thus,
much as we explored the relationship of the Beam Model to stream and table
theory in Chapter 6, we’ll now explore the relationship of the Beam Model to
the classic SQL model, using stream and table theory as the underlying
framework for our comparison. In doing so, we’ll uncover the inherent biases
present in each model, which will provide us some insights in how to best

222

marry the two in a clean, natural way.

The Beam Model: A Stream-Biased Approach
Let’s begin with the Beam Model, building upon the discussion in Chapter 6.
To begin, I want to discuss the inherent stream bias in the Beam Model as it
exists today relative to streams and tables.

If you think back to Figures 6-11 and 6-12, they showed two different views
of the same score-summation pipeline that we’ve used as an example
throughout the book: in Figure 6-11 a logical, Beam-Model view, and in
Figure 6-12 a physical, streams and tables–oriented view. Comparing the two
helped highlight the relationship of the Beam Model to streams and tables.
But by overlaying one on top of the other, as I’ve done in Figure 8-1, we can
see an additional interesting aspect of the relationship: the Beam Model’s
inherent stream bias.

223

Figure 8-1. Stream bias in the Beam Model approach

In this figure, I’ve drawn dashed red lines connecting the transforms in the
logical view to their corresponding components in the physical view. The
thing that stands out when observed this way is that all of the logical
transformations are connected by streams, even the operations that involve
grouping (which we know from Chapter 6 results in a table being created
somewhere). In Beam parlance, these transformations are PTransforms, and
they are always applied to PCollections to yield new PCollections. The
important takeaway here is that PCollections in Beam are always streams.
As a result, the Beam Model is an inherently stream-biased approach to data
processing: streams are the common currency in a Beam pipeline (even batch

224

pipelines), and tables are always treated specially, either abstracted behind
sources and sinks at the edges of the pipeline or hidden away beneath a
grouping and triggering operation somewhere in the pipeline.

Because Beam operates in terms of streams, anywhere a table is involved
(sources, sinks, and any intermediate groupings/ungroupings), some sort of
conversion is necessary to keep the underlying table hidden. Those
conversions in Beam look something like this:

Sources that consume tables typically hardcode the manner in which
those tables are triggered; there is no way for a user to specify
custom triggering of the table they want to consume. The source may
be written to trigger every new update to the table as a record, it
might batch groups of updates together, or it might provide a single,
bounded snapshot of the data in the table at some point in time. It
really just depends on what’s practical for a given source, and what
use case the author of the source is trying to address.

Sinks that write tables typically hardcode the manner in which they
group their input streams. Sometimes, this is done in a way that gives
the user a certain amount of control; for example, by simply
grouping on a user-assigned key. In other cases, the grouping might
be implicitly defined; for example, by grouping on a random
physical partition number when writing input data with no natural
key to a sharded output source. As with sources, it really just
depends on what’s practical for the given sink and what use case the
author of the sink is trying to address.

For grouping/ungrouping operations, in contrast to sources and
sinks, Beam provides users complete flexibility in how they group
data into tables and ungroup them back into streams. This is by
design. Flexibility in grouping operations is necessary because the
way data are grouped is a key ingredient of the algorithms that define
a pipeline. And flexibility in ungrouping is important so that the
application can shape the generated streams in ways that are
appropriate for the use case at hand.

However, there’s a wrinkle here. Remember from Figure 8-1 that the
Beam Model is inherently biased toward streams. As result, although
it’s possible to cleanly apply a grouping operation directly to a
stream (this is Beam’s GroupByKey operation), the model never

8

225

provides first-class table objects to which a trigger can be directly
applied. As a result, triggers must be applied somewhere else. There
are basically two options here:

Predeclaration of triggers

This is where triggers are specified at a point in the pipeline
before the table to which they are actually applied. In this case,
you’re essentially prespecifying behavior you’d like to see later
on in the pipeline after a grouping operation is encountered.
When declared this way, triggers are forward-propagating.

Post-declaration of triggers

This is where triggers are specified at a point in the pipeline
following the table to which they are applied. In this case, you’re
specifying the behavior you’d like to see at the point where the
trigger is declared. When declared this way, triggers are
backward-propagating.

Because post-declaration of triggers allows you to specify the
behavior you want at the actual place you want to observe it, it’s
much more intuitive. Unfortunately, Beam as it exists today (2.x and
earlier) uses predeclaration of triggers (similar to how windowing is
also predeclared).

Even though Beam provides a number of ways to cope with the fact that
tables are hidden, we’re still left with the fact that tables must always be
triggered before they can be observed, even if the contents of that table are
really the final data that you want to consume. This is a shortcoming of the
Beam Model as it exists today, one which could be addressed by moving
away from a stream-centric model and toward one that treats both streams and
tables as first-class entities.

Let’s now look at the Beam Model’s conceptual converse: classic SQL.

The SQL Model: A Table-Biased Approach
In contrast to the Beam Model’s stream-biased approach, SQL has historically
taken a table-biased approach: queries are applied to tables, and always result
in new tables. This is similar to the batch processing model we looked at in
Chapter 6 with MapReduce, but it will be useful to consider a concrete
example like the one we just looked at for the Beam Model.

9

226

Consider the following denormalized SQL table:

UserScores (user, team, score, timestamp)

It contains user scores, each annotated with the IDs of the corresponding user
and their corresponding team. There is no primary key, so you can assume
that this is an append-only table, with each row being identified implicitly by
its unique physical offset. If we want to compute team scores from this table,
we could use a query that looks something like this:

 SELECT team, SUM(score) as total
 FROM UserScores
 GROUP BY team;

When executed by a query engine, the optimizer will probably break this
query down into roughly three steps:

1. Scanning the input table (i.e., triggering a snapshot of it)

2. Projecting the fields in that table down to team and score

3. Grouping rows by team and summing the scores

If we look at this using a diagram similar to Figure 8-1, it would look like
Figure 8-2.

The SCAN operation takes the input table and triggers it into a bounded stream
that contains a snapshot of the contents of that table at query execution time.
That stream is consumed by the SELECT operation, which projects the four-
column input rows down to two-column output rows. Being a nongrouping
operation, it yields another stream. Finally, that two-column stream of teams
and user scores enters the GROUP BY and is grouped by team into a table, with
scores for the same team SUM’d together, yielding our output table of teams
and their corresponding team score totals.

227

Figure 8-2. Table bias in a simple SQL query

This is a relatively simple example that naturally ends in a table, so it really
isn’t sufficient to highlight the table-bias in classic SQL. But we can tease out
some more evidence by simply splitting the main pieces of this query
(projection and grouping) into two separate queries:

 SELECT team, score
 INTO TeamAndScore
 FROM UserScores;

 SELECT team, SUM(score) as total
 INTO TeamTotals
 FROM TeamAndScore
 GROUP BY team;

In these queries, we first project the UserScores table down to just the two
columns we care about, storing the results in a temporary TeamAndScore
table. We then group that table by team, summing up the scores as we do so.
After breaking things out into a pipeline of two queries, our diagram looks
like that shown in Figure 8-3.

228

Figure 8-3. Breaking the query into two to reveal more evidence of table bias

If classic SQL exposed streams as first-class objects, you would expect the
result from the first query, TeamAndScore, to be a stream because the SELECT
operation consumes a stream and produces a stream. But because SQL’s
common currency is tables, it must first convert the projected stream into a
table. And because the user hasn’t specified any explicit key for grouping, it
must simply group keys by their identity (i.e., append semantics, typically
implemented by grouping by the physical storage offset for each row).

Because TeamAndScore is now a table, the second query must then prepend
an additional SCAN operation to scan the table back into a stream to allow the
GROUP BY to then group it back into a table again, this time with rows

229

grouped by team and with their individual scores summed together. Thus, we
see the two implicit conversions (from a stream and back again) that are
inserted due to the explicit materialization of the intermediate table.

That said, tables in SQL are not always explicit; implicit tables can exist, as
well. For example, if we were to add a HAVING clause to the end of the query
with the GROUP BY statement, to filter out teams with scores less than a certain
threshold, the diagram would change to look something like Figure 8-4.

Figure 8-4. Table bias with a final HAVING clause

With the addition of the HAVING clause, what used to be the user-visible
TeamTotals table is now an implicit, intermediate table. To filter the results

230

of the table according to the rules in the HAVING clause, that table must be
triggered into a stream that can be filtered and then that stream must be
implicitly grouped back into a table to yield the new output table,
LargeTeamTotals.

The important takeaway here is the clear table bias in classic SQL. Streams
are always implicit, and thus for any materialized stream a conversion from/to
a table is required. The rules for such conversions can be categorized roughly
as follows:
Input tables (i.e., sources, in Beam Model terms)

These are always implicitly triggered in their entirety at a specific point in
time (generally query execution time) to yield a bounded stream
containing a snapshot of the table at that time. This is identical to what
you get with classic batch processing, as well; for example, the
MapReduce case we looked at in Chapter 6.

Output tables (i.e., sinks, in Beam Model terms)
These tables are either direct manifestations of a table created by a final
grouping operation in the query, or are the result of an implicit grouping
(by some unique identifier for the row) applied to a query’s terminal
stream, for queries that do not end in a grouping operation (e.g., the
projection query in the previous examples, or a GROUP BY followed by a
HAVING clause). As with inputs, this matches the behavior seen in classic
batch processing.

Grouping/ungrouping operations
Unlike Beam, these operations provide complete flexibility in one
dimension only: grouping. Whereas classic SQL queries provide a full
suite of grouping operations (GROUP BY, JOIN, CUBE, etc.), they provide
only a single type of implicit ungrouping operation: trigger an
intermediate table in its entirety after all of the upstream data contributing
to it have been incorporated (again, the exact same implicit trigger
provided in MapReduce as part of the shuffle operation). As a result, SQL
offers great flexibility in shaping algorithms via grouping but essentially
zero flexibility in shaping the implicit streams that exist under the covers
during query execution.

Materialized views
Given how analogous classic SQL queries are to classic batch processing, it

10

231

might be tempting to write off SQL’s inherent table bias as nothing more than
an artifact of SQL not supporting stream processing in any way. But to do so
would be to ignore the fact that databases have supported a specific type of
stream processing for quite some time: materialized views. A materialized
view is a view that is physically materialized as a table and kept up to date
over time by the database as the source table(s) evolve. Note how this sounds
remarkably similar to our definition of a time-varying relation. What’s
fascinating about materialized views is that they add a very useful form of
stream processing to SQL without significantly altering the way it operates,
including its inherent table bias.

For example, let’s consider the queries we looked at in Figure 8-4. We can
alter those queries to instead be CREATE MATERIALIZED VIEW statements:

 CREATE MATERIALIZED VIEW TeamAndScoreView AS
 SELECT team, score
 FROM UserScores;

 CREATE MATERIALIZED VIEW LargeTeamTotalsView AS
 SELECT team, SUM(score) as total
 FROM TeamAndScoreView
 GROUP BY team
 HAVING SUM(score) > 100;

In doing so, we transform them into continuous, standing queries that process
the updates to the UserScores table continuously, in a streaming manner.
Even so, the resulting physical execution diagram for the views looks almost
exactly the same as it did for the one-off queries; nowhere are streams made
into explicit first-class objects in order to support this idea of streaming
materialized views. The only noteworthy change in the physical execution
plan is the substitution of a different trigger: SCAN-AND-STREAM instead of
SCAN, as illustrated in Figure 8-5.

11

232

Figure 8-5. Table bias in materialized views

What is this SCAN-AND-STREAM trigger? SCAN-AND-STREAM starts out like a
SCAN trigger, emitting the full contents of the table at a point in time into a
stream. But instead of stopping there and declaring the stream to be done (i.e.,
bounded), it continues to also trigger all subsequent modifications to the input
table, yielding an unbounded stream that captures the evolution of the table
over time. In the general case, these modifications include not only INSERTs
of new values, but also DELETEs of previous values and UPDATEs to existing
values (which, practically speaking, are treated as a simultaneous
DELETE/INSERT pair, or undo/redo values as they are called in Flink).

233

Furthermore, if we consider the table/stream conversion rules for materialized
views, the only real difference is the trigger used:

Input tables are implicitly triggered via a SCAN-AND-STREAM trigger
instead of a SCAN trigger. Everything else is the same as classic batch
queries.

Output tables are treated the same as classic batch queries.

Grouping/ungrouping operations function the same as classic batch
queries, with the only difference being the use of a SCAN-AND-
STREAM trigger instead of a SNAPSHOT trigger for implicit ungrouping
operations.

Given this example, it’s clear to see that SQL’s inherent table bias is not just
an artifact of SQL being limited to batch processing: materialized views
lend SQL the ability to perform a specific type of stream processing without
any significant changes in approach, including the inherent bias toward tables.
Classic SQL is just a table-biased model, regardless of whether you’re using it
for batch or stream processing.

Looking Forward: Toward Robust Streaming
SQL
We’ve now looked at time-varying relations, the ways in which tables and
streams provide different renderings of a time-varying relation, and what the
inherent biases of the Beam and SQL models are with respect to stream and
table theory. So where does all of this leave us? And perhaps more to the
point, what do we need to change or add within SQL to support robust stream
processing? The surprising answer is: not much if we have good defaults.

We know that the key conceptual change is to replace classic, point-in-time
relations with time-varying relations. We saw earlier that this is a very
seamless substitution, one which applies across the full breadth of relational
operators already in existence, thanks to maintaining the critical closure
property of relational algebra. But we also saw that dealing in time-varying
relations directly is often impractical; we need the ability to operate in terms
of our two more-common physical manifestations: tables and streams. This is
where some simple extensions with good defaults come in.

We also need some tools for robustly reasoning about time, specifically event

12

234

time. This is where things like timestamps, windowing, and triggering come
into play. But again, judicious choice of defaults will be important to
minimize how often these extensions are necessary in practice.

What’s great is that we don’t really need anything more than that. So let’s
now finally spend some time looking in detail at these two categories of
extensions: stream/table selection and temporal operators.

Stream and Table Selection
As we worked through time-varying relation examples, we already
encountered the two key extensions related to stream and table selection.
They were those TABLE and STREAM keywords we placed after the SELECT
keyword to dictate our desired physical view of a given time-varying relation:

------------------------- -------------------------
| Name | Total | Time | | Name | Total | Time |
------------------------- -------------------------
| Julie | 12 | 12:07 | | Julie | 7 | 12:01 |
| Frank | 3 | 12:03 | | Frank | 3 | 12:03 |
------------------------- | Julie | 8 | 12:03 |
 | Julie | 12 | 12:07 |
 [12:01, 12:07]

These extensions are relatively straightforward and easy to use when
necessary. But the really important thing regarding stream and table selection
is the choice of good defaults for times when they aren’t explicitly provided.
Such defaults should honor the classic, table-biased behavior of SQL that
everyone is accustomed to, while also operating intuitively in a world that
includes streams. They should also be easy to remember. The goal here is to
help maintain a natural feel to the system, while also greatly decreasing the
frequency with which we must use explicit extensions. A good choice of
defaults that satisfies all of these requirements is:

If all of the inputs are tables, the output is a TABLE.

If any of the inputs are streams, the output is a STREAM.

What’s additionally important to call out here is that these physical renderings

235

of a time-varying relation are really only necessary when you want to
materialize the TVR in some way, either to view it directly or write it to some
output table or stream. Given a SQL system that operates under the covers in
terms of full-fidelity time-varying relations, intermediate results (e.g., WITH
AS or SELECT INTO statements) can remain as full-fidelity TVRs in whatever
format the system naturally deals in, with no need to render them into some
other, more limited concrete manifestation.

And that’s really it for stream and table selection. Beyond the ability to deal
in streams and tables directly, we also need some better tools for reasoning
about time if we want to support robust, out-of-order stream processing
within SQL. Let’s now look in more detail about what those entail.

Temporal Operators
The foundation of robust, out-of-order processing is the event-time
timestamp: that small piece of metadata that captures the time at which an
event occurred rather than the time at which it is observed. In a SQL world,
event time is typically just another column of data for a given TVR, one
which is natively present in the source data themselves. In that sense, this
idea of materializing a record’s event time within the record itself is
something SQL already handles naturally by putting a timestamp in a regular
column.

Before we go any further, let’s look at an example. To help tie all of this SQL
stuff together with the concepts we’ve explored previously in the book, we
resurrect our running example of summing up nine scores from various
members of a team to arrive at that team’s total score. If you recall, those
scores look like Figure 8-6 when plotted on X = event-time/Y = processing-
time axes.

13

236

Figure 8-6. Data points in our running example

If we were to imagine these data as a classic SQL table, they might look
something like this, ordered by event time (left-to-right in Figure 8-6):

--
| Name | Team | Score | EventTime | ProcTime |
--
Julie	TeamX	5	12:00:26	12:05:19
Frank	TeamX	9	12:01:26	12:08:19
Ed	TeamX	7	12:02:26	12:05:39
Julie	TeamX	8	12:03:06	12:07:06
Amy	TeamX	3	12:03:39	12:06:13
Fred	TeamX	4	12:04:19	12:06:39
Naomi	TeamX	3	12:06:39	12:07:19
Becky	TeamX	8	12:07:26	12:08:39
Naomi	TeamX	1	12:07:46	12:09:00
--

If you recall, we saw this table way back in Chapter 2 when I first introduced
this dataset. This rendering provides a little more detail on the data than
we’ve typically shown, explicitly highlighting the fact that the nine scores
themselves belong to seven different users, each a member of the same team.
SQL provides a nice, concise way to see the data laid out fully before we
begin diving into examples.

Another nice thing about this view of the data is that it fully captures the
event time and processing time for each record. You can imagine the event-
time column as being just another piece of the original data, and the
processing-time column as being something supplied by the system (in this

237

case, using a hypothetical Sys.MTime column that records the processing-time
modification timestamp of a given row; that is, the time at which that row
arrived in the source table), capturing the ingress time of the records
themselves into the system.

The fun thing about SQL is how easy it is to view your data in different ways.
For example, if we instead want to see the data in processing-time order
(bottom-to-top in Figure 8-6), we could simply update the ORDER BY clause:

| Name | Team | Score | EventTime | ProcTime |

Julie	TeamX	5	12:00:26	12:05:19
Ed	TeamX	7	12:02:26	12:05:39
Amy	TeamX	3	12:03:39	12:06:13
Fred	TeamX	4	12:04:19	12:06:39
Julie	TeamX	8	12:03:06	12:07:06
Naomi	TeamX	3	12:06:39	12:07:19
Frank	TeamX	9	12:01:26	12:08:19
Becky	TeamX	8	12:07:26	12:08:39
Naomi	TeamX	1	12:07:46	12:09:00
--

As we learned earlier, these table renderings of the data are really a partial-
fidelity view of the complete underlying TVR. If we were to instead query the
full table-oriented TVR (but only for the three most important columns, for the
sake of brevity), it would expand to something like this:

[-inf, 12:05:19)	[12:05:19, 12:05:39)								
	Score	EventTime	ProcTime			Score	EventTime	ProcTime	
--------------------------------	--------------------------------								
--------------------------------		5	12:00:26	12:05:19					

[12:05:39, 12:06:13)	[12:06:13, 12:06:39)								
	Score	EventTime	ProcTime			Score	EventTime	ProcTime	
--------------------------------	--------------------------------								
	5	12:00:26	12:05:19			5	12:00:26	12:05:19	
	7	12:02:26	12:05:39			7	12:02:26	12:05:39	
--------------------------------		3	12:03:39	12:06:13					

238

[12:06:39, 12:07:06)	[12:07:06, 12:07:19)								
	Score	EventTime	ProcTime			Score	EventTime	ProcTime	
--------------------------------	--------------------------------								
	5	12:00:26	12:05:19			5	12:00:26	12:05:19	
	7	12:02:26	12:05:39			7	12:02:26	12:05:39	
	3	12:03:39	12:06:13			3	12:03:39	12:06:13	
	4	12:04:19	12:06:39			4	12:04:19	12:06:39	
--------------------------------		8	12:03:06	12:07:06					

[12:07:19, 12:08:19)	[12:08:19, 12:08:39)								
	Score	EventTime	ProcTime			Score	EventTime	ProcTime	
--------------------------------	--------------------------------								
	5	12:00:26	12:05:19			5	12:00:26	12:05:19	
	7	12:02:26	12:05:39			7	12:02:26	12:05:39	
	3	12:03:39	12:06:13			3	12:03:39	12:06:13	
	4	12:04:19	12:06:39			4	12:04:19	12:06:39	
	8	12:03:06	12:07:06			8	12:03:06	12:07:06	
	3	12:06:39	12:07:19			3	12:06:39	12:07:19	
--------------------------------		9	12:01:26	12:08:19					

[12:08:39, 12:09:00)	[12:09:00, now)								
	Score	EventTime	ProcTime			Score	EventTime	ProcTime	
--------------------------------	--------------------------------								
	5	12:00:26	12:05:19			5	12:00:26	12:05:19	
	7	12:02:26	12:05:39			7	12:02:26	12:05:39	
	3	12:03:39	12:06:13			3	12:03:39	12:06:13	
	4	12:04:19	12:06:39			4	12:04:19	12:06:39	
	8	12:03:06	12:07:06			8	12:03:06	12:07:06	
	3	12:06:39	12:07:19			3	12:06:39	12:07:19	
	9	12:01:26	12:08:19			9	12:01:26	12:08:19	
	8	12:07:26	12:08:39			8	12:07:26	12:08:39	
--------------------------------		1	12:07:46	12:09:00					

That’s a lot of data. Alternatively, the STREAM version would render much
more compactly in this instance; thanks to there being no explicit grouping in
the relation, it looks essentially identical to the point-in-time TABLE rendering
earlier, with the addition of the trailing footer describing the range of
processing time captured in the stream so far, plus the note that the system is
still waiting for more data in the stream (assuming we’re treating the stream
as unbounded; we’ll see a bounded version of the stream shortly):

239

| Score | EventTime | ProcTime |

5	12:00:26	12:05:19
7	12:02:26	12:05:39
3	12:03:39	12:06:13
4	12:04:19	12:06:39
8	12:03:06	12:07:06
3	12:06:39	12:07:19
9	12:01:26	12:08:19
8	12:07:26	12:08:39
1	12:07:46	12:09:00
........ [12:00, 12:10]

But this is all just looking at the raw input records without any sort of
transformations. Much more interesting is when we start altering the relations.
When we’ve explored this example in the past, we’ve always started with
classic batch processing to sum up the scores over the entire dataset, so let’s
do the same here. The first example pipeline (previously provided as
Example 6-1) looked like Example 8-1 in Beam.
Example 8-1. Summation pipeline
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
 input.apply(Sum.integersPerKey());

And rendered in the streams and tables view of the world, that pipeline’s
execution looked like Figure 8-7.

Figure 8-7. Streams and tables view of classic batch processing

Given that we already have our data placed into an appropriate schema, we
won’t be doing any parsing in SQL; instead, we focus on everything in the
pipeline after the parse transformation. And because we’re going with the

00:00 / 00:00

240

classic batch model of retrieving a single answer only after all of the input
data have been processed, the TABLE and STREAM views of the summation
relation would look essentially identical (recall that we’re dealing with
bounded versions of our dataset for these initial, batch-style examples; as a
result, this STREAM query actually terminates with a line of dashes and an
END-OF-STREAM marker):

--
| Total | MAX(EventTime) | MAX(ProcTime) |
--
| 48 | 12:07:46 | 12:09:00 |
--

--
| Total | MAX(EventTime) | MAX(ProcTime) |
--
| 48 | 12:07:46 | 12:09:00 |
------ [12:00, 12:10] END-OF-STREAM ------

More interesting is when we start adding windowing into the mix. That will
give us a chance to begin looking more closely at the temporal operations that
need to be added to SQL to support robust stream processing.

Where: windowing
As we learned in Chapter 6, windowing is a modification of grouping by key,
in which the window becomes a secondary part of a hierarchical key. As with
classic programmatic batch processing, you can window data into more
simplistic windows quite easily within SQL as it exists now by simply
including time as part of the GROUP BY parameter. Or, if the system in
question provides it, you can use a built-in windowing operation. We look at
SQL examples of both in a moment, but first, let’s revisit the programmatic
version from Chapter 3. Thinking back to Example 6-2, the windowed Beam
pipeline looked like that shown in Example 8-2.
Example 8-2. Summation pipeline
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES)))

241

 .apply(Sum.integersPerKey());

And the execution of that pipeline (in streams and tables rendering from
Figure 6-5), looked like the diagrams presented in Figure 8-8.

Figure 8-8. Streams and tables view of windowed summation on a batch engine

As we saw before, the only material change from Figure 8-7 to 8-8 is that the
table created by the SUM operation is now partitioned into fixed, two-minute
windows of time, yielding four windowed answers at the end rather than the
single global sum that we had previously.

To do the same thing in SQL, we have two options: implicitly window by
including some unique feature of the window (e.g., the end timestamp) in the
GROUP BY statement, or use a built-in windowing operation. Let’s look at
both.

First, ad hoc windowing. In this case, we perform the math of calculating
windows ourselves in our SQL statement:

--
| Total | Window | MAX(ProcTime) |
--
14	[12:00:00, 12:02:00)	12:08:19
18	[12:02:00, 12:04:00)	12:07:06
4	[12:04:00, 12:06:00)	12:06:39
12	[12:06:00, 12:08:00)	12:09:00
--

We can also achieve the same result using an explicit windowing statement
such as those supported by Apache Calcite:

00:00 / 00:00

242

--
| Total | Window | MAX(ProcTime) |
--
14	[12:00:00, 12:02:00)	12:08:19
18	[12:02:00, 12:04:00)	12:07:06
4	[12:04:00, 12:06:00)	12:06:39
12	[12:06:00, 12:08:00)	12:09:00
--

This then begs the question: if we can implicitly window using existing SQL
constructs, why even bother supporting explicit windowing constructs? There
are two reasons, only the first of which is apparent in this example (we’ll see
the other one in action later on in the chapter):

1. Windowing takes care of the window-computation math for you. It’s
a lot easier to consistently get things right when you specify basic
parameters like width and slide directly rather than computing the
window math yourself.

2. Windowing allows the concise expression of more complex,
dynamic groupings such as sessions. Even though SQL is technically
able to express the every-element-within-some-temporal-gap-of-
another-element relationship that defines session windows, the
corresponding incantation is a tangled mess of analytic functions,
self joins, and array unnesting that no mere mortal could be
reasonably expected to conjure on their own.

