
Types and Programming Languages

Types and Programming Languages

Benjamin C. Pierce

The MIT Press

Cambridge, Massachusetts

London, England

©2002 Benjamin C. Pierce

All rights reserved. No part of this book may be reproduced in any form by

any electronic of mechanical means (including photocopying, recording, or

information storage and retrieval) without permission in writing from the

publisher.

This book was set in Lucida Bright by the author using the LATEX document

preparation system.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Pierce, Benjamin C.

Types and programming languages / Benjamin C. Pierce

p. cm.

Includes bibliographical references and index.

ISBN 0-262-16209-1 (hc. : alk. paper)

1. Programming languages (Electronic computers). I. Title.

QA76.7 .P54 2002

005.13—dc21

2001044428

Contents

Preface xiii

1 Introduction 1

1.1 Types in Computer Science 1

1.2 What Type Systems Are Good For 4

1.3 Type Systems and Language Design 9

1.4 Capsule History 10

1.5 Related Reading 12

2 Mathematical Preliminaries 15

2.1 Sets, Relations, and Functions 15

2.2 Ordered Sets 16

2.3 Sequences 18

2.4 Induction 19

2.5 Background Reading 20

I Untyped Systems 21

3 Untyped Arithmetic Expressions 23

3.1 Introduction 23

3.2 Syntax 26

3.3 Induction on Terms 29

3.4 Semantic Styles 32

3.5 Evaluation 34

3.6 Notes 43

vi Contents

4 An ML Implementation of Arithmetic Expressions 45

4.1 Syntax 46

4.2 Evaluation 47

4.3 The Rest of the Story 49

5 The Untyped Lambda-Calculus 51

5.1 Basics 52

5.2 Programming in the Lambda-Calculus 58

5.3 Formalities 68

5.4 Notes 73

6 Nameless Representation of Terms 75

6.1 Terms and Contexts 76

6.2 Shifting and Substitution 78

6.3 Evaluation 80

7 An ML Implementation of the Lambda-Calculus 83

7.1 Terms and Contexts 83

7.2 Shifting and Substitution 85

7.3 Evaluation 87

7.4 Notes 88

II Simple Types 89

8 Typed Arithmetic Expressions 91

8.1 Types 91

8.2 The Typing Relation 92

8.3 Safety = Progress + Preservation 95

9 Simply Typed Lambda-Calculus 99

9.1 Function Types 99

9.2 The Typing Relation 100

9.3 Properties of Typing 104

9.4 The Curry-Howard Correspondence 108

9.5 Erasure and Typability 109

9.6 Curry-Style vs. Church-Style 111

9.7 Notes 111

10 An ML Implementation of Simple Types 113

10.1 Contexts 113

10.2 Terms and Types 115

10.3 Typechecking 115

Contents vii

11 Simple Extensions 117

11.1 Base Types 117

11.2 The Unit Type 118

11.3 Derived Forms: Sequencing and Wildcards 119

11.4 Ascription 121

11.5 Let Bindings 124

11.6 Pairs 126

11.7 Tuples 128

11.8 Records 129

11.9 Sums 132

11.10 Variants 136

11.11 General Recursion 142

11.12 Lists 146

12 Normalization 149

12.1 Normalization for Simple Types 149

12.2 Notes 152

13 References 153

13.1 Introduction 153

13.2 Typing 159

13.3 Evaluation 159

13.4 Store Typings 162

13.5 Safety 165

13.6 Notes 170

14 Exceptions 171

14.1 Raising Exceptions 172

14.2 Handling Exceptions 173

14.3 Exceptions Carrying Values 175

III Subtyping 179

15 Subtyping 181

15.1 Subsumption 181

15.2 The Subtype Relation 182

15.3 Properties of Subtyping and Typing 188

15.4 The Top and Bottom Types 191

15.5 Subtyping and Other Features 193

15.6 Coercion Semantics for Subtyping 200

15.7 Intersection and Union Types 206

15.8 Notes 207

viii Contents

16 Metatheory of Subtyping 209

16.1 Algorithmic Subtyping 210

16.2 Algorithmic Typing 213

16.3 Joins and Meets 218

16.4 Algorithmic Typing and the Bottom Type 220

17 An ML Implementation of Subtyping 221

17.1 Syntax 221

17.2 Subtyping 221

17.3 Typing 222

18 Case Study: Imperative Objects 225

18.1 What Is Object-Oriented Programming? 225

18.2 Objects 228

18.3 Object Generators 229

18.4 Subtyping 229

18.5 Grouping Instance Variables 230

18.6 Simple Classes 231

18.7 Adding Instance Variables 233

18.8 Calling Superclass Methods 234

18.9 Classes with Self 234

18.10 Open Recursion through Self 235

18.11 Open Recursion and Evaluation Order 237

18.12 A More Efficient Implementation 241

18.13 Recap 244

18.14 Notes 245

19 Case Study: Featherweight Java 247

19.1 Introduction 247

19.2 Overview 249

19.3 Nominal and Structural Type Systems 251

19.4 Definitions 254

19.5 Properties 261

19.6 Encodings vs. Primitive Objects 262

19.7 Notes 263

Contents ix

IV Recursive Types 265

20 Recursive Types 267

20.1 Examples 268

20.2 Formalities 275

20.3 Subtyping 279

20.4 Notes 279

21 Metatheory of Recursive Types 281

21.1 Induction and Coinduction 282

21.2 Finite and Infinite Types 284

21.3 Subtyping 286

21.4 A Digression on Transitivity 288

21.5 Membership Checking 290

21.6 More Efficient Algorithms 295

21.7 Regular Trees 298

21.8 µ-Types 299

21.9 Counting Subexpressions 304

21.10 Digression: An Exponential Algorithm 309

21.11 Subtyping Iso-Recursive Types 311

21.12 Notes 312

V Polymorphism 315

22 Type Reconstruction 317

22.1 Type Variables and Substitutions 317

22.2 Two Views of Type Variables 319

22.3 Constraint-Based Typing 321