Both are compelling arguments for providing first-class windowing constructs
in SQL, in addition to the ad hoc windowing capabilities that already exist.

At this point, we’ve seen what windowing looks like from a classic
batch/classic relational perspective when consuming the data as a table. But if
we want to consume the data as a stream, we get back to that third question
from the Beam Model: when in processing time do we materialize outputs?

When: triggers
The answer to that question, as before, is triggers and watermarks. However,
in the context of SQL, there’s a strong argument to be made for having a
different set of defaults than those we introduced with the Beam Model in
Chapter 3: rather than defaulting to using a single watermark trigger, a more
SQL-ish default would be to take a cue from materialized views and trigger

14

243

on every element. In other words, any time a new input arrives, we produce a
corresponding new output.

A SQL-ish default: per-record triggers
There are two compelling benefits to using trigger-every-record as the
default:
Simplicity

The semantics of per-record updates are easy to understand; materialized
views have operated this way for years.

Fidelity
As in change data capture systems, per-record triggering yields a full-
fidelity stream rendering of a given time-varying relation; no information
is lost as part of the conversion.

The downside is primarily cost: triggers are always applied after a grouping
operation, and the nature of grouping often presents an opportunity to reduce
the cardinality of data flowing through the system, thus commensurately
reducing the cost of further processing those aggregate results downstream.
Even so, the benefits in clarity and simplicity for use cases where cost is not
prohibitive arguably outweigh the cognitive complexity of defaulting to a
non-full-fidelity trigger up front.

Thus, for our first take at consuming aggregate team scores as a stream, let’s
see what things would look like using a per-record trigger. Beam itself
doesn’t have a precise per-record trigger, so, as demonstrated in Example 8-3,
we instead use a repeated AfterCount(1) trigger, which will fire
immediately any time a new record arrives.
Example 8-3. Per-record trigger
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(Repeatedly(AfterCount(1)))
 .apply(Sum.integersPerKey());

A streams and tables rendering of this pipeline would then look something
like that depicted in Figure 8-9.

244

Figure 8-9. Streams and tables view of windowed summation on a streaming engine with per-record
triggering

An interesting side effect of using per-record triggers is how it somewhat
masks the effect of data being brought to rest because they are then
immediately put back into motion again by the trigger. Even so, the aggregate
artifact from the grouping remains at rest in the table, as the ungrouped
stream of values flows away from it.

Moving back to SQL, we can see now what the effect of rendering the
corresponding time-value relation as a stream would be. It (unsurprisingly)
looks a lot like the stream of values in the animation in Figure 8-9:

--
| Total | Window | MAX(ProcTime) |
--
5	[12:00:00, 12:02:00)	12:05:19
7	[12:02:00, 12:04:00)	12:05:39
10	[12:02:00, 12:04:00)	12:06:13
4	[12:04:00, 12:06:00)	12:06:39
18	[12:02:00, 12:04:00)	12:07:06
3	[12:06:00, 12:08:00)	12:07:19
14	[12:00:00, 12:02:00)	12:08:19
11	[12:06:00, 12:08:00)	12:08:39
12	[12:06:00, 12:08:00)	12:09:00
................ [12:00, 12:10]

But even for this simple use case, it’s pretty chatty. If we’re building a
pipeline to process data for a large-scale mobile application, we might not
want to pay the cost of processing downstream updates for each and every
upstream user score. This is where custom triggers come in.

Watermark triggers
If we were to switch the Beam pipeline to use a watermark trigger, for
example, we could get exactly one output per window in the stream version of

00:00 / 00:00

245

the TVR, as demonstrated in Example 8-4 and shown in Figure 8-10.
Example 8-4. Watermark trigger
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark())
 .apply(Sum.integersPerKey());

Figure 8-10. Windowed summation with watermark triggering

To get the same effect in SQL, we’d need language support for specifying a
custom trigger. Something like an EMIT <when> statement, such as EMIT
WHEN WATERMARK PAST <column>. This would signal to the system that the
table created by the aggregation should be triggered into a stream exactly
once per row, when the input watermark for the table exceeds the timestamp
value in the specified column (which in this case happens to be the end of the
window).

Let’s look at this relation rendered as a stream. From the perspective of
understanding when trigger firings occur, it’s also handy to stop relying on
the MTime values from the original inputs and instead capture the current
timestamp at which rows in the stream are emitted:

| Total | Window | EmitTime |

5	[12:00:00, 12:02:00)	12:06:00
18	[12:02:00, 12:04:00)	12:07:30
4	[12:04:00, 12:06:00)	12:07:41
12	[12:06:00, 12:08:00)	12:09:22
............. [12:00, 12:10]

The main downside here is the late data problem due to the use of a heuristic

00:00 / 00:00

246

watermark, as we encountered in previous chapters. In light of late data, a
nicer option might be to also immediately output an update any time a late
record shows up, using a variation on the watermark trigger that supported
repeated late firings, as shown in Example 8-5 and Figure 8-11.
Example 8-5. Watermark trigger with late firings
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(AfterWatermark()
 .withLateFirings(AfterCount(1))))
 .apply(Sum.integersPerKey());

Figure 8-11. Windowed summation with on-time/late triggering

We can do the same thing in SQL by allowing the specification of two
triggers:

A watermark trigger to give us an initial value: WHEN WATERMARK
PAST <column>, with the end of the window used as the timestamp
<column>.

A repeated delay trigger for late data: AND THEN AFTER

<duration>, with a <duration> of 0 to give us per-record
semantics.

Now that we’re getting multiple rows per window, it can also be useful to
have another two system columns available: the timing of each row/pane for a
given window relative to the watermark (Sys.EmitTiming), and the index of
the pane/row for a given window (Sys.EmitIndex, to identify the sequence
of revisions for a given row/window):

00:00 / 00:00

247

--
| Total | Window | EmitTime | Sys.EmitTiming | Sys.EmitIndex |
--
5	[12:00:00, 12:02:00)	12:06:00	on-time	0
18	[12:02:00, 12:04:00)	12:07:30	on-time	0
4	[12:04:00, 12:06:00)	12:07:41	on-time	0
14	[12:00:00, 12:02:00)	12:08:19	late	1
12	[12:06:00, 12:08:00)	12:09:22	on-time	0
.............................. [12:00, 12:10]

For each pane, using this trigger, we’re able to get a single on-time answer
that is likely to be correct, thanks to our heuristic watermark. And for any
data that arrives late, we can get an updated version of the row amending our
previous results.

Repeated delay triggers
The other main temporal trigger use case you might want is repeated delayed
updates; that is, trigger a window one minute (in processing time) after any
new data for it arrive. Note that this is different than triggering on aligned
boundaries, as you would get with a microbatch system. As Example 8-6
shows, triggering via a delay relative to the most recent new record arriving
for the window/row helps spread triggering load out more evenly than a
bursty, aligned trigger would. It also does not require any sort of watermark
support. Figure 8-12 presents the results.
Example 8-6. Repeated triggering with one-minute delays
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(FixedWindows.of(TWO_MINUTES))
 .triggering(Repeatedly(UnalignedDelay(ONE_MINUTE)))
 .apply(Sum.integersPerKey());

Figure 8-12. Windowed summation with repeated one-minute-delay triggering

The effect of using such a trigger is very similar to the per-record triggering
we started out with but slightly less chatty thanks to the additional delay
introduced in triggering, which allows the system to elide some number of the
rows being produced. Tweaking the delay allows us to tune the volume of

00:00 / 00:00

248

data generated, and thus balance the tensions of cost and timeliness as
appropriate for the use case.

Rendered as a SQL stream, it would look something like this:

--
| Total | Window | EmitTime | Sys.EmitTiming | Sys.EmitIndex |
--
5	[12:00:00, 12:02:00)	12:06:19	n/a	0
10	[12:02:00, 12:04:00)	12:06:39	n/a	0
4	[12:04:00, 12:06:00)	12:07:39	n/a	0
18	[12:02:00, 12:04:00)	12:08:06	n/a	1
3	[12:06:00, 12:08:00)	12:08:19	n/a	0
14	[12:00:00, 12:02:00)	12:09:19	n/a	1
12	[12:06:00, 12:08:00)	12:09:22	n/a	1
.............................. [12:00, 12:10]

Data-driven triggers
Before moving on to the final question in the Beam Model, it’s worth briefly
discussing the idea of data-driven triggers. Because of the dynamic way types
are handled in SQL, it might seem like data-driven triggers would be a very
natural addition to the proposed EMIT <when> clause. For example, what if
we want to trigger our summation any time the total score exceeds 10?
Wouldn’t something like EMIT WHEN Score > 10 work very naturally?

Well, yes and no. Yes, such a construct would fit very naturally. But when
you think about what would actually be happening with such a construct, you
essentially would be triggering on every record, and then executing the Score
> 10 predicate to decide whether the triggered row should be propagated
downstream. As you might recall, this sounds a lot like what happens with a
HAVING clause. And, indeed, you can get the exact same effect by simply
prepending HAVING Score > 10 to the end of the query. At which point, it
begs the question: is it worth adding explicit data-driven triggers? Probably
not. Even so, it’s still encouraging to see just how easy it is to get the desired
effect of data-driven triggers using standard SQL and well-chosen defaults.

How: accumulation

249

So far in this section, we’ve been ignoring the Sys.Undo column that I
introduced toward the beginning of this chapter. As a result, we’ve defaulted
to using accumulating mode to answer the question of how refinements for a
window/row relate to one another. In other words, any time we observed
multiple revisions of an aggregate row, the later revisions built upon the
previous revisions, accumulating new inputs together with old ones. I opted
for this approach because it matches the approach used in an earlier chapter,
and it’s a relatively straightforward translation from how things work in a
table world.

That said, accumulating mode has some major drawbacks. In fact, as we
discussed in Chapter 2, it’s plain broken for any query/pipeline with a
sequence of two or more grouping operations due to over counting. The only
sane way to allow for the consumption of multiple revisions of a row within a
system that allows for queries containing more than one serial grouping
operation is if it operates by default in accumulating and retracting mode.
Otherwise, you run into issues where a given input record is included multiple
times in a single aggregation due to the blind incorporation of multiple
revisions for a single row.

So, when we come to the question of incorporating accumulation mode
semantics into a SQL world, the option that fits best with our goal of
providing an intuitive and natural experience is if the system uses retractions
by default under the covers. As noted when I introduced the Sys.Undo
column earlier, if you don’t care about the retractions (as in the examples in
this section up until now), you don’t need to ask for them. But if you do ask
for them, they should be there.

Retractions in a SQL world
To see what I mean, let’s look at another example. To motivate the problem
appropriately, let’s look at a use case that’s relatively impractical without
retractions: building session windows and writing them incrementally to a
key/value store like HBase. In this case, we’ll be producing incremental
sessions from our aggregation as they are built up. But in many cases, a given
session will simply be an evolution of one or more previous sessions. In that
case, you’d really like to delete the previous session(s) and replace it/them
with the new one. But how do you do that? The only way to tell whether a
given session replaces another one is to compare them to see whether the new
one overlaps the old one. But that means duplicating some of the session-
building logic in a separate part of your pipeline. And, more important, it

15

250

means that you no longer have idempotent output, and you’ll thus need to
jump through a bunch of extra hoops if you want to maintain end-to-end
exactly-once semantics. Far better would be for the pipeline to simply tell you
which sessions were removed and which were added in their place. This is
what retractions give you.

To see this in action (and in SQL), let’s modify our example pipeline to
compute session windows with a gap duration of one minute. For simplicity
and clarity, we go back to using the default per-record trigger. Note that I’ve
also shifted a few of the data points within processing time for these session
examples to make the diagram cleaner; event-time timestamps remain the
same. The updated dataset looks like this (with shifted processing-time
timestamps highlighted in yellow):

| Score | EventTime | ProcTime |

5	12:00:26	12:05:19
7	12:02:26	12:05:39
3	12:03:39	12:06:13
4	12:04:19	12:06:46
3	12:06:39	12:07:19
8	12:03:06	12:07:33
8	12:07:26	12:08:13
9	12:01:26	12:08:19
1	12:07:46	12:09:00
........ [12:00, 12:10]

To begin with, let’s look at the pipeline without retractions. After it’s clear
why that pipeline is problematic for the use case of writing incremental
sessions to a key/value store, we’ll then look at the version with retractions.

The Beam code for the nonretracting pipeline would look something like
Example 8-7. Figure 8-13 shows the results.
Example 8-7. Session windows with per-record triggering and accumulation
but no retractions
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(Sessions.withGapDuration(ONE_MINUTE))
 .triggering(Repeatedly(AfterCount(1))
 .accumulatingFiredPanes())
 .apply(Sum.integersPerKey());

251

Figure 8-13. Session window summation with accumulation but no retractions

And finally, rendered in SQL, the output stream would look like this:

| Total | Window | EmitTime |

5	[12:00:26, 12:01:26)	12:05:19
7	[12:02:26, 12:03:26)	12:05:39
3	[12:03:39, 12:04:39)	12:06:13
7	[12:03:39, 12:05:19)	12:06:46
3	[12:06:39, 12:07:39)	12:07:19
22	[12:02:26, 12:05:19)	12:07:33
11	[12:06:39, 12:08:26)	12:08:13
36	[12:00:26, 12:05:19)	12:08:19
12	[12:06:39, 12:08:46)	12:09:00
............. [12:00, 12:10]

The important thing to notice in here (in the animation as well as the SQL
rendering) is what the stream of incremental sessions looks like. From our
holistic viewpoint, it’s pretty easy to visually identify in the animation which
later sessions supersede those that came before. But imagine receiving
elements in this stream one by one (as in the SQL listing) and needing to
write them to HBase in a way that eventually results in the HBase table
containing only the two final sessions (with values 36 and 12). How would
you do that? Well, you’d need to do a bunch of read-modify-write operations
to read all of the existing sessions for a key, compare them with the new
session, determine which ones overlap, issue deletes for the obsolete sessions,
and then finally issue a write for the new session—all at significant additional
cost, and with a loss of idempotence, which would ultimately leave you
unable to provide end-to-end, exactly-once semantics. It’s just not practical.

Contrast this then with the same pipeline, but with retractions enabled, as
demonstrated in Example 8-8 and depicted in Figure 8-14.
Example 8-8. Session windows with per-record triggering, accumulation, and

00:00 / 00:00

252

retractions
PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
 .apply(Window.into(Sessions.withGapDuration(ONE_MINUTE))
 .triggering(Repeatedly(AfterCount(1))
 .accumulatingAndRetractingFiredPanes())
 .apply(Sum.integersPerKey());

Figure 8-14. Session window summation with accumulation and retractions

And, lastly, in SQL form. For the SQL version, we’re assuming that the
system is using retractions under the covers by default, and individual
retraction rows are then materialized in the stream any time we request the
special Sys.Undo column. As I described originally, the value of that
column is that it allows us to distinguish retraction rows (labeled undo in the
Sys.Undo column) from normal rows (unlabeled in the Sys.Undo column
here for clearer contrast, though they could just as easily be labeled redo,
instead):

--
| Total | Window | EmitTime | Undo |
--
5	[12:00:26, 12:01:26)	12:05:19	
7	[12:02:26, 12:03:26)	12:05:39	
3	[12:03:39, 12:04:39)	12:06:13	
3	[12:03:39, 12:04:39)	12:06:46	undo
7	[12:03:39, 12:05:19)	12:06:46	
3	[12:06:39, 12:07:39)	12:07:19	
7	[12:02:26, 12:03:26)	12:07:33	undo
7	[12:03:39, 12:05:19)	12:07:33	undo
22	[12:02:26, 12:05:19)	12:07:33	
3	[12:06:39, 12:07:39)	12:08:13	undo
11	[12:06:39, 12:08:26)	12:08:13	
5	[12:00:26, 12:01:26)	12:08:19	undo
22	[12:02:26, 12:05:19)	12:08:19	undo
36	[12:00:26, 12:05:19)	12:08:19	

00:00 / 00:00

16

253

| 11 | [12:06:39, 12:08:26) | 12:09:00 | undo |
| 12 | [12:06:39, 12:08:46) | 12:09:00 | |
................. [12:00, 12:10]

With retractions included, the sessions stream no longer just includes new
sessions, but also retractions for the old sessions that have been replaced.
With this stream, it’s trivial to properly build up the set of sessions in
HBase over time: you simply write new sessions as they arrive (unlabeled
redo rows) and delete old sessions as they’re retracted (undo rows). Much
better!

Discarding mode, or lack thereof
With this example, we’ve shown how simply and naturally you can
incorporate retractions into SQL to provide both accumulating mode and
accumulating and retracting mode semantics. But what about discarding
mode?

For specific use cases such as very simple pipelines that partially aggregate
high-volume input data via a single grouping operation and then write them
into a storage system, which itself supports aggregation (e.g., a database-like
system), discarding mode can be extremely valuable as a resource-saving
option. But outside of those relatively narrow use cases, discarding mode is
confusing and error-prone. As such, it’s probably not worth incorporating
directly into SQL. Systems that need it can provide it as an option outside of
the SQL language itself. Those that don’t can simply provide the more natural
default of accumulating and retracting mode, with the option to ignore
retractions when they aren’t needed.

Summary
This has been a long journey but a fascinating one. We’ve covered a ton of
information in this chapter, so let’s take a moment to reflect on it all.

First, we reasoned that the key difference between streaming and
nonstreaming data processing is the added dimension of time. We observed
that relations (the foundational data object from relational algebra, which
itself is the basis for SQL) themselves evolve over time, and from that derived
the notion of a TVR, which captures the evolution of a relation as a sequence
of classic snapshot relations over time. From that definition, we were able to
see that the closure property of relational algebra remains intact in a world of
TVRs, which means that the entire suite of relational operators (and thus SQL

17

254

constructs) continues to function as one would expect as we move from a
world of point-in-time snapshot relations into a streaming-compatible world
of TVRs.

Second, we explored the biases inherent in both the Beam Model and the
classic SQL model as they exist today, coming to the conclusion that Beam
has a stream-oriented approach, whereas SQL takes a table-oriented approach.

And finally, we looked at the hypothetical language extensions needed to add
support for robust stream processing to SQL, as well as some carefully
chosen defaults that can greatly decrease the need for those extensions to be
used:
Table/stream selection

Given that any time-varying relation can be rendered in two different
ways (table or stream), we need the ability to choose which rendering we
want when materializing the results of a query. We introduced the TABLE,
STREAM, and TVR keywords to provide a nice explicit way to choose the
desired rendering.

Even better is not needing to explicitly specify a choice, and that’s where
good defaults come in. If all the inputs are tables, a good default is for the
output to be a table, as well; this gives you the classic relational query
behavior everyone is accustomed to. Conversely, if any of the inputs are
streams, a reasonable default is for the output to be a stream, as well.

Windowing
Though you can declare some types of simple windows declaratively
using existing SQL constructs, there is still value in having explicit
windowing operators:

Windowing operators encapsulate the window-computation math.

Windowing allows the concise expression of complex, dynamic
groupings like sessions.

Thus, the addition of simple windowing constructs for use in grouping can
help make queries less error prone while also providing capabilities (like
sessions) that are impractical to express in declarative SQL as it exists
today.

Watermarks

18

255

This isn’t so much a SQL extension as it is a system-level feature. If the
system in question integrates watermarks under the covers, they can be
used in conjunction with triggers to generate streams containing a single,
authoritative version of a row only after the input for that row is believed
to be complete. This is critical for use cases in which it’s impractical to
poll a materialized view table for results, and instead the output of the
pipeline must be consumed directly as a stream. Examples are
notifications and anomaly detection.

Triggers
Triggers define the shape of a stream as it is created from a TVR. If
unspecified, the default should be per-record triggering, which provides
straightforward and natural semantics matching those of materialized
views. Beyond the default, there are essentially two main types of useful
triggers:

Watermark triggers, for yielding a single output per window when
the inputs to that window are believed to be complete.

Repeated delay triggers, for providing periodic updates.

Combinations of those two can also be useful, especially in the case of
heuristic watermarks, to provide the early/on-time/late pattern we saw
earlier.

Special system columns
When consuming a TVR as a stream, there are some interesting metadata
that can be useful and which are most easily exposed as system-level
columns. We looked at four:

Sys.MTime

The processing time at which a given row was last modified in a TVR.

Sys.EmitTiming

The timing of the row emit relative to the watermark (early, on-time,
late).

Sys.EmitIndex

The zero-based index of the emit version for this row.

Sys.Undo

19

256

Whether the row is a normal row or a retraction (undo). By default,
the system should operate with retractions under the covers, as is
necessary any time a series of more than one grouping operation
might exist. If the Sys.Undo column is not projected when rendering a
TVR as a stream, only normal rows will be returned, providing a
simple way to toggle between accumulating and accumulating and
retracting modes.

Stream processing with SQL doesn’t need to be difficult. In fact, stream
processing in SQL is quite common already in the form of materialized views.
The important pieces really boil down to capturing the evolution of
datasets/relations over time (via time-varying relations), providing the means
of choosing between physical table or stream representations of those time-
varying relations, and providing the tools for reasoning about time
(windowing, watermarks, and triggers) that we’ve been talking about
throughout this book. And, critically, you need good defaults to minimize
how often these extensions need to be used in practice.

 What I mean by “valid relation” here is simply a relation for which the
application of a given operator is well formed. For example, for the SQL
query SELECT x FROM y​, a valid relation y would be any relation containing
an attribute/column named x. Any relation not containing a such-named
attribute would be invalid and, in the case of a real database system, would
yield a query execution error.

 Much credit to Julian Hyde for this name and succinct rendering of the
concept.

 Note that the Sys.Undo name used here is riffing off the concise undo/redo
nomenclature from Apache Flink, which I think is a very clean way to capture
the ideas of retraction and nonretraction rows.

 Now, in this example, it’s not too difficult to figure out that the new value of
8 should replace the old value of 7, given that the mapping is 1:1. But we’ll
see a more complicated example later on when we talk about sessions that is
much more difficult to handle without having retractions as a guide.

 And indeed, this is a key point to remember. There are some systems that
advocate treating streams and tables as identical, claiming that we can simply
treat streams like never-ending tables. That statement is accurate inasmuch as
the true underlying primitive is the time-varying relation, and all relational

1

2

3

4

5

257

https://flink.apache.org/news/2017/04/04/dynamic-tables.html

operations may be applied equally to any time-varying relation, regardless of
whether the actual physical manifestation is a stream or a table. But that sort
of approach conflates the two very different types of views that tables and
streams provide for a given time-varying relation. Pretending that two very
different things are the same might seem simple on the surface, but it’s not a
road toward understanding, clarity, and correctness.

 Here referring to tables in the sense of tables that can vary over time; that is,
the table-based TVRs we’ve been looking at.

 This one courtesy Julian Hyde.

 Though there are a number of efforts in flight across various projects that
are trying to simplify the specification of triggering/ungrouping semantics.
The most compelling proposal, made independently within both the Flink and
Beam communities, is that triggers should simply be specified at the outputs
of a pipeline and automatically propagated up throughout the pipeline. In this
way, one would describe only the desired shape of the streams that actually
create materialized output; the shape of all other streams in the pipeline would
be implicitly derived from there.

 Though, of course, a single SQL query has vastly more expressive power
than a single MapReduce, given the far less-confining set of operations and
composition options available.

 Note that we’re speaking conceptually here; there are of course a multitude
of optimizations that can be applied in actual execution; for example, looking
up specific rows via an index rather than scanning the entire table.

 It’s been brought to my attention multiple times that the “MATERIALIZED”
aspect of these queries is just an optimization: semantically speaking, these
queries could just as easily be replaced with generic CREATE VIEW statements,
in which case the database might instead simply rematerialize the entire view
each time it is referenced. This is true. The reason I use the MATERIALIZED
variant here is that the semantics of a materialized view are to incrementally
update the view table in response to a stream of changes, which is indicative
of the streaming nature behind them. That said, the fact that you can instead
provide a similar experience by re-executing a bounded query each time a
view is accessed provides a nice link between streams and tables as well as a
link between streaming systems and the way batch systems have been
historically used for processing data that evolves over time. You can either
incrementally process changes as they occur or you can reprocess the entire

6

7

8

9

10

11

258

input dataset from time to time. Both are valid ways of processing an
evolving table of data.

 Though it’s probably fair to say that SQL’s table bias is likely an artifact of
SQL’s roots in batch processing.

 For some use cases, capturing and using the current processing time for a
given record as its event time going forward can be useful (for example, when
logging events directly into a TVR, where the time of ingress is the natural
event time for that record).

 Maths are easy to get wrong.

 It’s sufficient for retractions to be used by default and not simply always
because the system only needs the option to use retractions. There are specific
use cases; for example, queries with a single grouping operation whose results
are being written into an external storage system that supports per-key
updates, where the system can detect retractions are not needed and disable
them as an optimization.

 Note that it’s a little odd for the simple addition of a new column in the
SELECT statement to result in a new rows appearing in a query. A fine
alternative approach would be to require Sys.Undo rows to be filtered out via
a WHERE clause when not needed.

 Not that this triviality applies only in cases for which eventual consistency
is sufficient. If you need to always have a globally coherent view of all
sessions at any given time, you must 1) be sure to write/delete (via
tombstones) each session at its emit time, and 2) only ever read from the
HBase table at a timestamp that is less than the output watermark from your
pipeline (to synchronize reads against the multiple, independent writes/deletes
that happen when sessions merge). Or better yet, cut out the middle person
and serve the sessions from your state tables directly.

 To be clear, they’re not all hypothetical. Calcite has support for the
windowing constructs described in this chapter.

 Note that the definition of “index” becomes complicated in the case of
merging windows like sessions. A reasonable approach is to take the
maximum of all of the previous sessions being merged together and
increment by one.

12

13

14

15

16

17

18

19

259

Chapter 9. Streaming Joins

When I first began learning about joins, it was an intimidating topic; LEFT,
OUTER, SEMI, INNER, CROSS: the language of joins is expressive and
expansive. Add on top of that the dimension of time that streaming brings to
the table, and you’re left with what appears to be a challengingly complex
topic. The good news is that joins really aren’t the frightening beast with
nasty, pointy teeth that they might initially appear to be. As is the case with so
many other complex topics, after you understand the central ideas and themes
of joins, the broader landscape that’s built on top of these basics suddenly
becomes so much more accessible. So please join me now as we explore the
fascinating topic of...well, joins.

All Your Joins Are Belong to Streaming
What does it mean to join two datasets? We understand intuitively that joins
are just a specific type of grouping operation: by joining together data that
share some property (i.e., key), we collect together some number of
previously unrelated individual data elements into a group of related
elements. And as we learned in Chapter 6, grouping operations always
consume a stream and yield a table. Knowing these two things, it’s only a
small leap to then arrive at the conclusion that forms the basis for this entire
chapter: at their hearts, all joins are streaming joins.

What’s great about this fact is that it actually makes the topic of streaming
joins that much more tractable. All of the tools we’ve learned for reasoning
about time within the context of streaming grouping operations (windowing,
watermarks, triggers, etc.) continue to apply in the case of streaming joins.
What’s perhaps intimidating is that adding streaming to the mix seems like it
could only serve to complicate things. But as you’ll see in the examples that
follow, there’s a certain elegant simplicity and consistency to modeling all
joins as streaming joins. Instead of feeling like there are a confounding
multitude of different join approaches, it becomes clear that nearly all types of
joins really boil down to minor variations on the same pattern. In the end, that
clarity of insight helps makes joins (streaming or otherwise) much less
intimidating.

To give us something concrete to reason about, let’s consider a number of

260

different types of joins as they’re applied the following datasets, conveniently
named Left and Right to match the common nomenclature:

12:10> SELECT TABLE * FROM Left; 12:10> SELECT TABLE * FROM
Right;
-------------------- --------------------
| Num | Id | Time | | Num | Id | Time |
-------------------- --------------------
1	L1	12:02		2	R2	12:01
2	L2	12:06		3	R3	12:04
3	L3	12:03		4	R4	12:05
-------------------- --------------------

Each contains three columns:

Num

A single number.

Id

A portmanteau of the first letter in the name of the corresponding table
(“L” or “R”) and the Num, thus providing a way to uniquely identify the
source of a given cell in join results.

Time

The arrival time of the given record in the system, which becomes
important when considering streaming joins.

To keep things simple, note that our initial datasets will have strictly unique
join keys. When we get to SEMI joins, we’ll introduce some more complicated
datasets to highlight join behavior in the presence of duplicate keys.

We first look at unwindowed joins in a great deal of depth because
windowing often affects join semantics in only a minor way. After we
exhaust our appetite for unwindowed joins, we then touch upon some of the
more interesting points of joins in a windowed context.

Unwindowed Joins
It’s a popular myth that streaming joins over unbounded data always require
windowing. But by applying the concepts we learned in Chapter 6, we can see
that’s simply not true. Joins (both windowed and unwindowed) are simply
another type of grouping operation, and grouping operations yield tables.
Thus, if we want to consume the table created by an unwindowed join (or,

261

equivalently, joins within a single global window covering all of time) as a
stream, we need only apply an ungrouping (or trigger) operation that isn’t of
the “wait until we’ve seen all the input” variety. Windowing the join into a
nonglobal window and using a watermark trigger (i.e., a “wait until we’ve
seen all the input in a finite temporal chunk of the stream” trigger) is indeed
one option, but so is triggering on every record (i.e., materialized view
semantics) or periodically as processing time advances, regardless of whether
the join is windowed or not. Because it makes the examples easy to follow,
we assume the use of an implicit default per-record trigger in all of the
following unwindowed join examples that observe the join results as a stream.

Now, onto joins themselves. ANSI SQL defines five types of joins: FULL
OUTER, LEFT OUTER, RIGHT OUTER, INNER, and CROSS. We look at the first
four in depth, and discuss the last only briefly in the next paragraph. We also
touch on two other interesting, but less-often encountered (and less well
supported, at least using standard syntax) variations: ANTI and SEMI joins.

On the surface, it sounds like a lot of variations. But as you’ll see, there’s
really only one type of join at the core: the FULL OUTER join. A CROSS join is
just a FULL OUTER join with a vacuously true join predicate; that is, it returns
every possible pairing of a row from the left table with a row from the right
table. All of the other join variations simply reduce down to some logical
subset of the FULL OUTER join. As a result, after you understand the
commonality between all the different join types, it becomes a lot easier to
keep them all in your head. It also makes reasoning about them in the context
of streaming all that much simpler.

One last note here before we get started: we’ll be primarily considering equi
joins with at most 1:1 cardinality, by which I mean joins in which the join
predicate is an equality statement and there is at most one matching row on
each side of the join. This keeps the examples simple and concise. When we
get to SEMI joins, we’ll expand our example to consider joins with arbitrary
N:M cardinality, which will let us observe the behavior of more arbitrary
predicate joins.

FULL OUTER
Because they form the conceptual foundation for each of the other variations,
we first look at FULL OUTER joins. Outer joins embody a rather liberal and
optimistic interpretation of the word “join”: the result of FULL OUTER–joining

1

2

262

two datasets is essentially the full list of rows in both datasets, with rows in
the two datasets that share the same join key combined together, but
unmatched rows for either side included unjoined.

For example, if we FULL OUTER–join our two example datasets into a new
relation containing only the joined IDs, the result would look something like
this:

12:10> SELECT TABLE
 Left.Id as L,
 Right.Id as R,
 FROM Left FULL OUTER JOIN Right
 ON L.Num = R.Num;

| L | R |

L1	null
L2	R2
L3	R3
null	R4

We can see that the FULL OUTER join includes both rows that satisfied the join
predicate (e.g., “L2, R2” and “L3, R3”), but it also includes partial rows that
failed the predicate (e.g., “L1, null” and “null, R4”, where the null is
signaling the unjoined portion of the data).

Of course, that’s just a point-in-time snapshot of this FULL OUTER–join
relation, taken after all of the data have arrived in the system. We’re here to
learn about streaming joins, and streaming joins by definition involve the
added dimension of time. As we know from Chapter 8, if we want to
understand how a given dataset/relation changes over time, we want to speak
in terms of time-varying relations (TVRs). So to best understand how the join
evolves over time, let’s look now at the full TVR for this join (with changes
between each snapshot relation highlighted in yellow):

12:10> SELECT TVR
 Left.Id as L,
 Right.Id as R,
 FROM Left FULL OUTER JOIN Right
 ON L.Num = R.Num;

[-inf, 12:01)	[12:01, 12:02)	[12:02, 12:03)	[12:03, 12:04)												
	L	R			L	R			L	R			L	R	
---------------	---------------	---------------	---------------												

2

263

---------------		null	R2			L1	null			L1	null	
	---------------		null	R2			null	R2				
		---------------		L3	null							

[12:04, 12:05)	[12:05, 12:06)	[12:06, 12:07)									
	L	R			L	R			L	R	
---------------	---------------	---------------									
	L1	null			L1	null			L1	null	
	null	L2			null	L2			L2	L2	
	L3	L3			L3	L3			L3	L3	
---------------		null	L4			null	L4				
	---------------	---------------									

And, as you might then expect, the stream rendering of this TVR would
capture the specific deltas between each of those snapshots:

12:00> SELECT STREAM
 Left.Id as L,
 Right.Id as R,
 CURRENT_TIMESTAMP as Time,
 Sys.Undo as Undo
 FROM Left FULL OUTER JOIN Right
 ON L.Num = R.Num;

| L | R | Time | Undo |

null	R2	12:01	
L1	null	12:02	
L3	null	12:03	
L3	null	12:04	undo
L3	R3	12:04	
null	R4	12:05	
null	R2	12:06	undo
L2	R2	12:06	
....... [12:00, 12:10]

Note the inclusion of the Time and Undo columns, to highlight the times when
given rows materialize in the stream, and also call out instances when an
update to a given row first results in a retraction of the previous version of
that row. The undo/retraction rows are critical if this stream is to capture a
full-fidelity view of the TVR over time.

So, although each of these three renderings of the join (table, TVR, stream)
are distinct from one another, it’s also pretty clear how they’re all just
different views on the same data: the table snapshot shows us the overall
dataset as it exists after all the data have arrived, and the TVR and stream

264

versions capture (in their own ways) the evolution of the entire relation over
the course of its existence.

With that basic familiarity of FULL OUTER joins in place, we now understand
all of the core concepts of joins in a streaming context. No windowing
needed, no custom triggers, nothing particularly painful or unintuitive. Just a
per-record evolution of the join over time, as you would expect. Even better,
all of the other types of joins are just variations on this theme (conceptually,
at least), essentially just an additional filtering operation performed on the
per-record stream of the FULL OUTER join. Let’s now look at each of them in
more detail.

LEFT OUTER
LEFT OUTER joins are a just a FULL OUTER join with any unjoined rows from
the right dataset removed. This is most clearly seen by taking the original
FULL OUTER join and graying out the rows that would be filtered. For a LEFT
OUTER join, that would look like the following, where every row with an
unjoined left side is filtered out of the original FULL OUTER join:

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left LEFT OUTER JOIN Right FROM Left LEFT
OUTER JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
L1	null		null	R2	12:01	
L2	R2		L1	null	12:02	
L3	R3		L3	null	12:03	
null	R4		L3	null	12:04	undo
--------------- | L3 | R3 | 12:04 | |
 | null | R4 | 12:05 | |
 | null | R2 | 12:06 | undo |
 | L2 | R2 | 12:06 | |
 [12:00, 12:10]

To see what the table and stream would actually look like in practice, let’s
look at the same queries again, but this time with the grayed-out rows omitted
entirely:

265

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left LEFT OUTER JOIN Right FROM Left LEFT
OUTER JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
L1	null		L1	null	12:02	
L2	R2		L3	null	12:03	
L3	R3		L3	null	12:04	undo
--------------- | L3 | R3 | 12:04 | |
 | L2 | R2 | 12:06 | |
 [12:00, 12:10]

RIGHT OUTER
RIGHT OUTER joins are the converse of a left join: all unjoined rows from the
left dataset in the full outer join are right out, *cough*, removed:

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left RIGHT OUTER JOIN Right FROM Left RIGHT
OUTER JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
L1	null		null	R2	12:01	
L2	R2		L1	null	12:02	
L3	R3		L3	null	12:03	
null	R4		L3	null	12:04	undo
--------------- | L3 | R3 | 12:04 | |
 | null | R4 | 12:05 | |
 | null | R2 | 12:06 | undo |
 | L2 | R2 | 12:06 | |
 [12:00, 12:10]

And here we see how the queries rendered as the actual RIGHT OUTER join
would appear:

 12:00> SELECT STREAM

266

Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left RIGHT OUTER JOIN Right FROM Left RIGHT
OUTER JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
L2	R2		null	R2	12:01	
L3	R3		L3	R3	12:04	
null	R4		null	R4	12:05	
--------------- | null | R2 | 12:06 | undo |
 | L2 | R2 | 12:06 | |
 [12:00, 12:10]

INNER
INNER joins are essentially the intersection of the LEFT OUTER and RIGHT
OUTER joins. Or, to think of it subtractively, the rows removed from the
original FULL OUTER join to create an INNER join are the union of the rows
removed from the LEFT OUTER and RIGHT OUTER joins. As a result, all rows
that remain unjoined on either side are absent from the INNER join:

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left INNER JOIN Right FROM Left INNER
JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
L1	null		null	R2	12:01	
L2	R2		L1	null	12:02	
L3	R3		L3	null	12:03	
null	R4		L3	null	12:04	undo
--------------- | L3 | R3 | 12:04 | |
 | null | R4 | 12:05 | |
 | null | R2 | 12:06 | undo |
 | L2 | R2 | 12:06 | |
 [12:00, 12:10]

And again, more succinctly rendered as the INNER join would look in reality:

267

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left INNER JOIN Right FROM Left INNER
JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
| L2 | R2 | | L3 | R3 | 12:04 | |
| L3 | R3 | | L2 | R2 | 12:06 | |
--------------- [12:00, 12:10]

Given this example, you might be inclined to think retractions never play a
part in INNER join streams because they were all filtered out in this example.
But imagine if the value in the Left table for the row with a Num of 3 were
updated from “L3” to “L3v2” at 12:07. In addition to resulting in a different
value on the left side for our final TABLE query (again performed at 12:10,
which is after the update to row 3 on the Left arrived), it would also result in
a STREAM that captures both the removal of the old value via a retraction and
the addition of the new value:

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM LeftV2 INNER JOIN Right FROM LeftV2 INNER
JOIN Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
| L2 | R2 | | L3 | R3 | 12:04 | |
| L3v2 | R3 | | L2 | R2 | 12:06 | |
--------------- | L3 | R3 | 12:07 | undo |
 | L3v2 | R3 | 12:07 | |
 [12:00, 12:10]

ANTI
ANTI joins are the obverse of the INNER join: they contain all of the unjoined
rows. Not all SQL systems support a clean ANTI join syntax, but I’ll use the

268

most straightforward one here for clarity:

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left ANTI JOIN Right FROM Left ANTI JOIN
Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- -------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
L1	null		null	R2	12:01	
L2	R2		L1	null	12:02	
L3	R3		L3	null	12:03	
null	R4		L3	null	12:04	undo
--------------- | L3 | R3 | 12:04 | |
 | null | R4 | 12:05 | |
 | null | R2 | 12:06 | undo |
 | L2 | R2 | 12:06 | |
 [12:00, 12:10]

What’s slightly interesting about the stream rendering of the ANTI join is that
it ends up containing a bunch of false-starts and retractions for rows which
eventually do end up joining; in fact, the ANTI join is as heavy on retractions
as the INNER join is light. The more concise versions would look like this:

 12:00> SELECT STREAM
Left.Id as L,
12:10> SELECT TABLE Right.Id as R,
 Left.Id as L, Sys.EmitTime as
Time,
 Right.Id as R Sys.Undo as Undo
 FROM Left ANTI JOIN Right FROM Left ANTI JOIN
Right
 ON L.Num = R.Num; ON L.Num = R.Num;
--------------- ------------------------------
| L | R | | L | R | Time | Undo |
--------------- ------------------------------
| L1 | null | | null | R2 | 12:01 | |
| null | R4 | | L1 | null | 12:02 | |
--------------- | L3 | null | 12:03 | |
 | L3 | null | 12:04 | undo |
 | null | R4 | 12:05 | |
 | null | R2 | 12:06 | undo |
 [12:00, 12:10]

269

SEMI
We now come to SEMI joins, and SEMI joins are kind of weird. At first glance,
they basically look like inner joins with one side of the joined values being
dropped. And, indeed, in cases for which the cardinality relationship of
<side-being-kept>:<side-being-dropped> is N:M with M ≤ 1, this
works (note that we’ll be using kept=Left, dropped=Right for all the
examples that follow). For example, on the Left and Right datasets we’ve
used so far (which had cardinalities of 0:1, 1:0, and 1:1 for the joined data),
the INNER and SEMI join variations look identical:

12:10> SELECT TABLE 12:10> SELECT TABLE
 Left.Id as L Left.Id as L
FROM Left INNER JOIN FROM Left SEMI JOIN
Right ON L.Num = R.Num; Right ON L.Num = R.Num;
--------------- ---------------
| L | R | | L | R |
--------------- ---------------
L1	null		L1	null
L2	R2		L2	R2
L3	R3		L3	R3
null	R4		null	R4
--------------- ---------------

However, there’s an additional subtlety to SEMI joins in the case of N:M
cardinality with M > 1: because the values on the M side are not being
returned, the SEMI join simply predicates the join condition on there being
any matching row on the right, rather than repeatedly yielding a new result for
every matching row.

To see this clearly, let’s switch to a slightly more complicated pair of input
relations that highlight the N:M join cardinality of the rows contained therein.
In these relations, the N_M column states what the cardinality relationship of
rows is between the left and right sides, and the Id column (as before)
provides an identifier that is unique for each row in each of the input
relations:

12:15> SELECT TABLE * FROM LeftNM; 12:15> SELECT TABLE * FROM
RightNM;
--------------------- ---------------------
| N_M | Id | Time | | N_M | Id | Time |
--------------------- ---------------------
1:0	L2	12:07		0:1	R1	12:02
1:1	L3	12:01		1:1	R3	12:14
1:2	L4	12:05		1:2	R4A	12:03

270

2:1	L5A	12:09		1:2	R4B	12:04
2:1	L5B	12:08		2:1	R5	12:06
2:2	L6A	12:12		2:2	R6A	12:11
2:2	L6B	12:10		2:2	R6B	12:13
--------------------- ---------------------

With these inputs, the FULL OUTER join expands to look like these:

 12:00> SELECT STREAM

COALESCE(LeftNM.N_M,
12:15> SELECT TABLE
RightNM.N_M) as N_M,
 COALESCE(LeftNM.N_M, LeftNM.Id as L,
 RightNM.N_M) as N_M, RightNM.Id as R,
 LeftNM.Id as L, Sys.EmitTime as
Time,
 RightNM.Id as R, Sys.Undo as Undo
 FROM LeftNM FROM LeftNM
 FULL OUTER JOIN RightNM FULL OUTER JOIN
RightNM
 ON LeftNM.N_M = RightNM.N_M; ON LeftNM.N_M =
RightNM.N_M;
--------------------- ------------------------------------
| N_M | L | R | | N_M | L | R | Time | Undo |
--------------------- ------------------------------------
0:1	null	R1		1:1	L3	null	12:01	
1:0	L2	null		0:1	null	R1	12:02	
1:1	L3	R3		1:2	null	R4A	12:03	
1:2	L4	R4A		1:2	null	R4B	12:04	
1:2	L4	R4B		1:2	null	R4A	12:05	undo
2:1	L5A	R5		1:2	null	R4B	12:05	undo
2:1	L5B	R5		1:2	L4	R4A	12:05	
2:2	L6A	R6A		1:2	L4	R4B	12:05	
2:2	L6A	R6B		2:1	null	R5	12:06	
2:2	L6B	R6A		1:0	L2	null	12:07	
2:2	L6B	R6B		2:1	null	R5	12:08	undo
--------------------- | 2:1 | L5B | R5 | 12:08 | |
 | 2:1 | L5A | R5 | 12:09 | |
 | 2:2 | L6B | null | 12:10 | |
 | 2:2 | L6B | null | 12:11 | undo |
 | 2:2 | L6B | R6A | 12:11 | |
 | 2:2 | L6A | R6A | 12:12 | |
 | 2:2 | L6A | R6B | 12:13 | |
 | 2:2 | L6B | R6B | 12:13 | |
 | 1:1 | L3 | null | 12:14 | undo |
 | 1:1 | L3 | R3 | 12:14 | |
 [12:00, 12:15]

As a side note, one additional benefit of these more complicated datasets is
that the multiplicative nature of joins when there are multiple rows on each

271

side matching the same predicate begins to become more clear (e.g., the “2:2”
rows, which expand from two rows in each the inputs to four rows in the
output; if the dataset had a set of “3:3” rows, they’d expand from three rows
in each of the inputs to nine rows in the output, and so on).

But back to the subtleties of SEMI joins. With these datasets, it becomes much
clearer what the difference between the filtered INNER join and the SEMI join
is: the INNER join yields duplicate values for any of the rows where the N:M
cardinality has M > 1, whereas the SEMI join doesn’t (note that I’ve
highlighted the duplicate rows in the INNER join version in red, and included
in gray the portions of the full outer join that are omitted in the respective
INNER and SEMI versions):

12:15> SELECT TABLE 12:15> SELECT TABLE
 COALESCE(LeftNM.N_M,
COALESCE(LeftNM.N_M,
 RightNM.N_M) as N_M,
RightNM.N_M) as N_M,
 LeftNM.Id as L LeftNM.Id as L
 FROM LeftNM INNER JOIN RightNM FROM LeftNM SEMI
JOIN RightNM
 ON LeftNM.N_M = RightNM.N_M; ON LeftNM.N_M =
RightNM.N_M;
--------------------- ---------------------
| N_M | L | R | | N_M | L | R |
--------------------- ---------------------
0:1	null	R1		0:1	null	R1
1:0	L2	null		1:0	L2	null
1:1	L3	R3		1:1	L3	R3
1:2	L4	R5A		1:2	L4	R5A
1:2	L4	R5B		1:2	L4	R5B
2:1	L5A	R5		2:1	L5A	R5
2:1	L5B	R5		2:1	L5B	R5
2:2	L6A	R6A		2:2	L6A	R6A
2:2	L6A	R6B		2:2	L6A	R6B
2:2	L6B	R6A		2:2	L6B	R6A
2:2	L6B	R6B		2:2	L6B	R6B
--------------------- ---------------------

Or, rendered more succinctly:

12:15> SELECT TABLE 12:15> SELECT TABLE
 COALESCE(LeftNM.N_M,
COALESCE(LeftNM.N_M,
 RightNM.N_M) as N_M,
RightNM.N_M) as N_M,
 LeftNM.Id as L LeftNM.Id as L
 FROM LeftNM INNER JOIN RightNM FROM LeftNM SEMI

272

JOIN RightNM
 ON LeftNM.N_M = RightNM.N_M; ON LeftNM.N_M =
RightNM.N_M;
------------- -------------
| N_M | L | | N_M | L |
------------- -------------
1:1	L3		1:1	L3
1:2	L4		1:2	L4
1:2	L4		2:1	L5A
2:1	L5A		2:1	L5B
2:1	L5B		2:2	L6A
2:2	L6A		2:2	L6B
2:2	L6A	-------------		
2:2	L6B			
2:2	L6B			

The STREAM renderings then provide a bit of context as to which rows are
filtered out—they are simply the later-arriving duplicate rows (from the
perspective of the columns being projected):

12:00> SELECT STREAM 12:00> SELECT STREAM
 COALESCE(LeftNM.N_M,
COALESCE(LeftNM.N_M,
 RightNM.N_M) as N_M,
RightNM.N_M) as N_M,
 LeftNM.Id as L LeftNM.Id as L
 Sys.EmitTime as Time, Sys.EmitTime
as Time,
 Sys.Undo as Undo, Sys.Undo as
Undo,
 FROM LeftNM INNER JOIN RightNM FROM LeftNM SEMI
JOIN RightNM
 ON LeftNM.N_M = RightNM.N_M; ON LeftNM.N_M =
RightNM.N_M;
------------------------------------ ------------------------------------
| N_M | L | R | Time | Undo | | N_M | L | R | Time | Undo |
------------------------------------ ------------------------------------
1:1	L3	null	12:01			1:1	L3	null	12:01	
0:1	null	R1	12:02			0:1	null	R1	12:02	
1:2	null	R4A	12:03			1:2	null	R4A	12:03	
1:2	null	R4B	12:04			1:2	null	R4B	12:04	
1:2	null	R4A	12:05	undo		1:2	null	R4A	12:05	undo
1:2	null	R4B	12:05	undo		1:2	null	R4B	12:05	undo
1:2	L4	R4A	12:05			1:2	L4	R4A	12:05	
1:2	L4	R4B	12:05			1:2	L4	R4B	12:05	
2:1	null	R5	12:06			2:1	null	R5	12:06	
1:0	L2	null	12:07			1:0	L2	null	12:07	
2:1	null	R5	12:08	undo		2:1	null	R5	12:08	undo
2:1	L5B	R5	12:08			2:1	L5B	R5	12:08	
2:1	L5A	R5	12:09			2:1	L5A	R5	12:09	
2:2	L6B	null	12:10			2:2	L6B	null	12:10	

273

2:2	L6B	null	12:10	undo		2:2	L6B	null	12:10	undo
2:2	L6B	R6A	12:11			2:2	L6B	R6A	12:11	
2:2	L6A	R6A	12:12			2:2	L6A	R6A	12:12	
2:2	L6A	R6B	12:13			2:2	L6A	R6B	12:13	
2:2	L6B	R6B	12:13			2:2	L6B	R6B	12:13	
1:1	L3	null	12:14	undo		1:1	L3	null	12:14	undo
1:1	L3	R3	12:14			1:1	L3	R3	12:14	
.......... [12:00, 12:15] [12:00, 12:15]

And again, rendered succinctly:

12:00> SELECT STREAM 12:00> SELECT STREAM
 COALESCE(LeftNM.N_M,
COALESCE(LeftNM.N_M,
 RightNM.N_M) as N_M,
RightNM.N_M) as N_M,
 LeftNM.Id as L LeftNM.Id as L
 Sys.EmitTime as Time, Sys.EmitTime
as Time,
 Sys.Undo as Undo, Sys.Undo as
Undo,
 FROM LeftNM INNER JOIN RightNM FROM LeftNM SEMI
JOIN RightNM
 ON LeftNM.N_M = RightNM.N_M; ON LeftNM.N_M =
RightNM.N_M;
---------------------------- ----------------------------
| N_M | L | Time | Undo | | N_M | L | Time | Undo |
---------------------------- ----------------------------
1:2	L4	12:05			1:2	L4	12:05	
1:2	L4	12:05			2:1	L5B	12:08	
2:1	L5B	12:08			2:1	L5A	12:09	
2:1	L5A	12:09			2:2	L6B	12:11	
2:2	L6B	12:11			2:2	L6A	12:12	
2:2	L6A	12:12			1:1	L3	12:14	
2:2	L6A	12:13	 [12:00, 12:15]				
2:2	L6B	12:13						
1:1	L3	12:14						
...... [12:00, 12:15]

As we’ve seen over the course of a number of examples, there’s really
nothing special about streaming joins. They function exactly as we might
expect given our knowledge of streams and tables, with join streams
capturing the history of the join over time as it evolves. This is in contrast to
join tables, which simply capture a snapshot of the entire join as it exists at a
specific point in time, as we’re perhaps more accustomed.

But, even more important, viewing joins through the lens of stream-table
theory has lent some additional clarity. The core underlying join primitive is
the FULL OUTER join, which is a stream → table grouping operation that

274

collects together all the joined and unjoined rows in a relation. All of the other
variants we looked at in detail (LEFT OUTER, RIGHT OUTER, INNER, ANTI, and
SEMI) simply add an additional layer of filtering on the joined stream
following the FULL OUTER join.

Windowed Joins
Having looked at a variety of unwindowed joins, let’s next explore what
windowing adds to the mix. I would argue that there are two motivations for
windowing your joins:
To partition time in some meaningful way

An obvious case is fixed windows; for example, daily windows, for which
events that occurred in the same day should be joined together for some
business reason (e.g., daily billing tallies). Another might be limiting the
range of time within a join for performance reasons. However, it turns out
there are even more sophisticated (and useful) ways of partitioning time in
joins, including one particularly interesting use case that no streaming
system I’m aware of today supports natively: temporal validity joins.
More on this in just a bit.