22.4 Unification 326

22.5 Principal Types 329

22.6 Implicit Type Annotations 330

22.7 Let-Polymorphism 331

22.8 Notes 336

23 Universal Types 339

23.1 Motivation 339

23.2 Varieties of Polymorphism 340

23.3 System F 341

23.4 Examples 344

23.5 Basic Properties 353

23.6 Erasure, Typability, and Type Reconstruction 354

x Contents

23.7 Erasure and Evaluation Order 357

23.8 Fragments of System F 358

23.9 Parametricity 359

23.10 Impredicativity 360

23.11 Notes 361

24 Existential Types 363

24.1 Motivation 363

24.2 Data Abstraction with Existentials 368

24.3 Encoding Existentials 377

24.4 Notes 379

25 An ML Implementation of System F 381

25.1 Nameless Representation of Types 381

25.2 Type Shifting and Substitution 382

25.3 Terms 383

25.4 Evaluation 385

25.5 Typing 386

26 Bounded Quantification 389

26.1 Motivation 389

26.2 Definitions 391

26.3 Examples 396

26.4 Safety 400

26.5 Bounded Existential Types 406

26.6 Notes 408

27 Case Study: Imperative Objects, Redux 411

28 Metatheory of Bounded Quantification 417

28.1 Exposure 417

28.2 Minimal Typing 418

28.3 Subtyping in Kernel F<: 421

28.4 Subtyping in Full F<: 424

28.5 Undecidability of Full F<: 427

28.6 Joins and Meets 432

28.7 Bounded Existentials 435

28.8 Bounded Quantification and the Bottom Type 436

Contents xi

VI Higher-Order Systems 437

29 Type Operators and Kinding 439

29.1 Intuitions 440

29.2 Definitions 445

30 Higher-Order Polymorphism 449

30.1 Definitions 449

30.2 Example 450

30.3 Properties 453

30.4 Fragments of Fω 461

30.5 Going Further: Dependent Types 462

31 Higher-Order Subtyping 467

31.1 Intuitions 467

31.2 Definitions 469

31.3 Properties 472

31.4 Notes 472

32 Case Study: Purely Functional Objects 475

32.1 Simple Objects 475

32.2 Subtyping 476

32.3 Bounded Quantification 477

32.4 Interface Types 479

32.5 Sending Messages to Objects 480

32.6 Simple Classes 481

32.7 Polymorphic Update 482

32.8 Adding Instance Variables 485

32.9 Classes with “Self” 486

32.10 Notes 488

Appendices 491

A Solutions to Selected Exercises 493

B Notational Conventions 565

B.1 Metavariable Names 565

B.2 Rule Naming Conventions 565

B.3 Naming and Subscripting Conventions 566

References 567

Index 605

Preface

The study of type systems—and of programming languages from a type-

theoretic perspective—has become an energetic field with major applications

in software engineering, language design, high-performance compiler imple-

mentation, and security. This text offers a comprehensive introduction to the

fundamental definitions, results, and techniques in the area.

Audience

The book addresses two main audiences: graduate students and researchers

specializing in programming languages and type theory, and graduate stu-

dents and mature undergraduates from all areas of computer science who

want an introduction to key concepts in the theory of programming lan-

guages. For the former group, the book supplies a thorough tour of the field,

with sufficient depth to proceed directly to the research literature. For the

latter, it provides extensive introductory material and a wealth of examples,

exercises, and case studies. It can serve as the main text for both introductory

graduate-level courses and advanced seminars in programming languages.

Goals

A primary aim is coverage of core topics, including basic operational seman-

tics and associated proof techniques, the untyped lambda-calculus, simple

type systems, universal and existential polymorphism, type reconstruction,

subtyping, bounded quantification, recursive types, and type operators, with

shorter discussions of numerous other topics.

A second main goal is pragmatism. The book concentrates on the use of

type systems in programming languages, at the expense of some topics (such

as denotational semantics) that probably would be included in a more mathe-

matical text on typed lambda-calculi. The underlying computational substrate

xiv Preface

is a call-by-value lambda-calculus, which matches most present-day program-

ming languages and extends easily to imperative constructs such as refer-

ences and exceptions. For each language feature, the main concerns are the

practical motivations for considering this feature, the techniques needed to

prove safety of languages that include it, and the implementation issues that

it raises—in particular, the design and analysis of typechecking algorithms.

A further goal is respect for the diversity of the field; the book covers

numerous individual topics and several well-understood combinations but

does not attempt to bring everything together into a single unified system.

Unified presentations have been given for some subsets of the topics—for

example, many varieties of “arrow types” can be elegantly and compactly

treated in the uniform notation of pure type systems—but the field as a whole

is still growing too rapidly to be fully systematized.

The book is designed for ease of use, both in courses and for self-study.