To provide a meaningful reference point for timing out a join
This is useful for a number of unbounded join situations, but it is perhaps
most obviously beneficial for use cases like outer joins, for which it is
unknown a priori if one side of the join will ever show up. For classic
batch processing (including standard interactive SQL queries), outer joins
are timed out only when the bounded input dataset has been fully
processed. But when processing unbounded data, we can’t wait for all
data to be processed. As we discussed in Chapters 2 and 3, watermarks
provide a progress metric for gauging the completeness of an input source
in event time. But to make use of that metric for timing out a join, we
need some reference point to compare against. Windowing a join provides
that reference by bounding the extent of the join to the end of the window.
After the watermark passes the end of the window, the system may
consider the input for the window complete. At that point, just as in the
bounded join case, it’s safe to time out any unjoined rows and materialize
their partial results.

That said, as we saw earlier, windowing is absolutely not a requirement for

3

275

streaming joins. It makes a lot of sense in a many cases, but by no means is it
a necessity.

In practice, most of the use cases for windowed joins (e.g., daily windows)
are relatively straightforward and easy to extrapolate from the concepts we’ve
learned up until now. To see why, we look briefly at what it means to apply
fixed windows to some of the join examples we already encountered. After
that, we spend the rest of this chapter investigating the much more interesting
(and mind-bending) topic of temporal validity joins, looking first in detail at
what I mean by temporal validity windows, and then moving on to looking at
what joins mean within the context of such windows.

Fixed Windows
Windowing a join adds the dimension of time into the join criteria
themselves. In doing so, the window serves to scope the set of rows being
joined to only those contained within the window’s time interval. This is
perhaps more clearly seen with an example, so let’s take our original Left
and Right tables and window them into five-minute fixed windows:

12:10> SELECT TABLE *, 12:10> SELECT TABLE *,
 TUMBLE(Time, INTERVAL '5' MINUTE) TUMBLE(Time,
INTERVAL '5' MINUTE)
 as Window FROM Left; as Window FROM
Right
------------------------------------- -------------------------------------
| Num | Id | Time | Window | | Num | Id | Time | Window |
------------------------------------- -------------------------------------
1	L1	12:02	[12:00, 12:05)		2	R2	12:01	[12:00, 12:05)
2	L2	12:06	[12:05, 12:10)		3	R3	12:04	[12:00, 12:05)
3	L3	12:03	[12:00, 12:05)		4	R4	12:05	[12:05, 12:06)
------------------------------------- -------------------------------------

In our previous Left and Right examples, the join criterion was simply
Left.Num = Right.Num. To turn this into a windowed join, we would
expand the join criteria to include window equality, as well: Left.Num =
Right.Num AND Left.Window = Right.Window. Knowing that, we can
already infer from the preceding windowed tables how our join is going to
change (highlighted for clarity): because the L2 and R2 rows do not fall within
the same five-minute fixed window, they will not be joined together in the
windowed variant of our join.

And indeed, if we compare the unwindowed and windowed variants side-by-

276

side as tables, we can see this clearly (with the corresponding L2 and R2 rows
highlighted on each side of the join):

 12:10> SELECT TABLE
 Left.Id as L,
 Right.Id as R,
 COALESCE(
 TUMBLE(Left.Time,
INTERVAL '5' MINUTE),
 TUMBLE(Right.Time,
INTERVAL '5' MINUTE)
12:10> SELECT TABLE) AS Window
 Left.Id as L, FROM Left
 Right.Id as R, FULL OUTER JOIN Right
 FROM Left ON L.Num = R.Num AND
 FULL OUTER JOIN Right TUMBLE(Left.Time,
INTERVAL '5' MINUTE) =
 ON L.Num = R.Num; TUMBLE(Right.Time,
INTERVAL '5' MINUTE);
--------------- --------------------------------
| L | R | | L | R | Window |
--------------- --------------------------------
L1	null		L1	null	[12:00, 12:05)
L2	R2		null	R2	[12:00, 12:05)
L3	R3		L3	R3	[12:00, 12:05)
null	R4		L2	null	[12:05, 12:10)
--------------- | null | R4 | [12:05, 12:10) |

The difference is also readily apparent when comparing the unwindowed and
windowed joins as streams. As I’ve highlighted in the example that follows,
they differ primarily in their final rows. The unwindowed side completes the
join for Num = 2, yielding a retraction for the unjoined R2 row in addition to a
new row for the completed L2, R2 join. The windowed side, on the other
hand, simply yields an unjoined L2 row because L2 and R2 fall within
different five-minute windows:

 12:10> SELECT STREAM
 Left.Id as L,
 Right.Id as R,
 Sys.EmitTime as Time,
 COALESCE(
 TUMBLE(Left.Time,
INTERVAL '5' MINUTE),
12:10> SELECT STREAM TUMBLE(Right.Time,
INTERVAL '5' MINUTE)
 Left.Id as L,) AS Window,

277

 Right.Id as R, Sys.Undo as Undo
 Sys.EmitTime as Time, FROM Left
 Sys.Undo as Undo FULL OUTER JOIN Right
 FROM Left ON L.Num = R.Num AND
 FULL OUTER JOIN Right TUMBLE(Left.Time,
INTERVAL '5' MINUTE) =
 ON L.Num = R.Num; TUMBLE(Right.Time,
INTERVAL '5' MINUTE);
------------------------------ ---
| L | R | Time | Undo | | L | R | Time | Window | Undo |
------------------------------ ---
null	R2	12:01			null	R2	12:01	[12:00, 12:05)	
L1	null	12:02			L1	null	12:02	[12:00, 12:05)	
L3	null	12:03			L3	null	12:03	[12:00, 12:05)	
L3	null	12:04	undo		L3	null	12:04	[12:00, 12:05)	undo
L3	R3	12:04			L3	R3	12:04	[12:00, 12:05)	
null	R4	12:05			null	R4	12:05	[12:05, 12:10)	
null	R2	12:06	undo		L2	null	12:06	[12:05, 12:10)	
L2	R2	12:06	 [12:00, 12:10]					
....... [12:00, 12:10]

And with that, we now understand the effects of windowing on a FULL OUTER
join. By applying the rules we learned in the first half of the chapter, it’s then
easy to derive the windowed variants of LEFT OUTER, RIGHT OUTER, INNER,
ANTI, and SEMI joins, as well. I will leave most of these derivations as an
exercise for you to complete, but to give a single example, LEFT OUTER join,
as we learned, is just the FULL OUTER join with null columns on the left side
of the join removed (again, with L2 and R2 rows highlighted to compare the
differences):

 12:10> SELECT TABLE
 Left.Id as L,
 Right.Id as R,
 COALESCE(
 TUMBLE(Left.Time,
INTERVAL '5' MINUTE),
 TUMBLE(Right.Time,
INTERVAL '5' MINUTE)
12:10> SELECT TABLE) AS Window
 Left.Id as L, FROM Left
 Right.Id as R, LEFT OUTER JOIN Right
 FROM Left ON L.Num = R.Num AND
 LEFT OUTER JOIN Right TUMBLE(Left.Time,
INTERVAL '5' MINUTE) =
 ON L.Num = R.Num; TUMBLE(Right.Time,
INTERVAL '5' MINUTE);
--------------- --------------------------------
| L | R | | L | R | Window |

278

--------------- --------------------------------
L1	null		L1	null	[12:00, 12:05)
L2	R2		L2	null	[12:05, 12:10)
L3	R3		L3	R3	[12:00, 12:05)
--------------- --------------------------------

By scoping the region of time for the join into fixed five-minute intervals, we
chopped our datasets into two distinct windows of time: [12:00, 12:05) and
[12:05, 12:10). The exact same join logic we observed earlier was then
applied within those regions, yielding a slightly different outcome for the case
in which the L2 and R2 rows fell into separate regions. And at a basic level,
that’s really all there is to windowed joins.

Temporal Validity
Having looked at the basics of windowed joins, we now spend the rest of the
chapter looking at a somewhat more advanced approach: temporal validity
windowing.

Temporal validity windows
Temporal validity windows apply in situations in which the rows in a relation
effectively slice time into regions wherein a given value is valid. More
concretely, imagine a financial system for performing currency conversions.
Such a system might contain a time-varying relation that captured the current
conversion rates for various types of currency. For example, there might be a
relation for converting from different currencies to Yen, like this:

12:10> SELECT TABLE * FROM YenRates;

| Curr | Rate | EventTime | ProcTime |

USD	102	12:00:00	12:04:13
Euro	114	12:00:30	12:06:23
Yen	1	12:01:00	12:05:18
Euro	116	12:03:00	12:09:07
Euro	119	12:06:00	12:07:33

To highlight what I mean by saying that temporal validity windows
“effectively slice time into regions wherein a given value is valid,” consider
only the Euro-to-Yen conversion rates in that relation:

12:10> SELECT TABLE * FROM YenRates WHERE Curr = "Euro";

| Curr | Rate | EventTime | ProcTime |

4

279

Euro	114	12:00:30	12:06:23
Euro	116	12:03:00	12:09:07
Euro	119	12:06:00	12:07:33

From a database engineering perspective, we understand that these values
don’t mean that the rate for converting Euros to Yen is 114 ¥/€ at precisely
12:00, 116 ¥/€ at 12:03, 119 ¥/€ at 12:06, and undefined at all other times.
Instead, we know that the intent of this table is to capture the fact that the
conversion rate for Euros to Yen is undefined until 12:00, 114 ¥/€ from 12:00
to 12:03, 116 ¥/€ from 12:03 to 12:06, and 119 ¥/€ from then on. Or drawn
out in a timeline:

 Undefined 114 ¥/€ 116 ¥/€ 119 ¥/
€
|----[-inf, 12:00)----|----[12:00, 12:03)----|----[12:03, 12:06)----|----[12:06,
now)----→

Now, if we knew all of the rates ahead of time, we could capture these regions
explicitly in the row data themselves. But if we instead need to build up these
regions incrementally, based only upon the start times at which a given rate
becomes valid, we have a problem: the region for a given row will change
over time depending on the rows that come after it. This is a problem even if
the data arrive in order (because every time a new rate arrives, the previous
rate changes from being valid forever to being valid until the arrival time of
the new rate), but is further compounded if they can arrive out of order. For
example, using the processing-time ordering in the preceding YenRates table,
the sequence of timelines our table would effectively represent over time
would be as follows:

Range of processing time | Event-time validity timeline during that range of
processing-time
=========================|===
=======================
 |
 | Undefined
 [-inf, 12:06:23) | |--[-inf, +inf)---------------------------------------
------------------→
 |
 | Undefined 114 ¥/€
 [12:06:23, 12:07:33) | |--[-inf, 12:00)--|--[12:00, +inf)--------------------
------------------→
 |
 | Undefined 114 ¥/€
119 ¥/€

280

 [12:07:33, 12:09:07) | |--[-inf, 12:00)--|--[12:00, 12:06)-------------------
--|--[12:06, +inf)→
 |
 | Undefined 114 ¥/€ 116 ¥/€
119 ¥/€
 [12:09:07, now) | |--[-inf, 12:00)--|--[12:00, 12:03)--|--[12:03,
12:06)--|--[12:06, +inf)→

Or, if we wanted to render this as a time-varying relation (with changes
between each snapshot relation highlighted in yellow):

12:10> SELECT TVR * FROM YenRatesWithRegion ORDER BY EventTime;

| [-inf, 12:06:23) | [12:06:23, 12:07:33)
|
| --- | ---------------------------------
---------- |
| | Curr | Rate | Region | ProcTime | | | Curr | Rate | Region |
ProcTime	

12:06:23	

---------- |

| [12:07:33, 12:09:07) | [12:09:07, +inf)
|
| --- | ---------------------------------
---------- |
| | Curr | Rate | Region | ProcTime | | | Curr | Rate | Region |
ProcTime	

	Euro
12:06:23	
	Euro
12:09:07	

12:07:33	

---------- |

What’s important to note here is that half of the changes involve updates to
multiple rows. That maybe doesn’t sound so bad, until you recall that the
difference between each of these snapshots is the arrival of exactly one new
row. In other words, the arrival of a single new input row results in

281

transactional modifications to multiple output rows. That sounds less good.
On the other hand, it also sounds a lot like the multirow transactions involved
in building up session windows. And indeed, this is yet another example of
windowing providing benefits beyond simple partitioning of time: it also
affords the ability to do so in ways that involve complex, multirow
transactions.

To see this in action, let’s look at an animation. If this were a Beam pipeline,
it would probably look something like the following:

PCollection<Currency, Decimal> yenRates = ...;
PCollection<Decimal> validYenRates = yenRates
 .apply(Window.into(new ValidityWindows())
 .apply(GroupByKey.<Currency, Decimal>create());

Rendered in a streams/tables animation, that pipeline would look like that
shown in Figure 9-1.

Figure 9-1. Temporal validity windowing over time

This animation highlights a critical aspect of temporal validity: shrinking
windows. Validity windows must be able to shrink over time, thereby
diminishing the reach of their validity and splitting any data contained therein
across the two new windows. See the code snippets on GitHub for an example
partial implementation.

In SQL terms, the creation of these validity windows would look something
like the following (making using of a hypothetical VALIDITY_WINDOW
construct), viewed as a table:

00:00 / 00:00

5

282

http://bit.ly/2N7Nn3A

12:10> SELECT TABLE
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime)
 HAVING Curr = "Euro";

| Curr | Rate | Window |

Euro	114	[12:00, 12:03)
Euro	116	[12:03, 12:06)
Euro	119	[12:06, +inf)

VALIDITY WINDOWS IN STANDARD SQL
Note that it’s possible to describe validity windows in standard SQL using
a three-way self-join:

SELECT
 r1.Curr,
 MAX(r1.Rate) AS Rate,
 r1.EventTime AS WindowStart,
 r2.EventTime AS WIndowEnd
FROM YenRates r1
LEFT JOIN YenRates r2
 ON r1.Curr = r2.Curr
 AND r1.EventTime < r2.EventTime
LEFT JOIN YenRates r3
 ON r1.Curr = r3.Curr
 AND r1.EventTime < r3.EventTime
 AND r3.EventTime < r2.EventTime
WHERE r3.EventTime IS NULL
GROUP BY r1.Curr, WindowStart, WindowEnd
HAVING r1.Curr = 'Euro';

Thanks to Martin Kleppmann for pointing this out.

Or, perhaps more interestingly, viewed as a stream:

12:00> SELECT STREAM
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window,
 Sys.EmitTime as Time,
 Sys.Undo as Undo,

283

 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime)
 HAVING Curr = "Euro";
--
| Curr | Rate | Window | Time | Undo |
--
Euro	114	[12:00, +inf)	12:06:23	
Euro	114	[12:00, +inf)	12:07:33	undo
Euro	114	[12:00, 12:06)	12:07:33	
Euro	119	[12:06, +inf)	12:07:33	
Euro	114	[12:00, 12:06)	12:09:07	undo
Euro	114	[12:00, 12:03)	12:09:07	
Euro	116	[12:03, 12:06)	12:09:07	
................. [12:00, 12:10]

Great, we have an understanding of how to use point-in-time values to
effectively slice up time into ranges within which those values are valid. But
the real power of these temporal validity windows is when they are applied in
the context of joining them with other data. That’s where temporal validity
joins come in.

Temporal validity joins
To explore the semantics of temporal validity joins, suppose that our financial
application contains another time-varying relation, one that tracks currency-
conversion orders from various currencies to Yen:

12:10> SELECT TABLE * FROM YenOrders;
--
| Curr | Amount | EventTime | ProcTime |
--
Euro	2	12:02:00	12:05:07
USD	1	12:03:00	12:03:44
Euro	5	12:05:00	12:08:00
Yen	50	12:07:00	12:10:11
Euro	3	12:08:00	12:09:33
USD	5	12:10:00	12:10:59
--

And for simplicity, as before, let’s focus on the Euro conversions:

12:10> SELECT TABLE * FROM YenOrders WHERE Curr = "Euro";
--
| Curr | Amount | EventTime | ProcTime |
--
Euro	2	12:02:00	12:05:07
Euro	5	12:05:00	12:08:00
Euro	3	12:08:00	12:09:33

284

--

We’d like to robustly join these orders to the YenRates relation, treating the
rows in YenRates as defining validity windows. As such, we’ll actually want
to join to the validity-windowed version of the YenRates relation we
constructed at the end of the last section:

12:10> SELECT TABLE
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime)
 HAVING Curr = "Euro";

| Curr | Rate | Window |

Euro	114	[12:00, 12:03)
Euro	116	[12:03, 12:06)
Euro	119	[12:06, +inf)

Fortunately, after we have our conversion rates placed into validity windows,
a windowed join between those rates and the YenOrders relation gives us
exactly what we want:

12:10> WITH ValidRates AS
 (SELECT
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime))
 SELECT TABLE
 YenOrders.Amount as "E",
 ValidRates.Rate as "Y/E",
 YenOrders.Amount * ValidRates.Rate as "Y",
 YenOrders.EventTime as Order,
 ValidRates.Window as "Rate Window"
 FROM YenOrders FULL OUTER JOIN ValidRates
 ON YenOrders.Curr = ValidRates.Curr
 AND WINDOW_START(ValidRates.Window) <=
YenOrders.EventTime

285

 AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
 HAVING Curr = "Euro";

| E | Y/E | Y | Order | Rate Window |

2	114	228	12:02	[12:00, 12:03)
5	116	580	12:05	[12:03, 12:06)
3	119	357	12:08	[12:06, +inf)

Thinking back to our original YenRates and YenOrders relations, this joined
relation indeed looks correct: each of the three conversions ended up with the
(eventually) appropriate rate for the given window of event time within which
their corresponding order fell. So we have a decent sense that this join is
doing what we want in terms of providing us the eventual correctness we
want.

That said, this simple snapshot view of the relation, taken after all the values
have arrived and the dust has settled, belies the complexity of this join. To
really understand what’s going on here, we need to look at the full TVR.
First, recall that the validity-windowed conversion rate relation was actually
much more complex than the previous simple table snapshot view might lead
you to believe. For reference, here’s the STREAM version of the validity
windows relation, which better highlights the evolution of those conversion
rates over time:

12:00> SELECT STREAM
 Curr,
 MAX(Rate) as Rate,
 VALIDITY(EventTime) as Window,
 Sys.EmitTime as Time,
 Sys.Undo as Undo,
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY(EventTime)
 HAVING Curr = "Euro";
--
| Curr | Rate | Window | Time | Undo |
--
Euro	114	[12:00, +inf)	12:06:23	
Euro	114	[12:00, +inf)	12:07:33	undo
Euro	114	[12:00, 12:06)	12:07:33	
Euro	119	[12:06, +inf)	12:07:33	
Euro	114	[12:00, 12:06)	12:09:07	undo
Euro	114	[12:00, 12:03)	12:09:07	
Euro	116	[12:03, 12:06)	12:09:07	

286

................. [12:00, 12:10]

As a result, if we look at the full TVR for our validity-windowed join, you
can see that the corresponding evolution of this join over time is much more
complicated, due to the out-of-order arrival of values on both sides of the
join:

12:10> WITH ValidRates AS
 (SELECT
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime))
 SELECT TVR
 YenOrders.Amount as "E",
 ValidRates.Rate as "Y/E",
 YenOrders.Amount * ValidRates.Rate as "Y",
 YenOrders.EventTime as Order,
 ValidRates.Window as "Rate Window"
 FROM YenOrders FULL OUTER JOIN ValidRates
 ON YenOrders.Curr = ValidRates.Curr
 AND WINDOW_START(ValidRates.Window) <=
YenOrders.EventTime
 AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
 HAVING Curr = "Euro";

| [-inf, 12:05:07) | [12:05:07, 12:06:23)
|
| -- | ----------------------------------
-------- |
| | E | Y/E | Y | Order | Rate Window | | | E | Y/E | Y | Order | Rate
Window	

--	

-------- |

| [12:06:23, 12:07:33) | [12:07:33, 12:08:00)
|
| -- | ----------------------------------
-------- |
| | E | Y/E | Y | Order | Rate Window | | | E | Y/E | Y | Order | Rate
Window | |

287

| -- | ----------------------------------
-------- |
| | 2 | 114 | 228 | 12:02 | [12:00, +inf) | | | 2 | 114 | 228 | 12:02 | [12:00,
12:06) | |
| -- | | | 119 | | | [12:06,
+inf) | |
| | ----------------------------------

| [12:08:00, 12:09:07) | [12:09:07, 12:09:33)
|
| -- | ----------------------------------
-------- |
| | E | Y/E | Y | Order | Rate Window | | | E | Y/E | Y | Order | Rate
Window	

	2
12:03)	
	5
12:06)	
+inf)	
--	----------------------------------
-------- |

[12:09:33, now)
--
--
--

In particular, the result for the 5 € order is originally quoted at 570 ¥ because
that order (which happened at 12:05) originally falls into the validity window
for the 114 ¥/€ rate. But when the 116 ¥/€ rate for event time 12:03 arrives
out of order, the result for the 5 € order must be updated from 570 ¥ to 580 ¥.
This is also evident if you observe the results of the join as a stream (here I’ve
highlighted the incorrect 570 ¥ in red, and the retraction for 570 ¥ and
subsequent corrected value of 580 ¥ in blue):

12:00> WITH ValidRates AS
 (SELECT
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window

288

 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime))
 SELECT STREAM
 YenOrders.Amount as "E",
 ValidRates.Rate as "Y/E",
 YenOrders.Amount * ValidRates.Rate as "Y",
 YenOrders.EventTime as Order,
 ValidRates.Window as "Rate Window",
 Sys.EmitTime as Time,
 Sys.Undo as Undo
 FROM YenOrders FULL OUTER JOIN ValidRates
 ON YenOrders.Curr = ValidRates.Curr
 AND WINDOW_START(ValidRates.Window) <=
YenOrders.EventTime
 AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
 HAVING Curr = “Euro”;
--
| E | Y/E | Y | Order | Rate Window | Time | Undo |
--
2			12:02		12:05:07	
2			12:02		12:06:23	undo
2	114	228	12:02	[12:00, +inf)	12:06:23	
2	114	228	12:02	[12:00, +inf)	12:07:33	undo
2	114	228	12:02	[12:00, 12:06)	12:07:33	
	119			[12:06, +inf)	12:07:33	
5	114	570	12:05	[12:00, 12:06)	12:08:00	
2	114	228	12:02	[12:00, 12:06)	12:09:07	undo
5	114	570	12:05	[12:00, 12:06)	12:09:07	undo
2	114	228	12:02	[12:00, 12:03)	12:09:07	
5	116	580	12:05	[12:03, 12:06)	12:09:07	
	119			[12:06, +inf)	12:09:33	undo
3	119	357	12:08	[12:06, +inf)	12:09:33	
...................... [12:00, 12:10]

It’s worth calling out that this is a fairly messy stream due to the use of a
FULL OUTER join. In reality, when consuming conversion orders as a stream,
you probably don’t care about unjoined rows; switching to an INNER join
helps eliminate those rows. You probably also don’t care about cases for
which the rate window changes, but the actual conversion value isn’t affected.
By removing the rate window from the stream, we can further decrease its
chattiness:

12:00> WITH ValidRates AS
 (SELECT
 Curr,
 MAX(Rate) as Rate,

289

 VALIDITY_WINDOW(EventTime) as Window
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime))
 SELECT STREAM
 YenOrders.Amount as "E",
 ValidRates.Rate as "Y/E",
 YenOrders.Amount * ValidRates.Rate as "Y",
 YenOrders.EventTime as Order,
 ValidRates.Window as "Rate Window",
 Sys.EmitTime as Time,
 Sys.Undo as Undo
 FROM YenOrders INNER JOIN ValidRates
 ON YenOrders.Curr = ValidRates.Curr
 AND WINDOW_START(ValidRates.Window) <=
YenOrders.EventTime
 AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
 HAVING Curr = "Euro";

| E | Y/E | Y | Order | Time | Undo |

2	114	228	12:02	12:06:23	
5	114	570	12:05	12:08:00	
5	114	570	12:05	12:09:07	undo
5	116	580	12:05	12:09:07	
3	119	357	12:08	12:09:33	
............. [12:00, 12:10]

Much nicer. We can now see that this query very succinctly does what we
originally set out to do: join two TVRs for currency conversion rates and
orders in a robust way that is tolerant of data arriving out of order. Figure 9-2
visualizes this query as an animated diagram. In it, you can also very clearly
see the way the overall structure of things change as they evolve over time.

Figure 9-2. Temporal validity join, converting Euros to Yen with per-record triggering

Watermarks and temporal validity joins
With this example, we’ve highlighted the first benefit of windowed joins
called out at the beginning of this section: windowing a join allows you to
partition that join within time for some practical business need. In this case,

00:00 / 00:00

290

the business need was slicing time into regions of validity for our currency
conversion rates.

Before we call it a day, however, it turns out that this example also provides
an opportunity to highlight the second point I called out: the fact that
windowing a join can provide a meaningful reference point for watermarks.
To see how that’s useful, imagine changing the previous query to replace the
implicit default per-record trigger with an explicit watermark trigger that
would fire only once when the watermark passed the end of the validity
window in the join (assuming that we have a watermark available for both of
our input TVRs that accurately tracks the completeness of those relations in
event time as well as an execution engine that knows how to take those
watermarks into consideration). Now, instead of our stream containing
multiple outputs and retractions for rates arriving out of order, we could
instead end up with a stream containing a single, correct converted result per
order, which is clearly even more ideal than before:

12:00> WITH ValidRates AS
 (SELECT
 Curr,
 MAX(Rate) as Rate,
 VALIDITY_WINDOW(EventTime) as Window
 FROM YenRates
 GROUP BY
 Curr,
 VALIDITY_WINDOW(EventTime))
 SELECT STREAM
 YenOrders.Amount as "E",
 ValidRates.Rate as "Y/E",
 YenOrders.Amount * ValidRates.Rate as "Y",
 YenOrders.EventTime as Order,
 Sys.EmitTime as Time,
 Sys.Undo as Undo
 FROM YenOrders INNER JOIN ValidRates
 ON YenOrders.Curr = ValidRates.Curr
 AND WINDOW_START(ValidRates.Window) <=
YenOrders.EventTime
 AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
 HAVING Curr = "Euro"
 EMIT WHEN WATERMARK PAST WINDOW_END(ValidRates.Window);

| E | Y/E | Y | Order | Time | Undo |

2	114	228	12:02	12:08:52	
5	116	580	12:05	12:10:04	
3	119	357	12:08	12:10:13	

291

............. [12:00, 12:11]

Or, rendered as an animation, which clearly shows how joined results are not
emitted into the output stream until the watermark moves beyond them, as
demonstrated in Figure 9-3.

Figure 9-3. Temporal validity join, converting Euros to Yen with watermark triggering

Either way, it’s impressive to see how this query encapsulates such a complex
set of interactions into a clean and concise rendering of the desired results.

Summary
In this chapter, we analyzed the world of joins (using the join vocabulary of
SQL) within the context of stream processing. We began with unwindowed
joins and saw how, conceptually, all joins are streaming joins as the core. We
saw how the foundation for essentially all of the other join variations is the
FULL OUTER join, and discussed the specific alterations that occur as part of
LEFT OUTER, RIGHT OUTER, INNER, ANTI, SEMI, and even CROSS joins. In
addition, we saw how all of those different join patterns interact in a world of
TVRs and streams.

We next moved on to windowed joins, and learned that windowing a join is
typically motivated by one or both of the following benefits:

The ability to partition the join within time for some business need

The ability to tie results from the join to the progress of a watermark

And, finally, we explored in depth one of the more interesting and useful
types of windows with respect to joining: temporal validity windows. We saw
how temporal validity windows very naturally carve time into regions of
validity for given values, based only on the specific points in time where
those values change. We learned that joins within validity windows require a
windowing framework that supports windows that can split over time, which
is something no existing streaming system today supports natively. And we
saw how concisely validity windows allowed us to solve the problem of

00:00 / 00:00

292

joining TVRs for currency conversion rates and orders together in a robust,
natural way.

Joins are often one of the more intimidating aspects of data processing,
streaming or otherwise. However, by understanding the theoretical foundation
of joins and how straightforwardly we can derive all the different types of
joins from that basic foundation, joins become a much less frightening beast,
even with the additional dimension of time that streaming adds to the mix.

 From a conceptual perspective, at least. There are many different ways to
implement each of these types of joins, some of which are likely much more
efficient than performing an actual FULL OUTER join and then filtering down
its results, especially when the rest of the query and the distribution of the
data are taken into consideration.

 Again, ignoring what happens when there are duplicate join keys; more on
this when we get to SEMI joins.

 From a conceptual perspective, at least. There are, of course, many different
ways to implement each of these types of joins, some of which might be
much more efficient than performing an actual FULL OUTER join and then
filtering down its results, depending on the rest of the query and the
distribution of the data.

 Note that the example data and the temporal join use case motivating it are
lifted almost wholesale from Julian Hyde’s excellent “Streams, joins, and
temporal tables” document.

 It’s a partial implementation because it only works if the windows exist in
isolation, as in Figure 9-1. As soon as you mix the windows with other data,
such as the joining examples below, you would need some mechanism for
splitting the data from the shrunken window into two separate windows,
which Beam does not currently provide.

1

2

3

4

5

293

http://bit.ly/2MoNqaS

Chapter 10. The Evolution of
Large-Scale Data Processing

You have now arrived at the final chapter in the book, you stoic literate, you.
Your journey will soon be complete!

To wrap things up, I’d like you to join me on a brief stroll through history,
starting back in the ancient days of large-scale data processing with
MapReduce and touching upon some of the highlights over the ensuing
decade and a half that have brought streaming systems to the point they’re at
today. It’s a relatively lightweight chapter in which I make a few observations
about important contributions from a number of well-known systems (and a
couple maybe not-so-well known), refer you to a bunch of source material
you can go read on your own should you want to learn more, all while
attempting not to offend or inflame the folks responsible for systems whose
truly impactful contributions I’m going to either oversimplify or ignore
completely for the sake of space, focus, and a cohesive narrative. Should be a
good time.

On that note, keep in mind as you read this chapter that we’re really just
talking about specific pieces of the MapReduce/Hadoop family tree of large-
scale data processing here. I’m not covering the SQL arena in any way shape
or form ; we’re not talking HPC/supercomputers, and so on. So as broad and
expansive as the title of this chapter might sound, I’m really focusing on a
specific vertical swath of the grand universe of large-scale data processing.
Caveat literatus, and all that.

Also note that I’m covering a disproportionate amount of Google
technologies here. You would be right in thinking that this might have
something to do with the fact that I’ve worked at Google for more than a
decade. But there are two other reasons for it: 1) big data has always been
important for Google, so there have been a number of worthwhile
contributions created there that merit discussing in detail, and 2) my
experience has been that folks outside of Google generally seem to enjoy
learning more about the things we’ve done, because we as a company have
historically been somewhat tight-lipped in that regard. So indulge me a bit
while I prattle on excessively about the stuff we’ve been working on behind
closed doors.

1

294

To ground our travels in concrete chronology, we’ll be following the timeline
in Figure 10-1, which shows rough dates of existence for the various systems
I discuss.

Figure 10-1. Approximate timeline of systems discussed in this chapter

At each stop, I give a brief history of the system as best I understand it and
frame its contributions from the perspective of shaping streaming systems as
we know them today. At the end, we recap all of the contributions to see how
they’ve summed up to create the modern stream processing ecosystem of
today.

MapReduce
We begin the journey with MapReduce (Figure 10-2).

Figure 10-2. Timeline: MapReduce

I think it’s safe to say that large-scale data processing as we all know it today
got its start with MapReduce way back in 2003. At the time, engineers
within Google were building all sorts of bespoke systems to tackle data

2

3

295

processing challenges at the scale of the World Wide Web. As they did so,
they noticed three things:
Data processing is hard

As the data scientists and engineers among us well know, you can build a
career out of just focusing on the best ways to extract useful insights from
raw data.

Scalability is hard
Extracting useful insights over massive-scale data is even more difficult
yet.

Fault-tolerance is hard
Extracting useful insights from massive-scale data in a fault-tolerant,
correct way on commodity hardware is brutal.

After solving all three of these challenges in tandem across a number of use
cases, they began to notice some similarities between the custom systems
they’d built. And they came to the conclusion that if they could build a
framework that took care of the latter two issues (scalability and fault-
tolerance), it would make focusing on the first issue a heck of a lot simpler.
Thus was born MapReduce.

The basic idea with MapReduce was to provide a simple data processing API
centered around two well-understand operations from the functional
programming realm: map and reduce (Figure 10-3). Pipelines built with that
API would then be executed on a distributed systems framework that took
care of all the nasty scalability and fault-tolerance stuff that quickens the
hearts of hardcore distributed-systems engineers and crushes the souls of the
rest of us mere mortals.

Figure 10-3. Visualization of a MapReduce job

3

4

296

We already discussed the semantics of MapReduce in great detail back in
Chapter 6, so we won’t dwell on them here. Simply recall that we broke
things down into six discrete phases (MapRead, Map, MapWrite,
ReduceRead, Reduce, ReduceWrite) as part of our streams and tables
analysis, and we came to the conclusion in the end that there really wasn’t all
that much different between the overall Map and Reduce phases; at a high-
level, they both do the following:

Convert a table to a stream

Apply a user transformation to that stream to yield another stream

Group that stream into a table

After it was placed into service within Google, MapReduce found such broad
application across a variety of tasks that the team decided it was worth
sharing its ideas with the rest of the world. The result was the MapReduce
paper, published at OSDI 2004 (see Figure 10-4).

Figure 10-4. The MapReduce paper, published at OSDI 2004

In it, the team described in detail the history of the project, design of the API
and implementation, and details about a number of different use cases to
which MapReduce had been applied. Unfortunately, they provided no actual
source code, so the best that folks outside of Google at the time could do was
say, “Yes, that sounds very nice indeed,” and go back to building their
bespoke systems.

297

https://goo.gl/Rsqr3G
https://goo.gl/Rsqr3G

Over the course of the decade that followed, MapReduce continued to
undergo heavy development within Google, with large amounts of time
invested in making the system scale to unprecedented levels. For a more
detailed account of some of the highlights along that journey, I recommend
the post “History of massive-scale sorting experiments at Google” (Figure 10-
5) written by our official MapReduce historian/scalability and performance
wizard, Marián Dvorský.

Figure 10-5. Marián Dvorský’s “History of massive-scale sorting experiments” blog post

But for our purposes here, suffice it to say that nothing else yet has touched
the magnitude of scale achieved by MapReduce, not even within Google.
Considering how long MapReduce has been around, that’s saying something;
14 years is an eternity in our industry.

From a streaming systems perspective, the main takeaways I want to leave
you with for MapReduce are simplicity and scalability. MapReduce took the
first brave steps toward taming the unruly beast that is massive-scale data
processing, exposing a simple and straightforward API for crafting powerful
data processing pipelines, its austerity belying the complex distributed

298

http://bit.ly/2LPvuVN
http://bit.ly/2LPvuVN

systems magic happening under the covers to allow those pipelines to run at
scale on large clusters of commodity hardware.

Hadoop
Next in our list is Hadoop (Figure 10-6). Fair warning: this is one of those
times where I will grossly oversimplify the impact of a system for the sake of
a focused narrative. The impact Hadoop has had on our industry and the
world at large cannot be overstated, and it extends well beyond the relatively
specific scope I discuss here.

Figure 10-6. Timeline: Hadoop

Hadoop came about in 2005, when Doug Cutting and Mike Cafarella decided
that the ideas from the MapReduce paper were just the thing they needed as
they built a distributed version of their Nutch webcrawler. They had already
built their own version of Google’s distributed filesystem (originally called
NDFS for Nutch Distributed File System, later renamed to HDFS, or Hadoop
Distributed File System), so it was a natural next step to add a MapReduce
layer on top after that paper was published. They called this layer Hadoop.

The key difference between Hadoop and MapReduce was that Cutting and
Cafarella made sure the source code for Hadoop was shared with the rest of
the world by open sourcing it (along with the source for HDFS) as part of
what would eventually become the Apache Hadoop project. Yahoo’s hiring of
Cutting to help transition the Yahoo webcrawler architecture onto Hadoop
gave the project an additional boost of validity and engineering oomph, and
from there, an entire ecosystem of open source data processing tools grew. As
with MapReduce, others have told the history of Hadoop in other fora far
better than I can; one particularly good reference is Marko Bonaci’s “The
history of Hadoop,” itself originally slated for inclusion in a print book

299

http://bit.ly/2Kjc4fZ

(Figure 10-7).

Figure 10-7. Marko Bonaci’s “The history of Hadoop”

The main point I want you to take away from this section is the massive
impact the open source ecosystem that flowered around Hadoop had upon the
industry as a whole. By creating an open community in which engineers
could improve and extend the ideas from those early GFS and MapReduce
papers, a thriving ecosystem was born, yielding dozens of useful tools like
Pig, Hive, HBase, Crunch, and on and on. That openness was key to
incubating the diversity of ideas that exist now across our industry, and it’s
why I’m pigeonholing Hadoop’s open source ecosystem as its single most
important contribution to the world of streaming systems as we know them
today.

Flume
We now return to Google territory to talk about the official successor to
MapReduce within Google: Flume ([Figure 10-8] sometimes also called
FlumeJava in reference to the original Java version of the system, and not to
be confused with Apache Flume, which is an entirely different beast that just
so happens to share the same name).

300

http://bit.ly/2Kjc4fZ

Figure 10-8. Timeline: Flume

The Flume project was founded by Craig Chambers when the Google Seattle
office opened in 2007. It was motivated by a desire to solve some of the
inherent shortcomings of MapReduce, which had become apparent over the
first few years of its success. Many of these shortcomings revolved around
MapReduce’s rigid Map → Shuffle → Reduce structure; though refreshingly
simple, it carried with it some downsides:

Because many use cases cannot be served by the application of a
single MapReduce, a number of bespoke orchestration systems
began popping up across Google for coordinating sequences of
MapReduce jobs. These systems all served essentially the same
purpose (gluing together multiple MapReduce jobs to create a
coherent pipeline solving a complex problem). However, having
been developed independently, they were naturally incompatible and
a textbook example of unnecessary duplication of effort.

What’s worse, there were numerous cases in which a clearly written
sequence of MapReduce jobs would introduce inefficiencies thanks
to the rigid structure of the API. For example, one team might write a
MapReduce that simply filtered out some number of elements; that
is, a map-only job with an empty reducer. It might be followed up by
another team’s map-only job doing some element-wise enrichment
(with yet another empty reducer). The output from the second job
might then finally be consumed by a final team’s MapReduce
performing some grouping aggregation over the data. This pipeline,
consisting of essentially a single chain of Map phases followed by a
single Reduce phase, would require the orchestration of three
completely independent jobs, each chained together by shuffle and
output phases materializing the data. But that’s assuming you wanted

301

to keep the codebase logical and clean, which leads to the final
downside…

In an effort to optimize away these inefficiencies in their
MapReductions, engineers began introducing manual optimizations
that would obfuscate the simple logic of the pipeline, increasing
maintenance and debugging costs.

Flume addressed these issues by providing a composable, high-level API for
describing data processing pipelines, essentially based around the same
PCollection and PTransform concepts found in Beam, as illustrated in
Figure 10-9.

Figure 10-9. High-level pipelines in Flume (image credit: Frances Perry)

These pipelines, when launched, would be fed through an optimizer to
generate a plan for an optimally efficient sequence of MapReduce jobs, the
execution of which was then orchestrated by the framework, which you can
see illustrated in Figure 10-10.

Figure 10-10. Optimization from a logical pipeline to a physical execution plan

5

302

Perhaps the most important example of an automatic optimization that Flume
can perform is fusion (which Reuven discussed a bit back in Chapter 5), in
which two logically independent stages can be run in the same job either
sequentially (consumer-producer fusion) or in parallel (sibling fusion), as
depicted in Figure 10-11.

Figure 10-11. Fusion optimizations combine successive or parallel operations together into the same
physical operation

Fusing two stages together eliminates serialization/deserialization and
network costs, which can be significant in pipelines processing large amounts
of data.

Another type of automatic optimization is combiner lifting (see Figure 10-12),
the mechanics of which we already touched upon in Chapter 7 when we
talked about incremental combining. Combiner lifting is simply the automatic
application of multilevel combine logic that we discussed in that chapter: a
combining operation (e.g., summation) that logically happens after a grouping
operation is partially lifted into the stage preceding the group-by-key (which
by definition requires a trip across the network to shuffle the data) so that it
can perform partial combining before the grouping happens. In cases of very
hot keys, this can greatly reduce the amount of data shuffled over the
network, and also spread the load of computing the final aggregate more
smoothly across multiple machines.

303

Figure 10-12. Combiner lifting applies partial aggregation on the sender side of a group-by-key
operation before completing aggregation on the consumer side

As a result of its cleaner API and automatic optimizations, Flume Java was an
instant hit upon its introduction at Google in early 2009. Following on the
heels of that success, the team published the paper titled “Flume Java: Easy,
Efficient Data-Parallel Pipelines” (see Figure 10-13), itself an excellent
resource for learning more about the system as it originally existed.

Figure 10-13. FlumeJava paper

Flume C++ followed not too much later in 2011, and in early 2012 Flume was
introduced into Noogler training provided to all new engineers at Google.
That was the beginning of the end for MapReduce.

Since then, Flume has been migrated to no longer use MapReduce as its
execution engine; instead, it uses a custom execution engine, called Dax, built

6

304

https://goo.gl/9e1nXf
https://goo.gl/9e1nXf

directly into the framework itself. By freeing Flume itself from the confines
of the previously underlying Map → Shuffle → Reduce structure of
MapReduce, Dax enabled new optimizations, such as the dynamic work
rebalancing feature described in Eugene Kirpichov and Malo Denielou’s “No
shard left behind” blog post (Figure 10-14).

Figure 10-14. “No shard left behind” post

Though discussed in that post in the context of Cloud Dataflow, dynamic
work rebalancing (or liquid sharding, as it’s colloquially known at Google)
automatically rebalances extra work from straggler shards to other idle
workers in the system as they complete their work early. By dynamically
rebalancing the work distribution over time, it’s possible to come much closer
to an optimal work distribution than even the best educated initial splits could
ever achieve. It also allows for adapting to variations across the pool of
workers, where a slow machine that might have otherwise held up the
completion of a job is simply compensated for by moving most of its tasks to
other workers. When liquid sharding was rolled out at Google, it recouped
significant amounts of resources across the fleet.

One last point on Flume is that it was also later extended to support streaming
semantics. In addition to the batch Dax backend, Flume was extended to be
able to execute pipelines on the MillWheel stream processing system
(discussed in a moment). Most of the high-level streaming semantics concepts
we’ve discussed in this book were first incorporated into Flume before later
finding their way into Cloud Dataflow and eventually Apache Beam.

305

http://bit.ly/2JPaUnR
http://bit.ly/2JPaUnR

All that said, the primary thing to take away from Flume in this section is the
introduction of a notion of high-level pipelines, which enabled the automatic
optimization of clearly written, logical pipelines. This enabled the creation of
much larger and complex pipelines, without the need for manual orchestration
or optimization, and all while keeping the code for those pipelines logical and
clear.

Storm
Next up is Apache Storm (Figure 10-15), the first real streaming system we
cover. Storm most certainly wasn’t the first streaming system in existence, but
I would argue it was the first streaming system to see truly broad adoption
across the industry, and for that reason we give it a closer look here.

Figure 10-15. Timeline: Storm

Figure 10-16. “History of Apache Storm and lessons learned”

306

http://bit.ly/2HLwSqd

Storm was the brainchild of Nathan Marz, who later chronicled the history of
its creation in a blog post titled “History of Apache Storm and lessons
learned” (Figure 10-16). The TL;DR version of it is that Nathan’s team at the
startup employing him then, BackType, had been attempting to process the
Twitter firehose using a custom system of queues and workers. He came to
essentially the same realization that the MapReduce folks had nearly a decade
earlier: the actual data processing portion of their code was only a tiny
amount of the system, and building those real-time data processing pipelines
would be a lot easier if there were a framework doing all the distributed
system’s dirty work under the covers. Out of that was born Storm.

The interesting thing about Storm, in comparison to the rest of the systems
we’ve talked about so far, is that the team chose to loosen the strong
consistency guarantees found in all of the other systems we’ve talked about so
far as a way of providing lower latency. By combining at-most once or at-
least once semantics with per-record processing and no integrated (i.e., no
consistent) notion of persistent state, Storm was able provide much lower
latency in providing results than systems that executed over batches of data
and guaranteed exactly-once correctness. And for a certain type of use cases,
this was a very reasonable trade-off to make.

Unfortunately, it quickly became clear that people really wanted to have their
cake and eat it, too. They didn’t just want to get their answers quickly, they
wanted to have both low-latency results and eventual correctness. But such a
thing was impossible with Storm alone. Enter the Lambda Architecture.

Given the limitations of Storm, shrewd engineers began running a weakly
consistent Storm streaming pipeline alongside a strongly consistent Hadoop
batch pipeline. The former produced low-latency, inexact results, whereas the
latter produced high-latency, exact results, both of which would then be
somehow merged together in the end to provide a single low-latency,
eventually consistent view of the outputs. We learned back in Chapter 1 that
the Lambda Architecture was Marz’s other brainchild, as detailed in his post
titled “How to beat the CAP theorem” (Figure 10-17).7

307

http://bit.ly/2HLwSqd
http://bit.ly/1ATyjbD

Figure 10-17. “How to beat the CAP theorem”

I’ve already spent a fair amount of time harping on the shortcomings of the
Lambda Architecture, so I won’t belabor those points here. But I will reiterate
this: the Lambda Architecture became quite popular, despite the costs and
headaches associated with it, simply because it met a critical need that a great
many businesses were otherwise having a difficult time fulfilling: that of
getting low-latency, but eventually correct results out of their data processing
pipelines.

From the perspective of the evolution of streaming systems, I argue that
Storm was responsible for first bringing low-latency data processing to the
masses. However, it did so at the cost of weak consistency, which in turn
brought about the rise of the Lambda Architecture, and the years of dual-
pipeline darkness that followed.

308

http://bit.ly/1ATyjbD

Figure 10-18. Heron paper

But hyperbolic dramaticism aside, Storm was the system that gave the
industry its first taste of low-latency data processing, and the impact of that is
reflected in the broad interest in and adoption of streaming systems today.

Before moving on, it’s also worth giving a shout out to Heron. In 2015,
Twitter (the largest known user of Storm in the world, and the company that
originally fostered the Storm project) surprised the industry by announcing it
was abandoning the Storm execution engine in favor of a new system it had
developed in house, called Heron. Heron aimed to address a number of
performance and maintainability issues that had plagued Storm, while
remaining API compatible, as detailed in the company’s paper titled “Twitter
Heron: Stream Processing at Scale” (Figure 10-18). Heron itself was
subsequently open sourced (with governance moved to its own independent
foundation, not an existing one like Apache). Given the continued
development on Storm, there are now two competing variants of the Storm
lineage. Where things will end up is anyone’s guess, but it will be exciting to
watch.

Spark
Moving on, we now come to Apache Spark (Figure 10-19). This is another
section in which I’m going to greatly oversimplify the total impact that Spark

309

http://bit.ly/2LNzOF4
http://bit.ly/2LNzOF4
http://bit.ly/2MoOpYK

has had on the industry by focusing on a specific portion of its contributions:
those within the realm of stream processing. Apologies in advance.

Figure 10-19. Timeline: Spark

Spark got its start at the now famous AMPLab in UC Berkeley around 2009.
The thing that initially fueled Spark’s fame was its ability to oftentimes
perform the bulk of a pipeline’s calculations entirely in memory, without
touching disk until the very end. Engineers achieved this via the Resilient
Distributed Dataset (RDD) idea, which basically captured the full lineage of
data at any given point in the pipeline, allowing intermediate results to be
recalculated as needed on machine failure, under the assumptions that a) your
inputs were always replayable, and b) your computations were deterministic.
For many use cases, these preconditions were true, or at least true enough
given the massive gains in performance users were able to realize over
standard Hadoop jobs. From there, Spark gradually built up its eventual
reputation as Hadoop’s de facto successor.

A few years after Spark was created, Tathagata Das, then a graduate student
in the AMPLab, came to the realization that: hey, we’ve got this fast batch
processing engine, what if we just wired things up so we ran multiple batches
one after another, and used that to process streaming data? From that bit of
insight, Spark Streaming was born.

What was really fantastic about Spark Streaming was this: thanks to the
strongly consistent batch engine powering things under the covers, the world
now had a stream processing engine that could provide correct results all by
itself without needing the help of an additional batch job. In other words,
given the right use case, you could ditch your Lambda Architecture system
and just use Spark Streaming. All hail Spark Streaming!

The one major caveat here was the “right use case” part. The big downside to

310

the original version of Spark Streaming (the 1.x variants) was that it provided
support for only a specific flavor of stream processing: processing-time
windowing. So any use case that cared about event time, needed to deal with
late data, and so on, couldn’t be handled out of the box without a bunch of
extra code being written by the user to implement some form of event-time
handling on top of Spark’s processing-time windowing architecture. This
meant that Spark Streaming was best suited for in-order data or event-time-
agnostic computations. And, as I’ve reiterated throughout this book, those
conditions are not as prevalent as you would hope when dealing with the
large-scale, user-centric datasets common today.

Another interesting controversy that surrounds Spark Streaming is the age-old
“microbatch versus true streaming” debate. Because Spark Streaming is built
upon the idea of small, repeated runs of a batch processing engine, detractors
claim that Spark Streaming is not a true streaming engine in the sense that
progress in the system is gated by the global barriers of each batch. There’s
some amount of truth there. Even though true streaming engines almost
always utilize some sort of batching or bundling for the sake of throughput,
they have the flexibility to do so at much finer-grained levels, down to
individual keys. The fact that microbatch architectures process bundles at a
global level means that it’s virtually impossible to have both low per-key
latency and high overall throughput, and there are a number of benchmarks
that have shown this to be more or less true. But at the same time, latency on
the order of minutes or multiple seconds is still quite good. And there are very
few use cases that demand exact correctness and such stringent latency
capabilities. So in some sense, Spark was absolutely right to target the
audience it did originally; most people fall in that category. But that hasn’t
stopped its competitors from slamming this as a massive disadvantage for the
platform. Personally, I see it as a minor complaint at best in most cases.

Shortcomings aside, Spark Streaming was a watershed moment for stream
processing: the first publicly available, large-scale stream processing engine
that could also provide the correctness guarantees of a batch system. And of
course, as previously noted, streaming is only a very small part of Spark’s
overall success story, with important contributions made in the space of
iterative processing and machine learning, its native SQL integration, and the
aforementioned lightning-fast in-memory performance, to name a few.

If you’re curious to learn more about the details of the original Spark 1.x
architecture, I highly recommend Matei Zaharia’s dissertation on the subject,

311

“An Architecture for Fast and General Data Processing on Large Clusters”
(Figure 10-20). It’s 113 pages of Sparky goodness that’s well worth the
investment.

Figure 10-20. Spark dissertation

As of today, the 2.x variants of Spark are greatly expanding upon the
semantic capabilities of Spark Streaming, incorporating many parts of the
model described in this book, while attempting to simplify some of the more
complex pieces. And Spark is even pushing a new true streaming architecture,
to try to shut down the microbatch naysayer arguments. But when it first
came on the scene, the important contribution that Spark brought to the table
was the fact that it was the first publicly available stream processing engine
with strong consistency semantics, albeit only in the case of in-order data or
event-time-agnostic computation.

MillWheel
Next we discuss MillWheel, a project that I first dabbled with in my 20% time
after joining Google in 2008, later joining the team full time in 2010

312

http://bit.ly/2y8rduN
http://bit.ly/2y8rduN

(Figure 10-21).

Figure 10-21. Timeline: MillWheel

MillWheel is Google’s original, general-purpose stream processing
architecture, and the project was founded by Paul Nordstrom around the time
Google’s Seattle office opened. MillWheel’s success within Google has long
centered on an ability to provide low-latency, strongly consistent processing
of unbounded, out-of-order data. Over the course of this book, we’ve looked
at most of the bits and pieces that came together in MillWheel to make this
possible:

Reuven discussed exactly-once guarantees in Chapter 5. Exactly-
once guarantees are essential for correctness.

In Chapter 7 we looked at persistent state, the strongly consistent
variations of which provide the foundation for maintaining that
correctness in long-running pipelines executing on unreliable
hardware.