Full solutions are provided for most of the exercises. Core definitions are or-

ganized into self-contained figures for easy reference. Dependencies between

concepts and systems are made as explicit as possible. The text is supple-

mented with an extensive bibliography and index.

A final organizing principle is honesty. All the systems discussed in the

book (except a few that are only mentioned in passing) are implemented. Each

chapter is accompanied by a typechecker and interpreter that are used to

check the examples mechanically. These implementations are available from

the book’s web site and can be used for programming exercises, experiment-

ing with extensions, and larger class projects.

To achieve these goals, some other desirable properties have necessarily

been sacrificed. The most important of these is completeness of coverage.

Surveying the whole area of programming languages and type systems is

probably impossible in one book—certainly in a textbook. The focus here is

on careful development of core concepts; numerous pointers to the research

literature are supplied as starting points for further study. A second non-goal

is the practical efficiency of the typechecking algorithms: this is not a book

on industrial-strength compiler or typechecker implementation.

Structure

Part I of the book discusses untyped systems. Basic concepts of abstract syn-

tax, inductive definitions and proofs, inference rules, and operational seman-

tics are introduced first in the setting of a very simple language of numbers

and booleans, then repeated for the untyped lambda-calculus. Part II covers

the simply typed lambda-calculus and a variety of basic language features

such as products, sums, records, variants, references, and exceptions. A pre-

Preface xv

liminary chapter on typed arithmetic expressions provides a gentle introduc-

tion to the key idea of type safety. An optional chapter develops a proof

of normalization for the simply typed lambda-calculus using Tait’s method.

Part III addresses the fundamental mechanism of subtyping; it includes a

detailed discussion of metatheory and two extended case studies. Part IV

covers recursive types, in both the simple iso-recursive and the trickier equi-

recursive formulations. The second of the two chapters in this part develops

the metatheory of a system with equi-recursive types and subtyping in the

mathematical framework of coinduction. Part V takes up polymorphism, with

chapters on ML-style type reconstruction, the more powerful impredicative

polymorphism of System F, existential quantification and its connections with

abstract data types, and the combination of polymorphism and subtyping in

systems with bounded quantification. Part VI deals with type operators. One

chapter covers basic concepts; the next develops System Fω and its metathe-

ory; the next combines type operators and bounded quantification to yield

System Fω<:; the final chapter is a closing case study.

The major dependencies between chapters are outlined in Figure P-1. Gray

arrows indicate that only part of a later chapter depends on an earlier one.

The treatment of each language feature discussed in the book follows a

common pattern. Motivating examples are first; then formal definitions; then

proofs of basic properties such as type safety; then (usually in a separate

chapter) a deeper investigation of metatheory, leading to typechecking algo-

rithms and their proofs of soundness, completeness, and termination; and

finally (again in a separate chapter) the concrete realization of these algo-

rithms as an OCaml (Objective Caml) program.

An important source of examples throughout the book is the analysis and

design of features for object-oriented programming. Four case-study chap-

ters develop different approaches in detail—a simple model of conventional

imperative objects and classes (Chapter 18), a core calculus based on Java

(Chapter 19), a more refined account of imperative objects using bounded

quantification (Chapter 27), and a treatment of objects and classes in the

purely functional setting of System Fω<:, using existential types (Chapter 32).

To keep the book small enough to be covered in a one-semester advanced

course—and light enough to be lifted by the average graduate student—it was

necessary to exclude many interesting and important topics. Denotational

and axiomatic approaches to semantics are omitted completely; there are al-

ready excellent books covering these approaches, and addressing them here

would detract from this book’s strongly pragmatic, implementation-oriented

perspective. The rich connections between type systems and logic are sug-

gested in a few places but not developed in detail; while important, these

would take us too far afield. Many advanced features of programming lan-

xvi Preface

30 31 3229

2 3

4 5 8

1

7

6 9

21

27

10

11 12

20

23

17

25

13 14 15 22

1816 19 26

28

24

Figure P-1: Chapter dependencies

Preface xvii

guages and type systems are mentioned only in passing, e.g, dependent types,

intersection types, and the Curry-Howard correspondence; short sections on

these topics provide starting points for further reading. Finally, except for a

brief excursion into a Java-like core language (Chapter 19), the book focuses

entirely on systems based on the lambda-calculus; however, the concepts and

mechanisms developed in this setting can be transferred directly to related

areas such as typed concurrent languages, typed assembly languages, and

specialized object calculi.

Required Background

The text assumes no preparation in the theory of programming languages,

but readers should start with a degree of mathematical maturity—in particu-

lar, rigorous undergraduate coursework in discrete mathematics, algorithms,

and elementary logic.

Readers should be familiar with at least one higher-order functional pro-

gramming language (Scheme, ML, Haskell, etc.), and with basic concepts of

programming languages and compilers (abstract syntax, BNF grammars, eval-

uation, abstract machines, etc.). This material is available in many excellent

undergraduate texts; I particularly like Essentials of Programming Languages

by Friedman, Wand, and Haynes (2001) and Programming Language Prag-

matics by Scott (1999). Experience with an object-oriented language such as

Java (Arnold and Gosling, 1996) is useful in several chapters.

The chapters on concrete implementations of typecheckers present signif-

icant code fragments in OCaml (or Objective Caml), a popular dialect of ML.

Prior knowledge of OCaml is helpful in these chapters, but not absolutely nec-

essary; only a small part of the language is used, and features are explained

at their first occurrence. These chapters constitute a distinct thread from the

rest of the book and can be skipped completely if desired.

The best textbook on OCaml at the moment is Cousineau and Mauny’s

(1998). The tutorial materials packaged with the OCaml distribution (avail-

able at http://caml.inria.fr and http://www.ocaml.org) are also very

readable.

Readers familiar with the other major dialect of ML, Standard ML, should

have no trouble following the OCaml code fragments. Popular textbooks on

Standard ML include those by Paulson (1996) and Ullman (1997).

Course Outlines

An intermediate or advanced graduate course should be able to cover most

of the book in a semester. Figure P-2 gives a sample syllabus from an upper-

xviii Preface

level course for doctoral students at the University of Pennsylvania (two 90-

minute lectures a week, assuming minimal prior preparation in programming

language theory but moving quickly).

For an undergraduate or an introductory graduate course, there are a num-

ber of possible paths through the material. A course on type systems in pro-

gramming would concentrate on the chapters that introduce various typing

features and illustrate their uses and omit most of the metatheory and im-

plementation chapters. Alternatively, a course on basic theory and implemen-

tation of type systems would progress through all the early chapters, prob-

ably skipping Chapter 12 (and perhaps 18 and 21) and sacrificing the more

advanced material toward the end of the book. Shorter courses can also be

constructed by selecting particular chapters of interest using the dependency

diagram in Figure P-1.

The book is also suitable as the main text for a more general graduate

course in theory of programming languages. Such a course might spend half

to two-thirds of a semester working through the better part of the book and

devote the rest to, say, a unit on the theory of concurrency based on Milner’s

pi-calculus book (1999), an introduction to Hoare Logic and axiomatic seman-

tics (e.g. Winskel, 1993), or a survey of advanced language features such as

continuations or module systems.

In a course where term projects play a major role, it may be desirable to

postpone some of the theoretical material (e.g., normalization, and perhaps

some of the chapters on metatheory) so that a broad range of examples can

be covered before students choose project topics.

Exercises

Most chapters include extensive exercises—some designed for pencil and pa-

per, some involving programming examples in the calculi under discussion,

and some concerning extensions to the ML implementations of these cal-

culi. The estimated difficulty of each exercise is indicated using the following

scale:

« Quick check 30 seconds to 5 minutes

«« Easy ≤ 1 hour

««« Moderate ≤ 3 hours

«««« Challenging > 3 hours

Exercises marked « are intended as real-time checks of important concepts.

Readers are strongly encouraged to pause for each one of these before mov-

ing on to the material that follows. In each chapter, a roughly homework-

assignment-sized set of exercises is labeled Recommended.

Preface xix

Lecture Topic Reading

1. Course overview; history; administrivia 1, (2)

2. Preliminaries: syntax, operational semantics 3, 4

3. Introduction to the lambda-calculus 5.1, 5.2

4. Formalizing the lambda-calculus 5.3, 6, 7

5. Types; the simply typed lambda-calculus 8, 9, 10

6. Simple extensions; derived forms 11

7. More extensions 11

8. Normalization 12

9. References; exceptions 13, 14

10. Subtyping 15

11. Metatheory of subtyping 16, 17

12. Imperative objects 18

13. Featherweight Java 19

14. Recursive types 20

15. Metatheory of recursive types 21

16. Metatheory of recursive types 21

17. Type reconstruction 22

18. Universal polymorphism 23

19. Existential polymorphism; ADTs 24, (25)

20. Bounded quantification 26, 27

21. Metatheory of bounded quantification 28

22. Type operators 29

23. Metatheory of Fω 30

24. Higher-order subtyping 31

25. Purely functional objects 32

26. Overflow lecture

Figure P-2: Sample syllabus for an advanced graduate course

Complete solutions to most of the exercises are provided in Appendix A.

To save readers the frustration of searching for solutions to the few exercises

for which solutions are not available, those exercises are marked 3.

Typographic Conventions

Most chapters introduce the features of some type system in a discursive

style, then define the system formally as a collection of inference rules in one

or more figures. For easy reference, these definitions are usually presented

in full, including not only the new rules for the features under discussion at

the moment, but also the rest of the rules needed to constitute a complete

xx Preface

calculus. The new parts are set on a gray background to make the “delta”

from previous systems visually obvious.

An unusual feature of the book’s production is that all the examples are

mechanically typechecked during typesetting: a script goes through each chap-

ter, extracts the examples, generates and compiles a custom typechecker con-

taining the features under discussion, applies it to the examples, and inserts

the checker’s responses in the text. The system that does the hard parts of

this, called TinkerType, was developed by Michael Levin and myself (2001).

Funding for this research was provided by the National Science Foundation,

through grants CCR-9701826, Principled Foundations for Programming with

Objects, and CCR-9912352, Modular Type Systems.

Electronic Resources

A web site associated with this book can be found at the following URL:

http://www.cis.upenn.edu/~bcpierce/tapl

Resources available on this site include errata for the text, suggestions for

course projects, pointers to supplemental material contributed by readers,

and a collection of implementations (typecheckers and simple interpreters)

of the calculi covered in each chapter of the text.

These implementations offer an environment for experimenting with the

examples in the book and testing solutions to exercises. They have also been

polished for readability and modifiability and have been used successfully by

students in my courses as the basis of both small implementation exercises

and larger course projects. The implementations are written in OCaml. The

OCaml compiler is available at no cost through http://caml.inria.fr and

installs very easily on most platforms.