Slava talked about watermarks in Chapter 3. Watermarks provide a
foundation for reasoning about disorder in input data.

Also in Chapter 7, we looked at persistent timers, which provide the
necessary link between watermarks and the pipeline’s business logic.

It’s perhaps somewhat surprising then to note that the MillWheel project was
not initially focused on correctness. Paul’s original vision more closely
targeted the niche that Storm later espoused: low-latency data processing with
weak consistency. It was the initial MillWheel customers, one building
sessions over search data and another performing anomaly detection on
search queries (the Zeitgeist example from the MillWheel paper), who drove

313

the project in the direction of correctness. Both had a strong need for
consistent results: sessions were used to infer user behavior, and anomaly
detection was used to infer trends in search queries; the utility of both
decreased significantly if the data they provided were not reliable. As a result,
MillWheel’s direction was steered toward one of strong consistency.

Support for out-of-order processing, which is the other core aspect of robust
streaming often attributed to MillWheel, was also motivated by customers.
The Zeitgeist pipeline, as a true streaming use case, wanted to generate an
output stream that identified anomalies in search query traffic, and only
anomalies (i.e., it was not practical for consumers of its analyses to poll all the
keys in a materialized view output table waiting for an anomaly to be flagged;
consumers needed a direct signal only when anomalies happened for specific
keys). For anomalous spikes (i.e., increases in query traffic), this is relatively
straightforward: when the count for a given query exceeds the expected value
in your model for that query by some statistically significant amount, you can
signal an anomaly. But for anomalous dips (i.e., decreases in query traffic),
the problem is a bit trickier. It’s not enough to simply see that the number of
queries for a given search term has decreased, because for any period of time,
the observed number always starts out at zero. What you really need to do in
these cases is wait until you have reason to believe that you’ve seen a
sufficiently representative portion of the input for a given time period, and
only then compare the count against your model.

TRUE STREAMING
“True streaming use case” bears a bit of explanation. One recent trend in
streaming systems is to try to simplify the programming models to make
them more accessible by limiting the types of use cases one can address.
For example, at the time of writing, both Spark’s Structured Streaming
and Apache Kafka’s Kafka Streams systems limit themselves to what I
refer to in Chapter 8 as “materialized view semantics,” essentially repeated
updates to an eventually consistent output table. Materialized view
semantics are great when you want to consume your output as a lookup
table: any time you can just lookup a value in that table and be okay with
the latest result as of query time, materialized views are a good fit. They
are not, however, particularly well suited for use cases in which you want
to consume your output as a bonafide stream. I refer to these as true
streaming use cases, with anomaly detection being one of the better
examples.

314

As we’ll discuss shortly, there are certain aspects of anomaly detection
that make it unsuitable for pure materialized view semantics (i.e., record-
by-record processing only), specifically the fact that it relies on reasoning
about the completeness of the input data to accurately identify anomalies
that are the result of an absence of data (in addition to the fact that polling
an output table to see if an anomaly signal has arrived is not an approach
that scales particularly well). True streaming use cases are thus the
motivation for features like watermarks (Preferably low watermarks that
pessimistically track input completeness, as described in Chapter 3, not
high watermarks that track the event time of the newest record the system
is aware of, as used by Spark Structured Streaming for garbage collecting
windows, since high watermarks are more prone to incorrectly throwing
away data as event time skew varies within the pipeline) and triggers.
Systems that omit these features do so for the sake of simplicity but at the
cost of decreased ability. There can be great value in that, most certainly,
but don’t be fooled if you hear such systems claim these simplifications
yield equivalent or even greater generality; you can’t address fewer use
cases and be equally or more general.

The Zeitgeist pipeline first attempted to do this by inserting processing-time
delays before the analysis logic that looked for dips. This would work
reasonably decently when data arrived in order, but the pipeline’s authors
discovered that data could, at times, be greatly delayed and thus arrive wildly
out of order. In these cases, the processing-time delays they were using
weren’t sufficient, because the pipeline would erroneously report a flurry of
dip anomalies that didn’t actually exist. What they really needed was a way to
wait until the input became complete.

Watermarks were thus born out of this need for reasoning about input
completeness in out-of-order data. As Slava described in Chapter 3, the basic
idea was to track the known progress of the inputs being provided to the
system, using as much or as little data available for the given type of data
source, to construct a progress metric that could be used to quantify input
completeness. For simpler input sources like a statically partitioned Kafka
topic with each partition being written to in increasing event-time order (such
as by web frontends logging events in real time), you can compute a perfect
watermark. For more complex input sources like a dynamic set of input logs,
a heuristic might be the best you can do. But either way, watermarks provide
a distinct advantage over the alternative of using processing time to reason

315

about event-time completeness, which experience has shown serves about as
well as a map of London while trying to navigate the streets of Cairo.

So thanks to the needs of its customers, MillWheel ended up as a system with
the right set of features for supporting robust stream processing on out-of-
order data. As a result, the paper titled “MillWheel: Fault-Tolerant Stream
Processing at Internet Scale” (Figure 10-22) spends most of its time
discussing the difficulties of providing correctness in a system like this, with
consistency guarantees and watermarks being the main areas of focus. It’s
well worth your time if you’re interested in the subject.

Figure 10-22. MillWheel paper

Not long after the MillWheel paper was published, MillWheel was integrated
as an alternative, streaming backend for Flume, together often referred to as
Streaming Flume. Within Google today, MillWheel is in the process of being
replaced by its successor, Windmill (the execution engine that also powers
Cloud Dataflow, discussed in a moment), a ground-up rewrite that
incorporates all the best ideas from MillWheel, along with a few new ones
like better scheduling and dispatch, and a cleaner separation of user and
system code.

However, the big takeaway for MillWheel is that the four concepts listed
earlier (exactly-once, persistent state, watermarks, persistent timers) together
provided the basis for a system that was finally able to deliver on the true
promise of stream processing: robust, low-latency processing of out-of-order
data, even on unreliable commodity hardware.

8

316

http://bit.ly/2yab5ZH
http://bit.ly/2yab5ZH

Kafka
We now come to Kafka (Figure 10-23). Kafka is unique among the systems
discussed in this chapter in that it’s not a data processing framework, but
instead a transport layer. Make no mistake, however: Kafka has played one of
the most influential roles in advancing stream processing out of all the
system’s we’re discussing here.

Figure 10-23. Timeline: Kafka

If you’re not familiar with it, Kafka is essentially a persistent streaming
transport, implemented as a set of partitioned logs. It was developed
originally at LinkedIn by such industry luminaries as Neha Narkhede and Jay
Kreps, and its accolades include the following:

Providing a clean model of persistence that packaged that warm
fuzzy feeling of durable, replayable input sources from the batch
world in a streaming friendly interface.

Providing an elastic isolation layer between producers and
consumers.

Embodying the relationship between streams and tables that we
discussed in Chapter 6, revealing a foundational way of thinking
about data processing in general while also providing a conceptual
link to the rich and storied world of databases.

As of side of effect of all of the above, not only becoming the
cornerstone of a majority of stream processing installations across
the industry, but also fostering the stream-processing-as-databases
and microservices movements.

They must get up very early in the morning.

9

317

Of those accolades, there are two that stand out most to me. The first is the
application of durability and replayability to stream data. Prior to Kafka, most
stream processing systems used some sort of ephemeral queuing system like
Rabbit MQ or even plain-old TCP sockets to send data around. Durability
might be provided to some degree via upstream backup in the producers (i.e.,
the ability for upstream producers of data to resend if the downstream
workers crashed), but oftentimes the upstream data was stored ephemerally,
as well. And most approaches entirely ignored the idea of being able to replay
input data later in cases of backfills or for prototyping, development, and
regression testing.

Kafka changed all that. By taking the battle-hardened concept of a durable log
from the database world and applying it to the realm of stream processing,
Kafka gave us all back that sense of safety and security we’d lost when
moving from the durable input sources common in the Hadoop/batch world to
the ephemeral sources prevalent at the time in the streaming world. With
durability and replayability, stream processing took yet another step toward
being a robust, reliable replacement for the ad hoc, continuous batch
processing systems of yore that were still being applied to streaming use
cases.

As a streaming system developer, one of the more interesting visible artifacts
of the impact that Kafka’s durability and replayability features have had on
the industry is how many of the stream processing engines today have grown
to fundamentally rely on that replayability to provide end-to-end exactly-once
guarantees. Replayability is the foundation upon which end-to-end exactly-
once guarantees in Apex, Flink, Kafka Streams, Spark, and Storm are all
built. When executing in exactly-once mode, each of those systems
assumes/requires that the input data source be able to rewind and replay all of
the data up until the most recent checkpoint. When used with an input source
that does not provide such ability (even if the source can guarantee reliable
delivery via upstream backup), end-to-end exactly-once semantics fall apart.
That sort of broad reliance on replayability (and the related aspect of
durability) is a huge testament to the amount of impact those features have
had across the industry.

The second noteworthy bullet from Kafka’s resume is the popularization of
stream and table theory. We spent the entirety of Chapter 6 discussing streams
and tables as well as much of Chapters 8 and 9. And for good reason. Streams
and tables form the foundation of data processing, be it the MapReduce

318

family tree of systems, the enormous legacy of SQL database systems, or
what have you. Not all data processing approaches need speak directly in
terms of streams and tables but conceptually speaking, that’s how they all
operate. And as both users and developers of these systems, there’s great
value in understanding the core underlying concepts that all of our systems
build upon. We all owe a collective thanks to the folks in the Kafka
community who helped shine a broader light on the streams-and-tables way
of thinking.

Figure 10-24. I ❤ Logs

If you’d like to learn more about Kafka and the foundations it’s built on, I ❤
Logs by Jay Kreps (O’Reilly; Figure 10-24) is an excellent resource.
Additionally, as cited originally in Chapter 6, Kreps and Martin Kleppmann
have a pair of articles (Figure 10-25) that I highly recommend for reading up
on the origins of streams and table theory.

Kafka has made huge contributions to the world of stream processing,

10

319

arguably more than any other single system out there. In particular, the
application of durability and replayability to input and output streams played
a big part in helping move stream processing out of the niche realm of
approximation tools and into the big leagues of general data processing.
Additionally, the theory of streams and tables, popularized by the Kafka
community, provides deep insight into the underlying mechanics of data
processing in general.

Figure 10-25. Martin’s post (left) and Jay’s post (right)

Cloud Dataflow
Cloud Dataflow (Figure 10-26) is Google’s fully managed, cloud-based data
processing service. Dataflow launched to the world in August 2015. It was
built with the intent to take the decade-plus of experiences that had gone into
building MapReduce, Flume, and MillWheel, and package them up into a
serverless cloud experience.

Figure 10-26. Timeline: Cloud Dataflow

Although the serverless aspect of Cloud Dataflow is perhaps its most
technically challenging and distinguishing factor from a systems perspective,

320

https://www.confluent.io/blog/making-sense-of-stream-processing/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/

the primary contribution to streaming systems that I want to discuss here is its
unified batch plus streaming programming model. That’s all the
transformations, windowing, watermarks, triggers, and accumulation
goodness we’ve spent most of the book talking about. And all of them, of
course, wrapped up the what/where/when/how way of thinking about things.

The model first arrived back in Flume, as we looked to incorporate the robust
out-of-order processing support in MillWheel into the higher-level
programming model Flume afforded. The combined batch and streaming
approach available to Googlers internally with Flume was then the basis for
the fully unified model included in Dataflow.

The key insight in the unified model—the full extent of which none of us at
the time even truly appreciated—is that under the covers, batch and streaming
are really not that different: they’re both just minor variations on the streams
and tables theme. As we learned in Chapter 6, the main difference really boils
down to the ability to incrementally trigger tables into streams; everything
else is conceptually the same. By taking advantage of the underlying
commonalities of the two approaches, it was possible to provide a single,
nearly seamless experience that applied to both worlds. This was a big step
forward in making stream processing more accessible.

In addition to taking advantage of the commonalities between batch and
streaming, we took a long, hard look at the variety of use cases we’d
encountered over the years at Google and used those to inform the pieces that
went into the unified model. Key aspects we targeted included the following:

Unaligned, event-time windows such as sessions, providing the
ability to concisely express powerful analytic constructs and apply
them to out-of-order data.

Custom windowing support, because one (or even three or four) sizes
rarely fit all.

Flexible triggering and accumulation modes, providing the ability to
shape the way data flow through the pipeline to match the
correctness, latency, and cost needs of the given use case.

The use of watermarks for reasoning about input completeness,
which is critical for use cases like anomalous dip detection where the
analysis depends upon an absence of data.

Logical abstraction of the underlying execution environment, be it

11

321

batch, microbatch, or streaming, providing flexibility of choice in
execution engine and avoiding system-level constructs (such as
micro-batch size) from creeping into the logical API.

Taken together, these aspects provided the flexibility to balance the tensions
between correctness, latency, and cost, allowing the model to be applied
across a wide breadth of use cases.

Figure 10-27. Dataflow Model paper

Given that you’ve just read an entire book covering the finer points of the
Dataflow/Beam Model, there’s little point in trying to retread any those
concepts here. However, if you’re looking for a slightly more academic take
on things as well as a nice overview of some of the motivating use cases
alluded to earlier, you might find our 2015 Dataflow Model paper worthwhile
(Figure 10-27).

Though there are many other compelling aspects to Cloud Dataflow, the
important contribution from the perspective of this chapter is its unified batch
plus streaming programming model. It brought the world a comprehensive
approach to tackling unbounded, out-of-order datasets, and in a way that
provided the flexibility to make the trade-offs necessary to balance the
tensions between correctness, latency, and cost to match the requirements for

322

http://bit.ly/2sXgVJ3
http://bit.ly/2sXgVJ3

a given use case.

Flink
Flink (Figure 10-28) burst onto the scene in 2015, rapidly transforming itself
from a system that almost no one had heard of into one of the powerhouses of
the streaming world, seemingly overnight.

Figure 10-28. Timeline: Flink

There were two main reasons for Flink’s rise to prominence:

Its rapid adoption of the Dataflow/Beam programming model, which
put it in the position of being the most semantically capable fully
open source streaming system on the planet at the time.

Followed shortly thereafter by its highly efficient snapshotting
implementation (derived from research in Chandy and Lamport’s
original paper “Distributed Snapshots: Determining Global States of
Distributed Systems” [Figure 10-29]), which gave it the strong
consistency guarantees needed for correctness.

323

http://bit.ly/2JBCsRU

Figure 10-29. Chandy-Lamport snapshots

Reuven covered Flink’s consistency mechanism briefly in Chapter 5, but to
reiterate, the basic idea is that periodic barriers are propagated along the
communication paths between workers in the system. The barriers act as an
alignment mechanism between the various distributed workers producing data
upstream from a consumer. When the consumer receives a given barrier on all
of its input channels (i.e., from all of its upstream producers), it checkpoints
its current progress for all active keys, at which point it is then safe to
acknowledge processing of all data that came before the barrier. By tuning
how frequently barriers are sent through the system, it’s possible to tune the
frequency of checkpointing and thus trade off increased latency (due to the
need for side effects to be materialized only at checkpoint times) in exchange
for higher throughput.

324

http://bit.ly/2JBCsRU

Figure 10-30. “Extending the Yahoo! Streaming Benchmark”

The simple fact that Flink now had the capability to provide exactly-once
semantics along with native support for event-time processing was huge at the
time. But it wasn’t until Jamie Grier published his article titled “Extending the
Yahoo! Streaming Benchmark” (Figure 10-30) that it became clear just how
performant Flink was. In that article, Jamie described two impressive
achievements:

1. Building a prototype Flink pipeline that achieved greater accuracy
than one of Twitter’s existing Storm pipelines (thanks to Flink’s
exactly-once semantics) at 1% of the cost of the original.

2. Updating the Yahoo! Streaming Benchmark to show Flink (with
exactly-once) achieving 7.5 times the throughput of Storm (without
exactly-once). Furthermore, Flink’s performance was shown to be
limited due to network saturation; removing the network bottleneck
allowed Flink to achieve almost 40 times the throughput of Storm.

325

http://bit.ly/2LQvGnN
http://bit.ly/2LQvGnN
http://bit.ly/2bhgMJd

Since then, numerous other projects (notably, Storm and Apex) have all
adopted the same type of consistency mechanism.

Figure 10-31. “Savepoints: Turning Back Time”

With the addition of a snapshotting mechanism, Flink gained the strong
consistency needed for end-to-end exactly-once. But to its credit, Flink went
one step further, and used the global nature of its snapshots to provide the
ability to restart an entire pipeline from any point in the past, a feature known
as savepoints (described in the “Savepoints: Turning Back Time” post by
Fabian Hueske and Michael Winters [Figure 10-31]). The savepoints feature
took the warm fuzziness of durable replay that Kafka had applied to the
streaming transport layer and extended it to cover the breadth of an entire
pipeline. Graceful evolution of a long-running streaming pipeline over time
remains an important open problem in the field, with lots of room for
improvement. But Flink’s savepoints feature stands as one of the first huge
steps in the right direction, and one that remains unique across the industry as
of this writing.

326

http://bit.ly/2JKCouO
http://bit.ly/2JKCouO

If you’re interested in learning more about the system constructs underlying
Flink’s snapshots and savepoints, the paper “State Management in Apache
Flink” (Figure 10-32) discusses the implementation in good detail.

Figure 10-32. “State Management in Apache Flink”

Beyond savepoints, the Flink community has continued to innovate, including
bringing the first practical streaming SQL API to market for a large-scale,
distributed stream processing engine, as we discussed in Chapter 8.

In summary, Flink’s rapid rise to stream processing juggernaut can be
attributed primarily to three characteristics of its approach: 1) incorporating
the best existing ideas from across the industry (e.g., being the first open
source adopter of the Dataflow/Beam Model), 2) bringing its own innovations
to the table to push forward the state of the art (e.g., strong consistency via
snapshots and savepoints, streaming SQL), and 3) doing both of those things
quickly and repeatedly. Add in the fact that all of this is done in open source,
and you can see why Flink has consistently continued to raise the bar for
streaming processing across the industry.

Beam

327

http://bit.ly/2LLyr9O
http://bit.ly/2LLyr9O

The last system we talk about is Apache Beam (Figure 10-33). Beam differs
from most of the other systems in this chapter in that it’s primarily a
programming model, API, and portability layer, not a full stack with an
execution engine underneath. But that’s exactly the point: just as SQL acts as
a lingua franca for declarative data processing, Beam aims to be the lingua
franca for programmatic data processing. Let’s explore how.

Figure 10-33. Timeline: Beam

Concretely, Beam is composed a number of components:

A unified batch plus streaming programming model, inherited from
Cloud Dataflow where it originated, and the finer points of which
we’ve spent the majority of this book discussing. The model is
independent of any language implementations or runtime systems.
You can think of this as Beam’s equivalent to SQL’s relational
algebra.

A set of SDKs (software development kits) that implement that
model, allowing pipelines to be expressed in terms of the model in
idiomatic ways for a given language. Beam currently provides SDKs
in Java, Python, and Go. You can think of these as Beam’s
programmatic equivalents to the SQL language itself.

A set of DSLs (domain specific languages) that build upon the SDKs,
providing specialized interfaces that capture pieces of the model in
unique ways. Whereas SDKs are required to surface all aspects of the
model, DSLs can expose only those pieces that make sense for the
specific domain a DSL is targeting. Beam currently provides a Scala
DSL called Scio and an SQL DSL, both of which layer on top of the
existing Java SDK.

328

A set of runners that can execute Beam pipelines. Runners take the
logical pipeline described in Beam SDK terms, and translate them as
efficiently as possible into a physical pipeline that they can then
execute. Beam runners exist currently for Apex, Flink, Spark, and
Google Cloud Dataflow. In SQL terms, you can think of these
runners as Beam’s equivalent to the various SQL database
implementations, such as Postgres, MySQL, Oracle, and so on.

The core vision for Beam is built around its value as a portability layer, and
one of the more compelling features in that realm is its planned support for
full cross-language portability. Though not yet fully complete (but landing
imminently), the plan is for Beam to provide sufficiently performant
abstraction layers between SDKs and runners that will allow for a full cross-
product of SDK × runner matchups. In such a world, a pipeline written in a
JavaScript SDK could seamlessly execute on a runner written in Haskell,
even if the Haskell runner itself had no native ability to execute JavaScript
code.

As an abstraction layer, the way that Beam positions itself relative to its
runners is critical to ensure that Beam actually brings value to the community,
rather than introducing just an unnecessary layer of abstraction. The key point
here is that Beam aims to never be just the intersection (lowest common
denominator) or union (kitchen sink) of the features found in its runners.
Instead, it aims to include only the best ideas across the data processing
community at large. This allows for innovation in two dimensions:
Innovation in Beam

329

http://bit.ly/2N0tPNL

Figure 10-34. Powerful and modular I/O

Beam might include API support for runtime features that not all runners
initially support. This is okay. Over time, we expect many runners will
incorporate such features into future versions; those that don’t will be a
less-attractive runner choice for use cases that need such features.

An example here is Beam’s SplittableDoFn API for writing composable,
scalable sources (described by Eugene Kirpichov in his post “Powerful
and modular I/O connectors with Splittable DoFn in Apache Beam”
[Figure 10-34]). It’s both unique and extremely powerful but also does not
yet see broad support across all runners for some of the more innovative
parts like dynamic work rebalancing. Given the value such features bring,
however, we expect that will change over time.

Innovation in runners
Runners might introduce runtime features for which Beam does not
initially provide API support. This is okay. Over time, runtime features
that have proven their usefulness will have API support incorporated into
Beam.

An example here is the state snapshotting mechanism in Flink, or
savepoints, which we discussed earlier. Flink is still the only publicly
available streaming system to support snapshots in this way, but there’s a
proposal in Beam to provide an API around snapshots because we believe
graceful evolution of pipelines over time is an important feature that will

330

http://bit.ly/2JQa7GJ
http://bit.ly/2JQa7GJ

be valuable across the industry. If we were to magically push out such an
API today, Flink would be the only runtime system to support it. But
again, that’s okay. The point here is that the industry as a whole will begin
to catch up over time as the value of these features becomes clear. And
that’s better for everyone.

By encouraging innovation within both Beam itself as well as runners, we
hope to push forward the capabilities of the entire industry at a greater pace
over time, without accepting compromises along the way. And by delivering
on the promise of portability across runtime execution engines, we hope to
establish Beam as the common language for expressing programmatic data
processing pipelines, similar to how SQL exists today as the common
currency of declarative data processing. It’s an ambitious goal, and as of
writing, we’re still a ways off from seeing it fully realized, but we’ve also
come a long way so far.

Summary
We just took a whirlwind tour through a decade and a half of advances in data
processing technology, with a focus on the contributions that made streaming
systems what they are today. To summarize one last time, the main takeaways
for each system were:
MapReduce—scalability and simplicity

By providing a simple set of abstractions for data processing on top of a
robust and scalable execution engine, MapReduce allowed data engineers
to focus on the business logic of their data processing needs rather than
the gnarly details of building distributed systems resilient to the failure
modes of commodity hardware.

Hadoop—open source ecosystem
By building an open source platform on the ideas of MapReduce, Hadoop
created a thriving ecosystem that expanded well beyond the scope of its
progenitor and allowed a multitude of new ideas to flourish.

Flume—pipelines, optimization
By coupling a high-level notion of logical pipeline operations with an
intelligent optimizer, Flume made it possible to write clean and
maintainable pipelines whose capabilities extended beyond the Map →
Shuffle → Reduce confines of MapReduce, without sacrificing any of the

12

331

performance theretofore gained by contorting the logical pipeline via
hand-tuned manual optimizations.

Storm—low latency with weak consistency
By sacrificing correctness of results in favor of decreased latency, Storm
brought stream processing to the masses and also ushered in the era of the
Lambda Architecture, where weakly consistent stream processing engines
were run alongside strongly consistent batch systems to realize the true
business goal of low-latency, eventually consistent results.

Spark—strong consistency
By utilizing repeated runs of a strongly consistent batch engine to provide
continuous processing of unbounded datasets, Spark Streaming proved it
possible to have both correctness and low-latency results, at least for in-
order datasets.

MillWheel—out-of-order processing
By coupling strong consistency and exactly-once processing with tools for
reasoning about time like watermarks and timers, MillWheel conquered
the challenge of robust stream processing over out-of-order data.

Kafka—durable streams, streams and tables
By applying the concept of a durable log to the problem of streaming
transports, Kafka brought back the warm, fuzzy feeling of replayability
that had been lost by ephemeral streaming transports like RabbitMQ and
TCP sockets. And by popularizing the ideas of stream and table theory, it
helped shed light on the conceptual underpinnings of data processing in
general.

Cloud Dataflow—unified batch plus streaming
By melding the out-of-order stream processing concepts from MillWheel
with the logical, automatically optimizable pipelines of Flume, Cloud
Dataflow provided a unified model for batch plus streaming data
processing that provided the flexibility to balance the tensions between
correctness, latency, and cost to match any given use case.

Flink—open source stream processing innovator
By rapidly bringing the power of out-of-order processing to the world of
open source and combining it with innovations of their own like
distributed snapshots and its related savepoints features, Flink raised the

332

bar for open source stream processing and helped lead the current charge
of stream processing innovation across the industry.

Beam—portability
By providing a robust abstraction layer that incorporates the best ideas
from across the industry, Beam provides a portability layer positioned as
the programmatic equivalent to the declarative lingua franca provided by
SQL, while also encouraging the adoption of innovative new ideas
throughout the industry.

To be certain, these 10 projects and the sampling of their achievements that
I’ve highlighted here do not remotely encompass the full breadth of the
history that has led the industry to where it exists today. But they stand out to
me as important and noteworthy milestones along the way, which taken
together paint an informative picture of the evolution of stream processing
over the past decade and a half. We’ve come a long way since the early days
of MapReduce, with a number of ups, downs, twists, and turns along the way.
Even so, there remains a long road of open problems ahead of us in the realm
of streaming systems. I’m excited to see what the future holds.

 Which means I’m skipping a ton of the academic literature around stream
processing, because that’s where much of it started. If you’re really into
hardcore academic papers on the topic, start from the references in “The
Dataflow Model” paper and work backward. You should be able to find your
way pretty easily.

 Certainly, MapReduce itself was built upon many ideas that had been well
known before, as is even explicitly stated in the MapReduce paper. That
doesn’t change the fact that MapReduce was the system that tied those ideas
together (along with some of its own) to create something practical that
solved an important and emerging problem better than anyone else before
ever had, and in a way that inspired generations of data-processing systems
that followed.

 To be clear, Google was most certainly not the only company tackling data
processing problems at this scale at the time. Google was just one among a
number of companies involved in that first generation of attempts at taming
massive-scale data processing.

 And to be clear, MapReduce actually built upon the Google File System,
GFS, which itself solved the scalability and fault-tolerance issues for a

1

2

3

4

333

http://bit.ly/2sXgVJ3

specific subset of the overall problem.

 Not unlike the query optimizers long used in the database world.

 Noogler == New + Googler == New hires at Google

 As an aside, I also highly recommend reading Martin Kleppmann’s “A
Critique of the CAP Theorem” for very nice analysis of the shortcomings of
the CAP theorem itself, as well as a more principled alternative way of
looking at the same problem.

 For the record, written primarily by Sam McVeety with help from Reuven
and bits of input from the rest of us on the author list; we shouldn’t have
alphabetized that author list, because everyone always assumes I’m the
primary author on it, even though I wasn’t.

 Kafka Streams and now KSQL are of course changing that, but those are
relatively recent developments, and I’ll be focusing primarily on the Kafka of
yore.

 While I recommend the book as the most comprehensive and cohesive
resource, you can find much of the content from it scattered across O’Reilly’s
website if you just search around for Kreps’ articles. Sorry, Jay...

 As with many broad generalizations, this one is true in a specific context,
but belies the underlying complexity of reality. As I alluded to in Chapter 1,
batch systems go to great lengths to optimize the cost and runtime of data
processing pipelines over bounded datasets in ways that stream processing
engines have yet to attempt to duplicate. To imply that modern batch and
streaming systems only differ in one small way is a sizeable
oversimplification in any realm beyond the purely conceptual.

 There’s an additional subtlety here that’s worth calling out: even as runners
adopt new semantics and tick off feature checkboxes, it’s not the case that
you can blindly choose any runner and have an identical experience. This is
because the runners themselves can still vary greatly in their runtime and
operational characteristics. Even for cases in which two given runners
implement the same set of semantic features within the Beam Model, the way
they go about executing those features at runtime is typically very different.
As a result, when building a Beam pipeline, it’s important to do your
homework regarding various runners, to ensure that you choose a runtime
platform that serves your use case best.

5

6

7

8

9

10

11

12

334

http://bit.ly/2ybJlnt

Index

A

accumulating and retracting mode, How: Accumulation, How: Accumulation,
How: accumulation

early/on-time/late triggers, How: Accumulation

accumulating mode (accumulation), How: Accumulation, How:
Accumulation, How: accumulation

accumulation, Roadmap, How: Accumulation-How: Accumulation

accumulating and retracting mode, How: Accumulation

accumulating mode, How: Accumulation

accumulation mode in processing-time window via ingress time,
Processing-Time Windowing via Ingress Time

discarding mode, How: Accumulation

in processsing-time windowing via triggers, Processing-Time Windowing
via Triggers

in streaming SQL, How: accumulation

discarding mode, Discarding mode, or lack thereof

retractions, Retractions in a SQL world-Retractions in a SQL world

in streams and tables model, How: Accumulation

side-by-side comparison of modes, How: Accumulation

accumulators, Incremental Combining

accuracy

in lambda architecture processing, Why Exactly Once Matters

vs. completeness in exactly-once processing, Accuracy Versus
Completeness-Problem Definition

335

aggregations

grouping and summation via incremental combination, Incremental
Combining

incrementalization of, Incremental Combining

parallelization of, Incremental Combining

properties of, Incremental Combining

aligned delays (processing time in triggers), When: The Wonderful Thing
About Triggers Is Triggers Are Wonderful Things!

allowed lateness, When: Allowed Lateness (i.e., Garbage Collection)-When:
Allowed Lateness (i.e., Garbage Collection)

ANTI joins, ANTI

Apache Beam, Beam-Summary

blending of batch and streaming, When: Triggers

code snippets for, The What, Where, When, and How of Data Processing

Java SDK pseudo-code, What: Transformations

CombineFn API, Incremental Combining

components, Beam

conversion attribution with, Conversion Attribution with Apache Beam-
Conversion Attribution with Apache Beam

innovation in, Beam

portability layer, Beam

streaming SQL in, What Is Streaming SQL?

Apache Calcite, What Is Streaming SQL?

Apache Flink, On the Greatly Exaggerated Limitations of Streaming, What Is
Streaming SQL?, Flink-Flink, Summary

adoption of Dataflow/Beam programming model, Flink

consistency mechanism, Flink

336

end-to-end exactly once, Problem Definition

exactly-once processing in, Apache Flink

factors in its rapid rise to stream procesing juggernaut, Flink

highly efficient snapshotting implementation, Flink

impressive performance of, Flink

savepoints feature, Flink

snapshotting paper, On the Greatly Exaggerated Limitations of Streaming

watermarks in, case study, Case Study: Watermarks in Apache Flink

Apache Kafka, Exactly Once in Sources, Kafka-Kafka, Summary

application of durability and replayability to stream data, Kafka

capabilities of, Kafka

Kafka's Streams API, Kafka

popularization of stream and table theory, Kafka

Apache Spark, Spark-Spark, Summary

current developments in, Spark

end-to-end exactly once, Problem Definition

Spark Streaming, Apache Spark Streaming, Spark

ingress times as event times, When/Where: Processing-Time Windows

manually building up sessions in, Where: Session Windows

snapshotting paper, On the Greatly Exaggerated Limitations of
Streaming

Apache Storm, Storm-Storm, Summary

bringing low-latency data processing to the masses, Storm

history of its creation, Storm

append-only logs, Stream-and-Table Basics Or: a Special Theory of Stream
and Table Relativity

337

approximation algorithms, Approximation algorithms

AS OF SYSTEM TIME construct (SQL), Streams and Tables

assignment (window), Where: Custom Windowing

in fixed windows, Variations on Fixed Windows

in session windows, Variations on Session Windows

in streams and tables model, Where: Windowing

associativity, Incremental Combining

at least once guarantee, Ensuring Exactly Once in Shuffle

B

base subscription (Google Cloud Pub/Sub case study), Case Study: Source
Watermarks for Google Cloud Pub/Sub

batch processing

blending with streaming, When: Triggers

commonalities between batch and streaming, Cloud Dataflow

event-time and processing-time view of, What: Transformations

persistent state in, The Inevitability of Failure

streams and tables view, Temporal Operators

streams and tables view of windowed summation on batch engine, Where:
Windowing

unified batch plus streaming programming model, Cloud Dataflow, Beam

vs. streams and tables, Batch Processing Versus Streams and Tables-
Reconciling with Batch Processing

reconciling the two, Reconciling with Batch Processing

batch systems, On the Greatly Exaggerated Limitations of Streaming

bounded data processing with, Bounded Data

processing of unbounded data, Unbounded Data: Batch

338

processing state and output in example mobile game with user scores,
What: Transformations

streaming systems providing superset of, On the Greatly Exaggerated
Limitations of Streaming

Beam Model, The What, Where, When, and How of Data Processing,
Streams and Tables

(see also Apache Beam)

correct implementation to produce accurate results, Exactly-Once and Side
Effects

holistic view of streams and tables in, A Holistic View of Streams and
Tables in the Beam Model-A Holistic View of Streams and Tables in the
Beam Model

relationship to streams and tables model, A Holistic View of Streams and
Tables in the Beam Model

windowing in, Summary

Bloom filters, Bloom Filters

bounded data, Terminology: What Is Streaming?

processing, Bounded Data

bounded datasets

recomputation on failure, The Inevitability of Failure

bounded sessions, Bounded sessions

buffering

in event-time windows, Windowing by event time

C

Calcite (see Apache Calcite)

CAP theorem, Storm

cardinality

339

in unwindowed joins, Unwindowed Joins

SEMI join, SEMI

of datasets, Terminology: What Is Streaming?, Streams and Tables

reducing for a stream, When: The Wonderful Thing About Triggers Is
Triggers Are Wonderful Things!

Chandy Lamport distributed snapshots, Summary, Flink

checkpointing

in bounded datasets on batch processing pipelines, The Inevitability of
Failure

in Flink, Flink

in processing of unbounded datasets, The Inevitability of Failure

partial progress within a pipeline, Correctness and Efficiency

persistent state over time, On the Greatly Exaggerated Limitations of
Streaming

use to make nondeterministic processing deterministic in Dataflow,
Addressing Determinism

closure property (relational algebra), Relational Algebra, Summary

remaining intact when applied to time-varying relations, Time-Varying
Relations

Cloud Dataflow, The What, Where, When, and How of Data Processing,
Cloud Dataflow-Cloud Dataflow, Summary

balancing correctness, latency, and cost, Cloud Dataflow

Dataflow Model paper, Cloud Dataflow

exactly-once processing in, Exactly-Once and Side Effects

serverless aspect of, Cloud Dataflow

unified batch and streaming programming model

key aspects of, Cloud Dataflow

340

unified batch plus streaming programming model, Cloud Dataflow

watermarks in, case study, Case Study: Watermarks in Google Cloud
Dataflow-Case Study: Watermarks in Google Cloud Dataflow

Cloud Pub/Sub, Heuristic Watermark Creation

as example source, Example Source: Cloud Pub/Sub

as nondeterministic source, Exactly Once in Sources

watermarks for, case study, Case Study: Source Watermarks for Google
Cloud Pub/Sub-Case Study: Source Watermarks for Google Cloud Pub/Sub

combination, incremental (see incremental combination)

CombineFn class (Beam), Incremental Combining

combiner lifting optimization, Graph Optimization, Flume

commutativity, Incremental Combining

completeness

accuracy vs., in exactly-once processing, Accuracy Versus Completeness

concept provided by watermarks, Definition

drawback of event-time windows in, Windowing by event time

watermarks for reasoning about input completeness, Cloud Dataflow

watermarks giving notion of, When: Watermarks

completeness triggers, When: The Wonderful Thing About Triggers Is
Triggers Are Wonderful Things!

watermarks, When: Watermarks

complexity in lambda architecture processing, Why Exactly Once Matters

consistency

consistency mechanism in Flink, Flink

strong consistency for exactly-once processing, On the Greatly
Exaggerated Limitations of Streaming

341

constitution of a dataset, Terminology: What Is Streaming?, Streams and
Tables

conversion attribution, Case Study: Conversion Attribution-Case Study:
Conversion Attribution

with Apache Beam, Conversion Attribution with Apache Beam-Conversion
Attribution with Apache Beam

correctness

Apache Storm and, Storm

balancing with latency and cost in Cloud Dataflow, Cloud Dataflow

in batch and streaming systems, On the Greatly Exaggerated Limitations of
Streaming

MillWheel and, MillWheel

persistent stte as basis for, Correctness and Efficiency

supposed limitations of streaming systems, On the Greatly Exaggerated
Limitations of Streaming

custom windowing, Where: Custom Windowing-One Size Does Not Fit All

benefits of, One Size Does Not Fit All

variations on fixed windows, Variations on Fixed Windows-Per-
element/key fixed windows

per-element/key fixed windows, Per-element/key fixed windows

unaligned fixed windows, Unaligned fixed windows

variations on session windows, Variations on Session Windows-Bounded
sessions

bounded sessions, Bounded sessions

D

data processing

difficulty of, MapReduce

342

what, where, when, and how of, The What, Where, When, and How of
Data Processing-Summary, Cloud Dataflow

what, transformations, What: Transformations-What: Transformations

when and how in streaming systems, Going Streaming: When and How-
How: Accumulation

where, windowing, Where: Windowing-Where: Windowing

data processing patterns, Data Processing Patterns-Windowing by event time

bounded data, Bounded Data

unbounded data, batch processing of, Unbounded Data: Batch

unbounded data, streaming, Unbounded Data: Streaming-Windowing by
event time

data processing, large scale (see large-scale data processing, evolution of)

data types, flexibility in, Generalized State, Conversion Attribution with
Apache Beam

data-driven triggers, Data-driven triggers

data-driven windows, sessions as example, Where: Session Windows

database systems, Stream-and-Table Basics Or: a Special Theory of Stream
and Table Relativity

Dataflow (see Google Cloud Dataflow)

Dataflow Model, The What, Where, When, and How of Data Processing

Dataflow Model paper, Window merging, Cloud Dataflow

datasets

cardinality of, Terminology: What Is Streaming?

constitution of, Terminology: What Is Streaming?

determinism

addressing in exactly-once processing, Addressing Determinism

in sources, Exactly Once in Sources

343

nondeterministic components in side effects, Exactly Once in Sinks

discarding mode (accumulation), How: Accumulation, How: Accumulation

early/on-time/late triggers, How: Accumulation

in streaming SQL, Discarding mode, or lack thereof

domain specific languages (DSLs), Beam

DSLs (domain specific languages), Beam

duplicated work, minimizing with persistent state, Correctness and Efficiency

duplicates, detecting in shuffle, Ensuring Exactly Once in Shuffle

dynamic windows, How: Accumulation

(see also sessions)

dynamic work rebalancing (or liquid sharding), Flume

E

early/on-time/late triggers, When: Early/On-Time/Late Triggers FTW!-When:
Early/On-Time/Late Triggers FTW!

accumulating and retracting mode version, How: Accumulation

discarding mode version, How: Accumulation

early panes, When: Early/On-Time/Late Triggers FTW!

in bounded session window, Bounded sessions

in streams and tables model, When: Triggers

late panes, When: Early/On-Time/Late Triggers FTW!

on-time pane, When: Early/On-Time/Late Triggers FTW!

watermark trigger with late firing in streaming SQL, Watermark triggers

with allowed lateness, When: Allowed Lateness (i.e., Garbage Collection)-
When: Allowed Lateness (i.e., Garbage Collection)

with session windows and retractions, Where: Session Windows

344

efficiency

inefficiencies in MapReduce jobs, Flume

persistent data, minimizing work duplicated and data persistend,
Correctness and Efficiency

end-to-end exactly once, Problem Definition, Kafka

event time

distribution of messages by, Definition

in SQL table UserScores (example), What: Transformations

in streaming SQL, Temporal Operators

skew and watermarks, When: Watermarks

view of batch processing, What: Transformations

vs. processing time, Event Time Versus Processing Time

watermarks, Roadmap, Processing-Time Watermarks

windowing based on, When/Where: Processing-Time Windows

windowing by, Windowing by event time

drawbacks of, Windowing by event time

event-time windowing

over two different processing-time orderings of same input, Event-Time
Windowing

reasons for using in processing-time windowing, Processing-Time
Windowing via Ingress Time

exactly-once processing, On the Greatly Exaggerated Limitations of
Streaming, Exactly-Once and Side Effects-Summary, MillWheel

accuracy vs. completeness, Accuracy Versus Completeness, Problem
Definition

problem definition, Problem Definition

side effects, Side Effects

345

determinism and, Addressing Determinism

end-to-end, Kafka

ensuring exactly once in shuffles, Ensuring Exactly Once in Shuffle

in Apache Flink, Apache Flink, Flink

in Apache Spark Streaming, Other Systems

in conversion attribution pipeline, Case Study: Conversion Attribution

performance, Performance-Garbage Collection

garbage collection, Garbage Collection

graph optimization, Graph Optimization

optimization using Bloom filters, Bloom Filters

use cases

example sink, files, Example Sink: Files

example sink, Google BigQuery, Example Sink: Google BigQuery

example source, Cloud Pub/Sub, Use Cases

why exactly once matters, Why Exactly Once Matters

F

failures, inevitability of, The Inevitability of Failure

fault-tolerance in large-scale data processing, MapReduce

files, using as sinks, Example Sink: Files

filtering, Filtering

filtering relation (WHERE clause), time-varying relation applied to, Time-
Varying Relations

fixed windows, Windowing

unbounded data processing via in batch systems, Fixed windows

variations on, Variations on Fixed Windows-Per-element/key fixed

346

windows

per-element/key fixed windows, Per-element/key fixed windows

unaligned fixed windows, Unaligned fixed windows

windowed joins in, Fixed Windows-Fixed Windows

flexibility

flexible triggering and accumulation modes, Cloud Dataflow

needs in streaming persistent state, Generalized State

in conversion attribution using Apache Beam, Conversion Attribution
with Apache Beam

shortcomings of implicit approaches, Generalized State

Flume, Flume-Flume, Summary

combined batch and streaming approach in, Cloud Dataflow

combiner lifting optimization, Flume

dynamic work rebalancing (or liquid sharding), Flume

extension to support streaming semantics, Flume

FlumeJava paper, Flume

fusion optimizations, Flume

high-level pipelines in, Flume

migration away from MapReduce to Dax execution engine, Flume

MillWheel integration with, MillWheel

optimization of MapReduce jobs, Flume

FlumeJava, Flume

(see also Flume)

FULL OUTER joins, FULL OUTER, Unwindowed Joins, Temporal validity
joins

fusion optimization on pipeline graph, Graph Optimization, Flume

347

G

garbage collection

bits of persistent state not needed, Correctness and Efficiency

in exactly-once processing, Garbage Collection

generalized state, Generalized State-Conversion Attribution with Apache
Beam

case study, conversion attribution, Case Study: Conversion Attribution-
Case Study: Conversion Attribution

flexibility in, Summary

in conversion attribution, Case Study: Conversion Attribution-Case Study:
Conversion Attribution

in conversion attribution using Apache Beam, Conversion Attribution with
Apache Beam-Conversion Attribution with Apache Beam

Google BigQuery, use as a sink, Example Sink: Google BigQuery

Google Cloud Dataflow (see Cloud Dataflow; Dataflow Model)

Google Cloud Pub/Sub (see Cloud Pub/Sub)

Google technologies in large-scale data processing, The Evolution of Large-
Scale Data Processing

graph optimization in Dataflow, Graph Optimization

GROUP BY statement with HAVING clause (SQL), The SQL Model: A
Table-Biased Approach

grouping operations

grouping via incremental combination, Incremental Combining

grouping/ungrouping in Beam Model, The Beam Model: A Stream-Biased
Approach

grouping/ungrouping in SQL, The SQL Model: A Table-Biased Approach

in materialized views, Materialized views

348

grouping/ungrouping in streams and tables, When: Triggers

in Beam Model processing, A Holistic View of Streams and Tables in
the Beam Model

joins as, All Your Joins Are Belong to Streaming

raw grouping of inputs, Raw Grouping

grouping relation, time-varying relation applied to, Time-Varying Relations

grouping transformations, What: Transformations

H

Hadoop, Hadoop, Summary

Spark as successor to, Spark

HAVING clause in GROUP BY statment (SQL), The SQL Model: A Table-
Biased Approach

HDFS (Hadoop Distributed File System), Hadoop

Heron, Storm

heuristic watermarks, When: Watermarks, Source Watermark Creation

allowed lateness and, When: Allowed Lateness (i.e., Garbage Collection)

applying to same dataset with a perfect watermark, When: Watermarks

creation of, Heuristic Watermark Creation

from dynamic sets of time-ordered logs, Heuristic Watermark Creation

from Google Cloud Pub/Sub, Heuristic Watermark Creation

early/on-time/late triggers and, When: Early/On-Time/Late Triggers FTW!

high volumes of data, handling in conversion attribution pipeline, Case Study:
Conversion Attribution

hopping windows (see sliding windows)

I

349

implicit state, Implicit State, Incremental Combining

implicit tables in SQL, The SQL Model: A Table-Biased Approach

in-band watermarks, Case Study: Watermarks in Apache Flink

inaccuracy problems in lambda architecture, Why Exactly Once Matters

inconsistency in lambda architecture processing, Why Exactly Once Matters

incremental combination, Incremental Combining-Incremental Combining,
Summary

incrementalization of aggregations, Incremental Combining

ingress time

processing-time windowing via, Processing-Time Windowing via Ingress
Time-Processing-Time Windowing via Ingress Time

use in achieving processing-time windowing, When/Where: Processing-
Time Windows

ingress timestamping, watermark creation by, Perfect Watermark Creation

inner joins, Inner joins

INNER joins, INNER, Temporal validity joins

input completeness, Cloud Dataflow

input tables (SQL), The SQL Model: A Table-Biased Approach, Materialized
views

input watermarks, Watermark Propagation

for Average Session Lengths stage, Understanding Watermark Propagation

J

Java pseudo-code in Apache Beam examples, What: Transformations

joins, Inner joins, Streaming Joins

(see also inner joins)

(see also streaming joins)

350

all joins as streaming joins, All Your Joins Are Belong to Streaming

K

kappa architecture, On the Greatly Exaggerated Limitations of Streaming

keys, values, windows and partitioning in Beam Model, A Holistic View of
Streams and Tables in the Beam Model

L

lambda architecture, On the Greatly Exaggerated Limitations of Streaming,
Summary, Storm

issues with, Why Exactly Once Matters

using Spark Streaming instead of, Spark

large-scale data processing, evolution of, The Evolution of Large-Scale Data
Processing-Summary

Apache Beam, Beam-Beam

Apache Kafka, Kafka-Kafka

Apache Storm, Storm-Storm

Cloud Dataflow, Cloud Dataflow-Cloud Dataflow

Flume, Flume-Flume

Hadoop, Hadoop

MapReduce, MapReduce-MapReduce

MillWheel, MillWheel-MillWheel

timeline of systems discussed, The Evolution of Large-Scale Data
Processing

late data

and heuristic watermarks, Heuristic Watermark Creation

and perfect watermarks, Perfect Watermark Creation

late panes, When: Early/On-Time/Late Triggers FTW!

351

latency

balancing with correctness and cost in Cloud Dataflow, Cloud Dataflow

improvements in Apache Storm, Storm

in lambda architecture processing, Why Exactly Once Matters

low-latency and eventually correct results with lambda architecture, Storm

system vs. data, distinguishing with processing-time watermarks,
Processing-Time Watermarks

lateness (allowed), When: Allowed Lateness (i.e., Garbage Collection)-When:
Allowed Lateness (i.e., Garbage Collection)

LEFT OUTER joins, LEFT OUTER

liquid sharding, Flume

logical abstraction of execution environment, Cloud Dataflow

logical vs. physical operations in Beam Model, A Holistic View of Streams
and Tables in the Beam Model

and how they relate to streams and tables, A Holistic View of Streams and
Tables in the Beam Model

logs

dymanic sets of time-ordered logs, watermark creation from, Heuristic
Watermark Creation

static sets of time-ordered logs, creation of watermarks, Perfect Watermark
Creation

M

MapReduce, The Evolution of Large-Scale Data Processing-MapReduce,
Summary

Combiners, Incremental Combining

functionality of overall Map and Reduce phases, MapReduce

history of massive-scale sorting experiments at Google, MapReduce

352

MapReduce paper, MapReduce

shortcomings of, Flume

simplicity and scalability, MapReduce

stages answering what questions, What: Transformations

streams and tables analysis of, A Streams and Tables Analysis of
MapReduce-Reconciling with Batch Processing

Map as streams/tables, Map as streams/tables

Reduce as streams/tables, Reduce as streams/tables

visualization of a job, MapReduce

materialized views, Stream-and-Table Basics Or: a Special Theory of Stream
and Table Relativity, Materialized views-Materialized views, Unwindowed
Joins

merging windows, Where: Custom Windowing, Where: Windowing

in parallelized aggregations, Incremental Combining

in session windows, Variations on Session Windows

in streams and tables model, Window merging

no merging in fixed windows, Variations on Fixed Windows

microbatch vs. true streaming debate, Spark

MillWheel, MillWheel-MillWheel, Summary

fault-tolerant stream processing at internet scale, MillWheel

Flume and, Flume

low-latency, strongly consistent processing of unbounded, out-of-order
data, MillWheel

MillWheel paper, On the Greatly Exaggerated Limitations of Streaming

N

network remnants, Garbage Collection

353

nongrouping operations, A General Theory of Stream and Table Relativity,
Summary

nongrouping transformations, What: Transformations

O

OLTP (Online Transaction Processing) tables

STREAM queries and, Streams and Tables

on-time pane, When: Early/On-Time/Late Triggers FTW!

open source ecosystem, Hadoop and, Hadoop

operators (relational algebra)

applied to time-varying relations, Time-Varying Relations

applying to valid relations, Relational Algebra

out-of-band watermark aggregation, Case Study: Watermarks in Apache Flink

out-of-order data

handling in conversion attribution pipeline, Case Study: Conversion
Attribution-Case Study: Conversion Attribution

in temporal validity windows, Temporal validity windows

unbounded, processing in MillWheel, MillWheel

outer joins, When: Watermarks

output tables (SQL), The SQL Model: A Table-Biased Approach,
Materialized views

output timestamps

watermark propagation and, Watermark Propagation and Output
Timestamps-Watermark Propagation and Output Timestamps

watermarks and

with overlapping windows, The Tricky Case of Overlapping Windows

output watermarks, Watermark Propagation

354

components of, Watermark Propagation

for Mobile Sessions and Console Sessions stages, Understanding
Watermark Propagation

P

parallelization of aggregations, Incremental Combining

per-element/key fixed windows, Per-element/key fixed windows

percentile watermarks, Percentile Watermarks-Percentile Watermarks

perfect watermarks, When: Watermarks, Source Watermark Creation

allowed lateness and, When: Allowed Lateness (i.e., Garbage Collection)

applying to same dataset with a heuristic watermark, When: Watermarks

creation of, Perfect Watermark Creation

by ingress timestamping, Perfect Watermark Creation

early/on-time/late triggers and, When: Early/On-Time/Late Triggers FTW!

performance

in exactly-once shuffle delivery, Performance-Garbage Collection

garbage collection, Garbage Collection

graph optimization, Graph Optimization

optimizing with Bloom filters, Bloom Filters

optimizing in conversion attribution pipeline, Case Study: Conversion
Attribution

persistent state, The Practicalities of Persistent State-Summary, MillWheel

generalized state, Generalized State-Conversion Attribution with Apache
Beam

in conversion attribution, Case Study: Conversion Attribution-Case
Study: Conversion Attribution

in conversion attribution using Apache Beam, Conversion Attribution
with Apache Beam-Conversion Attribution with Apache Beam