Readers should also be aware of the Types Forum, an email list covering

all aspects of type systems and their applications. The list is moderated to

ensure reasonably low volume and a high signal-to-noise ratio in announce-

ments and discussions. Archives and subscription instructions can be found

at http://www.cis.upenn.edu/~bcpierce/types.

Acknowledgments

Readers who find value in this book owe their biggest debt of gratitude to four

mentors—Luca Cardelli, Bob Harper, Robin Milner, and John Reynolds—who

taught me most of what I know about programming languages and types.

The rest I have learned mostly through collaborations; besides Luca, Bob,

Robin, and John, my partners in these investigations have included Martín

Preface xxi

Abadi, Gordon Plotkin, Randy Pollack, David N. Turner, Didier Rémy, Davide

Sangiorgi, Adriana Compagnoni, Martin Hofmann, Giuseppe Castagna, Martin

Steffen, Kim Bruce, Naoki Kobayashi, Haruo Hosoya, Atsushi Igarashi, Philip

Wadler, Peter Buneman, Vladimir Gapeyev, Michael Levin, Peter Sewell, Jérôme

Vouillon, and Eijiro Sumii. These collaborations are the foundation not only

of my understanding, but also of my pleasure in the topic.

The structure and organization of this text have been improved by discus-

sions on pedagogy with Thorsten Altenkirch, Bob Harper, and John Reynolds,

and the text itself by corrections and comments from Jim Alexander, Penny

Anderson, Josh Berdine, Tony Bonner, John Tang Boyland, Dave Clarke, Diego

Dainese, Olivier Danvy, Matthew Davis, Vladimir Gapeyev, Bob Harper, Eric

Hilsdale, Haruo Hosoya, Atsushi Igarashi, Robert Irwin, Takayasu Ito, Assaf

Kfoury, Michael Levin, Vassily Litvinov, Pablo López Olivas, Dave MacQueen,

Narciso Marti-Oliet, Philippe Meunier, Robin Milner, Matti Nykänen, Gordon

Plotkin, John Prevost, Fermin Reig, Didier Rémy, John Reynolds, James Riely,

Ohad Rodeh, Jürgen Schlegelmilch, Alan Schmitt, Andrew Schoonmaker, Olin

Shivers, Perdita Stevens, Chris Stone, Eijiro Sumii, Val Tannen, Jérôme Vouil-

lon, and Philip Wadler. (I apologize if I’ve inadvertently omitted anybody

from this list.) Luca Cardelli, Roger Hindley, Dave MacQueen, John Reynolds,

and Jonathan Seldin offered insiders’ perspectives on some tangled historical

points.

The participants in my graduate seminars at Indiana University in 1997

and 1998 and at the University of Pennsylvania in 1999 and 2000 soldiered

through early versions of the manuscript; their reactions and comments gave

me crucial guidance in shaping the book as you see it. Bob Prior and his

team from The MIT Press expertly guided the manuscript through the many

phases of the publication process. The book’s design is based on LATEX macros

developed by Christopher Manning for The MIT Press.

Proofs of programs are too boring for the social process of mathematics to

work. —Richard DeMillo, Richard Lipton, and Alan Perlis, 1979

. . . So don’t rely on social processes for verification. —David Dill, 1999

Formal methods will never have a significant impact until they can be used

by people that don’t understand them. —attributed to Tom Melham

1 Introduction

1.1 Types in Computer Science

Modern software engineering recognizes a broad range of formal methods for

helping ensure that a system behaves correctly with respect to some speci-

fication, implicit or explicit, of its desired behavior. On one end of the spec-

trum are powerful frameworks such as Hoare logic, algebraic specification

languages, modal logics, and denotational semantics. These can be used to

express very general correctness properties but are often cumbersome to use

and demand a good deal of sophistication on the part of programmers. At the

other end are techniques of much more modest power—modest enough that

automatic checkers can be built into compilers, linkers, or program analyz-

ers and thus be applied even by programmers unfamiliar with the underlying

theories. One well-known instance of this sort of lightweight formal methods

is model checkers, tools that search for errors in finite-state systems such as

chip designs or communication protocols. Another that is growing in popu-

larity is run-time monitoring, a collection of techniques that allow a system to

detect, dynamically, when one of its components is not behaving according

to specification. But by far the most popular and best established lightweight

formal methods are type systems, the central focus of this book.

As with many terms shared by large communities, it is difficult to define

“type system” in a way that covers its informal usage by programming lan-

guage designers and implementors but is still specific enough to have any

bite. One plausible definition is this:

A type system is a tractable syntactic method for proving the absence of

certain program behaviors by classifying phrases according to the kinds

of values they compute.

A number of points deserve comment. First, this definition identifies type

systems as tools for reasoning about programs. This wording reflects the

2 1 Introduction

orientation of this book toward the type systems found in programming lan-

guages. More generally, the term type systems (or type theory) refers to a

much broader field of study in logic, mathematics, and philosophy. Type

systems in this sense were first formalized in the early 1900s as ways of

avoiding the logical paradoxes, such as Russell’s (Russell, 1902), that threat-

ened the foundations of mathematics. During the twentieth century, types

have become standard tools in logic, especially in proof theory (see Gandy,

1976 and Hindley, 1997), and have permeated the language of philosophy and

science. Major landmarks in this area include Russell’s original ramified the-

ory of types (Whitehead and Russell, 1910), Ramsey’s simple theory of types

(1925)—the basis of Church’s simply typed lambda-calculus (1940)—Martin-

Löf’s constructive type theory (1973, 1984), and Berardi, Terlouw, and Baren-

dregt’s pure type systems (Berardi, 1988; Terlouw, 1989; Barendregt, 1992).