355

implicit state, Implicit State-Incremental Combining

in incremental combining, Incremental Combining

raw grouping of inputs, Raw Grouping

motivation for, Motivation-Correctness and Efficiency

correctness and efficiency, Correctness and Efficiency

inevitability of failure, The Inevitability of Failure

persistent timers, MillWheel

physical stages and fusion in Beam Model, A Holistic View of Streams and
Tables in the Beam Model

post-declaration of triggers, The Beam Model: A Stream-Biased Approach

predeclaration of triggers, The Beam Model: A Stream-Biased Approach

processing time, When: Watermarks

conversion to event time in watermarks, When: Watermarks

delays in triggers, When: The Wonderful Thing About Triggers Is Triggers
Are Wonderful Things!

event time vs., Event Time Versus Processing Time

in SQL table UserScores (example), What: Transformations

in streaming SQL, Temporal Operators

shifting input observation order in, When/Where: Processing-Time
Windows

view of batch processing, What: Transformations

watermarks, Processing-Time Watermarks-Processing-Time Watermarks

windowing by, Windowing by processing time

processing-time windowing, Summary

event-time windowing comparing two processing-time orderings of same
iput, Event-Time Windowing

356

via ingress time, Processing-Time Windowing via Ingress Time-
Processing-Time Windowing via Ingress Time

via triggers, Processing-Time Windowing via Triggers-Processing-Time
Windowing via Ingress Time

processing-time windows, Advanced Windowing-Processing-Time
Windowing via Ingress Time

downside to, When/Where: Processing-Time Windows

via ingress time, When/Where: Processing-Time Windows

via triggers, When/Where: Processing-Time Windows

Pub/Sub (see Google Cloud Pub/Sub)

Q

Questioning the Lambda Architecture post, On the Greatly Exaggerated
Limitations of Streaming

R

raw grouping, Raw Grouping, Summary

merging windows, Incremental Combining

relational algebra, Relational Algebra

defining time-varying relations in terms of, Time-Varying Relations-Time-
Varying Relations

relations (in databases), Relational Algebra

repeated delay triggers, Repeated delay triggers, Summary

repeated update triggers, When: The Wonderful Thing About Triggers Is
Triggers Are Wonderful Things!

firing with every new record, When: The Wonderful Thing About Triggers
Is Triggers Are Wonderful Things!

reprocessing the input, The Inevitability of Failure

Reshuffle transform, Exactly Once in Sinks, Example Sink: Google BigQuery

357

resilient distributed datasets (RDDs), Apache Spark Streaming, Spark

retractions (accumulating and retracting mode), How: Accumulation

in session window, Where: Session Windows

in streaming SQL, Retractions in a SQL world-Retractions in a SQL world

in Sys.Undo column (hypothetical) in streaming SQL, Streams and Tables

RIGHT OUTER joins, RIGHT OUTER

RPCs (remote procedure calls), use in shuffle and issues with RPCs, Ensuring
Exactly Once in Shuffle

runners in Apache Beam, Beam

innovation in, Beam

S

savepoints, Flink

scalability

in large-scale data processing, MapReduce

in MapReduce, MapReduce, Summary

SCAN-AND-STREAM trigger, Materialized views

scheduling of processing, flexibility in, Generalized State, Conversion
Attribution with Apache Beam

SDKs (software development kits) in Apache Beam, Beam

SELECT statement (SQL), STREAM and TABLE keywords after, Stream
and Table Selection

SEMI joins, SEMI-Unwindowed Joins

session windows, Where: Session Windows-Where: Session Windows,
Summary

variations on, Variations on Session Windows-Bounded sessions

bounded sessions, Bounded sessions

358

sessions, Sessions, Windowing

calculating length per user across two input pipelines, Understanding
Watermark Propagation

interest from windowing standpoint, Where: Session Windows

manually building up on Spark Streaming 1.x (blog post), Where: Session
Windows

retractions and, How: Accumulation

shuffles in a pipeline, Problem Definition-Problem Definition

ensuring exactly once in, Ensuring Exactly Once in Shuffle

Reshuffle transform, Exactly Once in Sinks

side effects

idempotent and robust in replay, Exactly Once in Sinks

in exactly-once processing, Side Effects

sinks, The SQL Model: A Table-Biased Approach

example sink, files, Example Sink: Files

example sink, Google BigQuery, Example Sink: Google BigQuery

sliding windows, Windowing

snapshots

Flink's highly efficient snapshotting implementation, Flink, Flink

in Apache Flink, Apache Flink

source watermarks, creation of, Case Study: Watermarks in Apache Flink

sources, The SQL Model: A Table-Biased Approach

exactly-once processing in, Exactly Once in Sources

example surce, Cloud Pub/Sub, Example Source: Cloud Pub/Sub

spam attacks, protecting against in conversion attribution pipeline, Case
Study: Conversion Attribution

359

Spark Streaming (see Apache Spark Streaming)

Spark Streaming paper, On the Greatly Exaggerated Limitations of Streaming

SQL

Spark integration with, Spark

support for time-varying relations in, Streams and Tables

table-biased approach, The SQL Model: A Table-Biased Approach-
Materialized views

types of joins defined in ANSI SQL, Unwindowed Joins

State Management in Apache Flink, Flink

Storm (see Apache Storm)

STREAM keyword (hypothetical, in SQL), Streams and Tables, Stream and
Table Selection

STREAM queries (hypothetical, in SQL)

providing alternate data history to table-based TVR query, Streams and
Tables

relation to OLTP tables, Streams and Tables

Sys.Undo column referenced from, Streams and Tables

streaming, Streaming 101-Summary

commonalities between batch and streaming, Cloud Dataflow

greatly exaggerated limitations of, On the Greatly Exaggerated Limitations
of Streaming

microbatch vs. true streaming debate, Spark

support for stream processing in SQL materialized views, Materialized
views-Materialized views

terminology, Terminology: What Is Streaming?-Event Time Versus
Processing Time

unified batch plus streaming programming model, Cloud Dataflow, Beam

360

Zeitgeist pipeline, true streaming use case, MillWheel

streaming joins, Streaming Joins-Summary

unwindowed joins, Unwindowed Joins-Unwindowed Joins

FULL OUTER, FULL OUTER

INNER, INNER

LEFT OUTER, LEFT OUTER

RIGHT OUTER, RIGHT OUTER

SEMI, SEMI-Unwindowed Joins

windowed joins, Windowed Joins-Watermarks and temporal validity joins

fixed windows, Fixed Windows-Fixed Windows

temporal validity, Temporal Validity-Watermarks and temporal validity
joins

streaming SQL, Streaming SQL-Summary

complete definition of, What Is Streaming SQL?

looking backward, stream and table biases, Looking Backward: Stream and
Table Biases-Materialized views

looking forward, toward robust streaming, Looking Forward: Toward
Robust Streaming SQL-Discarding mode, or lack thereof

stream and table selection, Stream and Table Selection

temporal operators, Temporal Operators-Discarding mode, or lack
thereof

relational algebra as theoretical foundation of SQL, Relational Algebra

temporal validity window in, Temporal validity windows

time-varying relations, Time-Varying Relations-Time-Varying Relations

unwindowed joins

ANTI, ANTI

streaming systems, Terminology: What Is Streaming?

361

when and how of data processing, Going Streaming: When and How-How:
Accumulation

how, accumulation, How: Accumulation-How: Accumulation

when, allowed lateness, When: Allowed Lateness (i.e., Garbage
Collection)-When: Allowed Lateness (i.e., Garbage Collection)

when, early/on-time/late triggers, When: Early/On-Time/Late Triggers
FTW!-When: Early/On-Time/Late Triggers FTW!

when, triggers, When: The Wonderful Thing About Triggers Is Triggers
Are Wonderful Things!-When: The Wonderful Thing About Triggers Is
Triggers Are Wonderful Things!

when, watermarks, When: Watermarks-When: Watermarks

streams, Terminology: What Is Streaming?

and tables, Streams and Tables-Summary

as data in motion, Toward a General Theory of Stream and Table Relativity

persistent forms of, Correctness and Efficiency

time-varying relations in, Streams and Tables

streams and tables

batch processing vs., Batch Processing Versus Streams and Tables-
Reconciling with Batch Processing

how batch processing fits into stream/table theory, Reconciling with
Batch Processing

how streams relate to bounded/unbounded data, Reconciling with Batch
Processing

streams and tables analysis of MapReduce, A Streams and Tables
Analysis of MapReduce-Reconciling with Batch Processing

comparing classic SQL and Beam Model, looking backward, Looking
Backward: Stream and Table Biases-Materialized views

stream-biased approch in Beam Model, The Beam Model: A Stream-
Biased Approach-The Beam Model: A Stream-Biased Approach

362

table-biased approach in SQL, The SQL Model: A Table-Biased
Approach-Materialized views

conversions to and from in MapReduce, MapReduce

general theory of stream and table relativity, A General Theory of Stream
and Table Relativity-A General Theory of Stream and Table Relativity

holistic view of in Beam Model, A Holistic View of Streams and Tables in
the Beam Model-A Holistic View of Streams and Tables in the Beam
Model

Kafka as embodiment of relationship between, Kafka

popularization of theory by Apache Kafka, Kafka

relationship between Beam Model and, Streams and Tables

special theory of stream and table relativity, Stream-and-Table Basics Or: a
Special Theory of Stream and Table Relativity

table/stream selection for TVRs in streaming SQL, Summary

time-varying relations in, Streams and Tables-Streams and Tables

toward a general theory of stream and table relativity, Toward a General
Theory of Stream and Table Relativity

view of windowed summation, Raw Grouping

what, where, when, and how of, What, Where, When, and How in a
Streams and Tables World

how, accumulation, How: Accumulation

what, transformations, What: Transformations-What: Transformations

when, triggers, When: Triggers-When: Triggers

where, windowing, Where: Windowing-Window merging

strong consistency in a streaming system, On the Greatly Exaggerated
Limitations of Streaming

subscriptions in Google Cloud Pub/Sub case study, Case Study: Source
Watermarks for Google Cloud Pub/Sub

363

summation via incremental combination, Incremental Combining

Sys.EmitIndex column (hypothetical, in SQL), Watermark triggers, Summary

Sys.EmitTiming column (hypothetical, in SQL), Watermark triggers,
Summary

Sys.MTime column (hypothetical, in SQL), Temporal Operators, Summary

Sys.Undo column (hypothetical, in SQL), Streams and Tables, How:
accumulation, Summary

distinguishing between normal rows and rows retracting a previous value,
Streams and Tables

T

TABLE keyword (hypothetical, in SQL), Streams and Tables, Stream and
Table Selection

tables, Terminology: What Is Streaming?

as data at rest, Toward a General Theory of Stream and Table Relativity

conversion of streams from/to in SQL, The SQL Model: A Table-Biased
Approach

explicit and implicit in SQL, The SQL Model: A Table-Biased Approach

persistent state, The Practicalities of Persistent State

table-based TVR vs. STREAM query TVR, Streams and Tables

time-varying relations in, Streams and Tables

tables and streams (see streams and tables)

temporal operators (in streaming SQL), Temporal Operators-Discarding
mode, or lack thereof

triggers, When: triggers-Data-driven triggers

windowing, Where: windowing-Where: windowing

temporal tables (SQL), Streams and Tables

temporal validity, Temporal Validity-Watermarks and temporal validity joins

364

temporal validity joins, Temporal validity joins-Watermarks and temporal
validity joins

watermarks and, Watermarks and temporal validity joins

temporal validity windows, Temporal validity windows-Temporal validity
windows

time

event time vs. processing time, Event Time Versus Processing Time

partitioning in windowed joins, Windowed Joins

time-agnostic processing of unbounded data, Time-agnostic

filtering, Filtering

inner joins, Inner joins

tools for reasoning about, On the Greatly Exaggerated Limitations of
Streaming

time-varying relations, Time-Varying Relations-Time-Varying Relations,
Stream and Table Selection, Summary

defining in terms of relational algebra, Time-Varying Relations-Time-
Varying Relations

for FULL OUTER joins, FULL OUTER

in temporal validity joins, Temporal validity joins

in temporal validity windows, Temporal validity windows

relationship with stream and table theory, Streams and Tables-Streams and
Tables

timers, Generalized State, MillWheel

timestamps

event, Definition

system timestamp for Bloom filters, Bloom Filters

watermarks and, Definition

365

timing out a join, providing reference point for, Windowed Joins

tools for reasoning about time, On the Greatly Exaggerated Limitations of
Streaming

tracking subscription (Google Cloud Pub/Sub case study), Case Study: Source
Watermarks for Google Cloud Pub/Sub

transformations, What: Transformations-What: Transformations

in streams and tables model, What: Transformations-What:
Transformations

triggers, Roadmap, When: The Wonderful Thing About Triggers Is Triggers
Are Wonderful Things!-When: The Wonderful Thing About Triggers Is
Triggers Are Wonderful Things!

completeness, When: The Wonderful Thing About Triggers Is Triggers Are
Wonderful Things!

watermark completeness trigger, When: Watermarks

early/on-time/late, When: Early/On-Time/Late Triggers FTW!-When:
Early/On-Time/Late Triggers FTW!

with allowed lateness, When: Allowed Lateness (i.e., Garbage
Collection)-When: Allowed Lateness (i.e., Garbage Collection)

in processing-time window via ingress time, Processing-Time Windowing
via Ingress Time

in streaming SQL, When: triggers-Data-driven triggers, Summary

data-driven triggers, Data-driven triggers

repeated delay triggers, Repeated delay triggers

watermark triggers, Watermark triggers-Watermark triggers

in streams and tables model, When: Triggers-When: Triggers

blending of batch and streaming, When: Triggers

early/on-time/late firings, When: Triggers

per-record triggering in streaming engine, When: Triggers

366

trigger guarantees (or lack of), When: Triggers

windowed summation with heuristic watermark on streaming engine,
When: Triggers

in unwindowed joins, Unwindowed Joins

predeclaration or post-declaration options, Beam Model and, The Beam
Model: A Stream-Biased Approach

processing-time delays in

aligned delays, When: The Wonderful Thing About Triggers Is Triggers
Are Wonderful Things!

unaligned delays, When: The Wonderful Thing About Triggers Is
Triggers Are Wonderful Things!

processing-time windowing via, Processing-Time Windowing via Triggers-
Processing-Time Windowing via Ingress Time

repeated update, When: The Wonderful Thing About Triggers Is Triggers
Are Wonderful Things!

SCAN-AND-STREAM trigger in materialized views, Materialized views

use in achieving processing-time windowing, When/Where: Processing-
Time Windows

tumbling windows (see fixed windows)

Twitter Heron, Storm

U

unaligned delays (processing time in triggers), When: The Wonderful Thing
About Triggers Is Triggers Are Wonderful Things!

unaligned windows, Where: Session Windows

unaligned fixed windows, Unaligned fixed windows

unbounded data, Terminology: What Is Streaming?

processing by batch systems, Unbounded Data: Batch

367

processing by streaming systems, Unbounded Data: Streaming-Windowing
by event time

time-agnostic processing, Time-agnostic

using approximation algorithms, Approximation algorithms

UnboundedReader.getCurrentRecordId method, Exactly Once in Sources

ungrouping operations, The Beam Model: A Stream-Biased Approach

(see also grouping operations)

unified batch plus streaming programming model

in Apache Beam, Beam

unpredictability in lambda architecture processing, Why Exactly Once
Matters

unwindowed joins, Unwindowed Joins-Unwindowed Joins

ANTI, ANTI

FULL OUTER, FULL OUTER

INNER, INNER

LEFT OUTER, LEFT OUTER

RIGHT OUTER, RIGHT OUTER

SEMI, SEMI-Unwindowed Joins

V

visibility (watermarks), Definition

W

watermark triggers

in streaming SQL, Watermark triggers-Watermark triggers, Summary

watermarks, Roadmap, When: Watermarks-When: Watermarks, Watermarks-
Summary, MillWheel-MillWheel

about, Definition

368

allowed lateness and, When: Allowed Lateness (i.e., Garbage Collection)

and temporal validity joins, Watermarks and temporal validity joins

applying perfect and heuristic watermarks to same dataset, When:
Watermarks

as class of functions, When: Watermarks

case study, watermarks for Google Cloud Pub/Sub, Case Study: Source
Watermarks for Google Cloud Pub/Sub-Case Study: Source Watermarks
for Google Cloud Pub/Sub

case study, watermarks in Apache Flink, Case Study: Watermarks in
Apache Flink

case study, watermarks in Google Cloud Dataflow, Case Studies-Case
Study: Watermarks in Google Cloud Dataflow

for exactly-once garbage collection in Dataflow, Garbage Collection

function, converting processing time to event time, When: Watermarks

heuristic, When: Watermarks

in processing-time windowing via ingress time, Processing-Time
Windowing via Ingress Time

in streaming SQL, Summary

percentile, Percentile Watermarks-Percentile Watermarks

perfect, When: Watermarks

processing-time, Processing-Time Watermarks-Processing-Time
Watermarks

propagation, Watermark Propagation-The Tricky Case of Overlapping
Windows

and output timestamps, Watermark Propagation and Output Timestamps-
Watermark Propagation and Output Timestamps

with overlapping windows, The Tricky Case of Overlapping Windows

source watermark creation, Source Watermark Creation-Heuristic

369

Watermark Creation

heuristic watermarks, Heuristic Watermark Creation

perfect watermarks, Perfect Watermark Creation

too fast, When: Watermarks

too slow, When: Watermarks

use in Cloud Dataflow, Cloud Dataflow

Windmill, MillWheel

windowing, Event Time Versus Processing Time, Where: Windowing-
Where: Windowing, Summary, All Your Joins Are Belong to Streaming

(see also unwindowed joins)

accumulation modes for a window, Roadmap

by event time, Windowing by event time

by processing time, Windowing by processing time

custom, Where: Custom Windowing-One Size Does Not Fit All

benefits of, One Size Does Not Fit All

elements of custom windowing strategy, Where: Custom Windowing

variations on fixed windows, Variations on Fixed Windows-Per-
element/key fixed windows

variations on session windows, Variations on Session Windows-
Bounded sessions

different strategies for, Windowing

dynamic windows and retractions, How: Accumulation

end of window and output timestamp, Watermark Propagation and Output
Timestamps

fixed windows, Windowing

in Cloud Dataflow, Cloud Dataflow

370

in streaming SQL, Where: windowing-Where: windowing, Summary

in streams and tables model, Where: Windowing-Window merging

lifetime of windows, When: Allowed Lateness (i.e., Garbage Collection)

nondeterministic records in windowed aggregation, Exactly Once in Sinks

overlapping windows and output timestamp, The Tricky Case of
Overlapping Windows

session windows, Where: Session Windows-Where: Session Windows

sessions, Windowing

sessions in unbounded data processing by batch systems, Sessions

sliding windows, Windowing

summation code example, Where: Windowing

summation on a batch engine, Where: Windowing

summation on streaming dataset with perfect and heuristic watermarks,
When: Watermarks

triggers for output, Roadmap

unbounded data processing via fixed windows in batch systems, Fixed
windows

windowed file writes, Example Sink: Files

windowed joins, Windowed Joins-Watermarks and temporal validity joins

fixed windows, Fixed Windows-Fixed Windows

temporal validity, Temporal Validity-Watermarks and temporal validity
joins

write and read granularity, flexibility in, Generalized State, Conversion
Attribution with Apache Beam

Z

Zeitgeist pipeline, true streaming use case, MillWheel

371

About the Authors
Tyler Akidau is a senior staff software engineer at Google, where he is the
technical lead for the Data Processing Languages & Systems group,
responsible for Google’s Apache Beam efforts, Google Cloud Dataflow, and
internal data processing tools like Google Flume, MapReduce, and
MillWheel. Tyler is also a founding member of the Apache Beam PMC.
Though deeply passionate and vocal about the capabilities and importance of
stream processing, he is also a firm believer in batch and streaming as two
sides of the same coin, with the real endgame for data processing systems
being the seamless merging between the two. He is the author of the
“Dataflow Model” paper and the “Streaming 101” and “Streaming 102”
articles on the O’Reilly website. His preferred mode of transportation is by
cargo bike, with his two young daughters in tow.

Slava Chernyak is a senior software engineer at Google Seattle. Slava spent
more than six years working on Google’s internal massive-scale streaming
data processing systems and has since become involved with designing and
building Windmill, Google Cloud Dataflow’s next-generation streaming
backend, from the ground up. Slava is passionate about making massive-scale
stream processing available and useful to a broader audience. When he is not
working on streaming systems, Slava is out enjoying the natural beauty of the
Pacific Northwest.

Reuven Lax is a senior staff software engineer at Google, Seattle, and has
spent the past ten years helping to shape Google’s data processing and
analysis strategy. For much of that time he has focused on Google’s low-
latency, streaming data processing efforts, first as a long-time member and
lead of the MillWheel team, and more recently founding and leading the team
responsible for Windmill, the next-generation stream processing engine
powering Google Cloud Dataflow. He is also a Beam PMC member. He’s
very excited to bring Google’s data processing experience to the world at
large and proud to have been a part of publishing both the “MillWheel” paper
in 2013 and the “Dataflow Model” paper in 2015. When not at work, Reuven
enjoys swing dancing, rock climbing, and exploring new parts of the world.

372

http://bit.ly/2sXgVJ3
http://oreil.ly/1p1AKux
http://oreil.ly/1TV7YGU
http://bit.ly/2yab5ZH
http://bit.ly/2sXgVJ3

Colophon
The animal on the cover of Streaming Systems is a brown trout (Salmo trutta)
a species of medium-sized fish native to northern Europe but now distributed
across the globe. Brown trout generally weigh about 2 pounds and grow to a
length of 16–31 inches. They have an overall shiny brown color with many
dark spots over their upper body.

Brown trout feed mostly on aquatic invertebrates although larger members of
the species have been known to prey on other fish. During spawning, the
female brown trout produces thousands of eggs. It takes 3–4 years for a
brown trout to reach maturity.

Popular with anglers, brown trout were introduced into lakes and rivers
throughout the world during the 19 and early 20 centuries. To this day,
brown trout are farmed commercially and stocked for recreational fishing.
Brown trout are edible and can be prepared in several ways, including
grilling, frying, and smoking.

The animal on the improved cover in Figure P-1 is a robotic tyrannosaurus
rex imbued with the soul of Sean Connery. True to form, it always speaks
with a Scottish accent, even when playing the role of a Russian submarine
captain.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Karen Montgomery. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

th th

373

http://animals.oreilly.com

	Preface Or: What Are You Getting Yourself Into Here?
	Navigating This Book
	Takeaways

	Conventions Used in This Book
	Online Resources
	Figures
	Code Snippets

	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	I. The Beam Model
	1. Streaming 101
	Terminology: What Is Streaming?
	On the Greatly Exaggerated Limitations of Streaming
	Event Time Versus Processing Time

	Data Processing Patterns
	Bounded Data
	Unbounded Data: Batch
	Unbounded Data: Streaming

	Summary

	2. The What, Where, When, and How of Data Processing
	Roadmap
	Batch Foundations: What and Where
	What: Transformations
	Where: Windowing

	Going Streaming: When and How
	When: The Wonderful Thing About Triggers Is Triggers Are Wonderful Things!
	When: Watermarks
	When: Early/On-Time/Late Triggers FTW!
	When: Allowed Lateness (i.e., Garbage Collection)
	How: Accumulation

	Summary

	3. Watermarks
	Definition
	Source Watermark Creation
	Perfect Watermark Creation
	Heuristic Watermark Creation

	Watermark Propagation
	Understanding Watermark Propagation
	Watermark Propagation and Output Timestamps
	The Tricky Case of Overlapping Windows

	Percentile Watermarks
	Processing-Time Watermarks
	Case Studies
	Case Study: Watermarks in Google Cloud Dataflow
	Case Study: Watermarks in Apache Flink
	Case Study: Source Watermarks for Google Cloud Pub/Sub

	Summary

	4. Advanced Windowing
	When/Where: Processing-Time Windows
	Event-Time Windowing
	Processing-Time Windowing via Triggers
	Processing-Time Windowing via Ingress Time

	Where: Session Windows
	Where: Custom Windowing
	Variations on Fixed Windows
	Variations on Session Windows
	One Size Does Not Fit All

	Summary

	5. Exactly-Once and Side Effects
	Why Exactly Once Matters
	Accuracy Versus Completeness
	Side Effects
	Problem Definition

	Ensuring Exactly Once in Shuffle
	Addressing Determinism
	Performance
	Graph Optimization
	Bloom Filters
	Garbage Collection

	Exactly Once in Sources
	Exactly Once in Sinks
	Use Cases
	Example Source: Cloud Pub/Sub
	Example Sink: Files
	Example Sink: Google BigQuery

	Other Systems
	Apache Spark Streaming
	Apache Flink

	Summary

	II. Streams and Tables
	6. Streams and Tables
	Stream-and-Table Basics Or: a Special Theory of Stream and Table Relativity
	Toward a General Theory of Stream and Table Relativity

	Batch Processing Versus Streams and Tables
	A Streams and Tables Analysis of MapReduce
	Reconciling with Batch Processing

	What, Where, When, and How in a Streams and Tables World
	What: Transformations
	Where: Windowing
	When: Triggers
	How: Accumulation
	A Holistic View of Streams and Tables in the Beam Model

	A General Theory of Stream and Table Relativity
	Summary

	7. The Practicalities of Persistent State
	Motivation
	The Inevitability of Failure
	Correctness and Efficiency

	Implicit State
	Raw Grouping
	Incremental Combining

	Generalized State
	Case Study: Conversion Attribution
	Conversion Attribution with Apache Beam

	Summary

	8. Streaming SQL
	What Is Streaming SQL?
	Relational Algebra
	Time-Varying Relations
	Streams and Tables

	Looking Backward: Stream and Table Biases
	The Beam Model: A Stream-Biased Approach
	The SQL Model: A Table-Biased Approach

	Looking Forward: Toward Robust Streaming SQL
	Stream and Table Selection
	Temporal Operators

	Summary

	9. Streaming Joins
	All Your Joins Are Belong to Streaming
	Unwindowed Joins
	FULL OUTER
	LEFT OUTER
	RIGHT OUTER
	INNER
	ANTI
	SEMI

	Windowed Joins
	Fixed Windows
	Temporal Validity

	Summary

	10. The Evolution of Large-Scale Data Processing
	MapReduce
	Hadoop
	Flume
	Storm
	Spark
	MillWheel
	Kafka
	Cloud Dataflow
	Flink
	Beam
	Summary

	Index