Even within computer science, there are two major branches to the study of

type systems. The more practical, which concerns applications to program-

ming languages, is the main focus of this book. The more abstract focuses

on connections between various “pure typed lambda-calculi” and varieties

of logic, via the Curry-Howard correspondence (§9.4). Similar concepts, nota-

tions, and techniques are used by both communities, but with some impor-

tant differences in orientation. For example, research on typed lambda-calculi

is usually concerned with systems in which every well-typed computation is

guaranteed to terminate, whereas most programming languages sacrifice this

property for the sake of features like recursive function definitions.

Another important element in the above definition is its emphasis on clas-

sification of terms—syntactic phrases—according to the properties of the val-

ues that they will compute when executed. A type system can be regarded

as calculating a kind of static approximation to the run-time behaviors of the

terms in a program. (Moreover, the types assigned to terms are generally cal-

culated compositionally, with the type of an expression depending only on

the types of its subexpressions.)

The word “static” is sometimes added explicitly—we speak of a “stati-

cally typed programming language,” for example—to distinguish the sorts

of compile-time analyses we are considering here from the dynamic or la-

tent typing found in languages such as Scheme (Sussman and Steele, 1975;

Kelsey, Clinger, and Rees, 1998; Dybvig, 1996), where run-time type tags are

used to distinguish different kinds of structures in the heap. Terms like “dy-

namically typed” are arguably misnomers and should probably be replaced

by “dynamically checked,” but the usage is standard.

Being static, type systems are necessarily also conservative: they can cate-

gorically prove the absence of some bad program behaviors, but they cannot

prove their presence, and hence they must also sometimes reject programs

1.1 Types in Computer Science 3

that actually behave well at run time. For example, a program like

if <complex test> then 5 else <type error>

will be rejected as ill-typed, even if it happens that the <complex test> will

always evaluate to true, because a static analysis cannot determine that this

is the case. The tension between conservativity and expressiveness is a fun-

damental fact of life in the design of type systems. The desire to allow more

programs to be typed—by assigning more accurate types to their parts—is

the main force driving research in the field.

A related point is that the relatively straightforward analyses embodied in

most type systems are not capable of proscribing arbitrary undesired pro-

gram behaviors; they can only guarantee that well-typed programs are free

from certain kinds of misbehavior. For example, most type systems can check

statically that the arguments to primitive arithmetic operations are always

numbers, that the receiver object in a method invocation always provides

the requested method, etc., but not that the second argument to the division

operation is non-zero, or that array accesses are always within bounds.

The bad behaviors that can be eliminated by the type system in a given lan-

guage are often called run-time type errors. It is important to keep in mind

that this set of behaviors is a per-language choice: although there is substan-

tial overlap between the behaviors considered to be run-time type errors in

different languages, in principle each type system comes with a definition

of the behaviors it aims to prevent. The safety (or soundness) of each type

system must be judged with respect to its own set of run-time errors.

The sorts of bad behaviors detected by type analysis are not restricted to

low-level faults like invoking non-existent methods: type systems are also

used to enforce higher-level modularity properties and to protect the in-

tegrity of user-defined abstractions. Violations of information hiding, such

as directly accessing the fields of a data value whose representation is sup-

posed to be abstract, are run-time type errors in exactly the same way as, for

example, treating an integer as a pointer and using it to crash the machine.

Typecheckers are typically built into compilers or linkers. This implies that

they must be able to do their job automatically, with no manual intervention

or interaction with the programmer—i.e., they must embody computation-

ally tractable analyses. However, there is still plenty of room for requiring

guidance from the programmer, in the form of explicit type annotations in

programs. Usually, these annotations are kept fairly light, to make programs

easier to write and read. But, in principle, a full proof that the program meets

some arbitrary specification could be encoded in type annotations; in this

case, the typechecker would effectively become a proof checker. Technolo-

gies like Extended Static Checking (Detlefs, Leino, Nelson, and Saxe, 1998)

4 1 Introduction

are working to settle this territory between type systems and full-scale pro-

gram verification methods, implementing fully automatic checks for some

broad classes of correctness properties that rely only on “reasonably light”

program annotations to guide their work.

By the same token, we are most interested in methods that are not just

automatable in principle, but that actually come with efficient algorithms

for checking types. However, exactly what counts as efficient is a matter of

debate. Even widely used type systems like that of ML (Damas and Milner,

1982) may exhibit huge typechecking times in pathological cases (Henglein

and Mairson, 1991). There are even languages with typechecking or type re-

construction problems that are undecidable, but for which algorithms are

available that halt quickly “in most cases of practical interest” (e.g. Pierce and

Turner, 2000; Nadathur and Miller, 1988; Pfenning, 1994).

1.2 What Type Systems Are Good For

Detecting Errors

The most obvious benefit of static typechecking is that it allows early detec-

tion of some programming errors. Errors that are detected early can be fixed

immediately, rather than lurking in the code to be discovered much later,

when the programmer is in the middle of something else—or even after the

program has been deployed. Moreover, errors can often be pinpointed more

accurately during typechecking than at run time, when their effects may not

become visible until some time after things begin to go wrong.

In practice, static typechecking exposes a surprisingly broad range of er-

rors. Programmers working in richly typed languages often remark that their

programs tend to “just work” once they pass the typechecker, much more

often than they feel they have a right to expect. One possible explanation for

this is that not only trivial mental slips (e.g., forgetting to convert a string to

a number before taking its square root), but also deeper conceptual errors

(e.g., neglecting a boundary condition in a complex case analysis, or confus-

ing units in a scientific calculation), will often manifest as inconsistencies at

the level of types. The strength of this effect depends on the expressiveness

of the type system and on the programming task in question: programs that

manipulate a variety of data structures (e.g., symbol processing applications

such as compilers) offer more purchase for the typechecker than programs

involving just a few simple types, such as numerical calculations in scientific

applications (though, even here, refined type systems supporting dimension

analysis [Kennedy, 1994] can be quite useful).

Obtaining maximum benefit from the type system generally involves some

1.2 What Type Systems Are Good For 5

attention on the part of the programmer, as well as a willingness to make

good use of the facilities provided by the language; for example, a complex

program that encodes all its data structures as lists will not get as much

help from the compiler as one that defines a different datatype or abstract

type for each. Expressive type systems offer numerous “tricks” for encoding

information about structure in terms of types.

For some sorts of programs, a typechecker can also be an invaluable main-

tenance tool. For example, a programmer who needs to change the definition

of a complex data structure need not search by hand to find all the places in a

large program where code involving this structure needs to be fixed. Once the

declaration of the datatype has been changed, all of these sites become type-

inconsistent, and they can be enumerated simply by running the compiler

and examining the points where typechecking fails.

Abstraction

Another important way in which type systems support the programming pro-

cess is by enforcing disciplined programming. In particular, in the context

of large-scale software composition, type systems form the backbone of the

module languages used to package and tie together the components of large

systems. Types show up in the interfaces of modules (and related structures

such as classes); indeed, an interface itself can be viewed as “the type of a

module,” providing a summary of the facilities provided by the module—a

kind of partial contract between implementors and users.

Structuring large systems in terms of modules with clear interfaces leads to

a more abstract style of design, where interfaces are designed and discussed

independently from their eventual implementations. More abstract thinking

about interfaces generally leads to better design.

Documentation

Types are also useful when reading programs. The type declarations in pro-

cedure headers and module interfaces constitute a form of documentation,

giving useful hints about behavior. Moreover, unlike descriptions embedded

in comments, this form of documentation cannot become outdated, since it

is checked during every run of the compiler. This role of types is particularly

important in module signatures.

6 1 Introduction

Language Safety

The term “safe language” is, unfortunately, even more contentious than “type

system.” Although people generally feel they know one when they see it, their

notions of exactly what constitutes language safety are strongly influenced

by the language community to which they belong. Informally, though, safe

languages can be defined as ones that make it impossible to shoot yourself

in the foot while programming.

Refining this intuition a little, we could say that a safe language is one that

protects its own abstractions. Every high-level language provides abstractions

of machine services. Safety refers to the language’s ability to guarantee the

integrity of these abstractions and of higher-level abstractions introduced by

the programmer using the definitional facilities of the language. For example,

a language may provide arrays, with access and update operations, as an

abstraction of the underlying memory. A programmer using this language

then expects that an array can be changed only by using the update operation

on it explicitly—and not, for example, by writing past the end of some other

data structure. Similarly, one expects that lexically scoped variables can be

accessed only from within their scopes, that the call stack truly behaves like

a stack, etc. In a safe language, such abstractions can be used abstractly; in

an unsafe language, they cannot: in order to completely understand how a

program may (mis)behave, it is necessary to keep in mind all sorts of low-

level details such as the layout of data structures in memory and the order in

which they will be allocated by the compiler. In the limit, programs in unsafe

languages may disrupt not only their own data structures but even those of

the run-time system; the results in this case can be completely arbitrary.

Language safety is not the same thing as static type safety. Language safety

can be achieved by static checking, but also by run-time checks that trap

nonsensical operations just at the moment when they are attempted and stop

the program or raise an exception. For example, Scheme is a safe language,

even though it has no static type system.

Conversely, unsafe languages often provide “best effort” static type check-

ers that help programmers eliminate at least the most obvious sorts of slips,

but such languages do not qualify as type-safe either, according to our defi-

nition, since they are generally not capable of offering any sort of guarantees

that well-typed programs are well behaved—typecheckers for these languages

can suggest the presence of run-time type errors (which is certainly better

than nothing) but not prove their absence.

Statically checked Dynamically checked

Safe ML, Haskell, Java, etc. Lisp, Scheme, Perl, Postscript, etc.

Unsafe C, C++, etc.

1.2 What Type Systems Are Good For 7

The emptiness of the bottom-right entry in the preceding table is explained

by the fact that, once facilities are in place for enforcing the safety of most

operations at run time, there is little additional cost to checking all oper-

ations. (Actually, there are a few dynamically checked languages, e.g., some

dialects of Basic for microcomputers with minimal operating systems, that do

offer low-level primitives for reading and writing arbitrary memory locations,

which can be misused to destroy the integrity of the run-time system.)

Run-time safety is not normally achievable by static typing alone. For ex-

ample, all of the languages listed as safe in the table above actually per-

form array-bounds checking dynamically.1 Similarly, statically checked lan-

guages sometimes choose to provide operations (e.g., the down-cast operator

in Java—see §15.5) whose typechecking rules are actually unsound—language

safety is obtained by checking each use of such a construct dynamically.

Language safety is seldom absolute. Safe languages often offer program-

mers “escape hatches,” such as foreign function calls to code written in other,

possibly unsafe, languages. Indeed, such escape hatches are sometimes pro-

vided in a controlled form within the language itself—Obj.magic in OCaml

(Leroy, 2000), Unsafe.cast in the New Jersey implementation of Standard

ML, etc. Modula-3 (Cardelli et al., 1989; Nelson, 1991) and C] (Wille, 2000)

go yet further, offering an “unsafe sublanguage” intended for implementing

low-level run-time facilities such as garbage collectors. The special features

of this sublanguage may be used only in modules explicitly marked unsafe.

Cardelli (1996) articulates a somewhat different perspective on language

safety, distinguishing between so-called trapped and untrapped run-time er-

rors. A trapped error causes a computation to stop immediately (or to raise an

exception that can be handled cleanly within the program), while untrapped

errors may allow the computation to continue (at least for a while). An ex-

ample of an untrapped error might be accessing data beyond the end of an

array in a language like C. A safe language, in this view, is one that prevents

untrapped errors at run time.

Yet another point of view focuses on portability; it can be expressed by the

slogan, “A safe language is completely defined by its programmer’s manual.”

Let the definition of a language be the set of things the programmer needs

to understand in order to predict the behavior of every program in the lan-

guage. Then the manual for a language like C does not constitute a definition,

since the behavior of some programs (e.g., ones involving unchecked array

1. Static elimination of array-bounds checking is a long-standing goal for type system de-

signers. In principle, the necessary mechanisms (based on dependent types—see §30.5) are

well understood, but packaging them in a form that balances expressive power, predictability

and tractability of typechecking, and complexity of program annotations remains a significant

challenge. Some recent advances in the area are described by Xi and Pfenning (1998, 1999).

8 1 Introduction

accesses or pointer arithmetic) cannot be predicted without knowing the de-

tails of how a particular C compiler lays out structures in memory, etc., and

the same program may have quite different behaviors when executed by dif-

ferent compilers. By contrast, the manuals for , , and specify (with varying

degrees of rigor) the exact behavior of all programs in the language. A well-

typed program will yield the same results under any correct implementation

of these languages.

Efficiency

The first type systems in computer science, beginning in the 1950s in lan-

guages such as Fortran (Backus, 1981), were introduced to improve the ef-

ficiency of numerical calculations by distinguishing between integer-valued

arithmetic expressions and real-valued ones; this allowed the compiler to use

different representations and generate appropriate machine instructions for

primitive operations. In safe languages, further efficiency improvements are

gained by eliminating many of the dynamic checks that would be needed to

guarantee safety (by proving statically that they will always be satisfied). To-

day, most high-performance compilers rely heavily on information gathered

by the typechecker during optimization and code-generation phases. Even

compilers for languages without type systems per se work hard to recover

approximations to this typing information.

Efficiency improvements relying on type information can come from some

surprising places. For example, it has recently been shown that not only code

generation decisions but also pointer representation in parallel scientific pro-

grams can be improved using the information generated by type analysis. The

Titanium language (Yelick et al., 1998) uses type inference techniques to an-

alyze the scopes of pointers and is able to make measurably better decisions

on this basis than programmers explicitly hand-tuning their programs. The

ML Kit Compiler uses a powerful region inference algorithm (Gifford, Jou-

velot, Lucassen, and Sheldon, 1987; Jouvelot and Gifford, 1991; Talpin and

Jouvelot, 1992; Tofte and Talpin, 1994, 1997; Tofte and Birkedal, 1998) to

replace most (in some programs, all) of the need for garbage collection by

stack-based memory management.

Further Applications

Beyond their traditional uses in programming and language design, type sys-

tems are now being applied in many more specific ways in computer science

and related disciplines. We sketch just a few here.

1.3 Type Systems and Language Design 9

An increasingly important application area for type systems is computer

and network security. Static typing lies at the core of the security model

of Java and of the JINI “plug and play” architecture for network devices

(Arnold et al., 1999), for example, and is a critical enabling technology for

Proof-Carrying Code (Necula and Lee, 1996, 1998; Necula, 1997). At the same

time, many fundamental ideas developed in the security community are being

re-explored in the context of programming languages, where they often ap-

pear as type analyses (e.g., Abadi, Banerjee, Heintze, and Riecke, 1999; Abadi,

1999; Leroy and Rouaix, 1998; etc.). Conversely, there is growing interest in

applying programming language theory directly to problems in the security

domain (e.g., Abadi, 1999; Sumii and Pierce, 2001).

Typechecking and inference algorithms can be found in many program

analysis tools other than compilers. For example, AnnoDomini, a Year 2000

conversion utility for Cobol programs, is based on an ML-style type inference

engine (Eidorff et al., 1999). Type inference techniques have also been used in

tools for alias analysis (O’Callahan and Jackson, 1997) and exception analysis

(Leroy and Pessaux, 2000).

In automated theorem proving, type systems—usually very powerful ones

based on dependent types—are used to represent logical propositions and

proofs. Several popular proof assistants, including Nuprl (Constable et al.,

1986), Lego (Luo and Pollack, 1992; Pollack, 1994), Coq (Barras et al., 1997),

and Alf (Magnusson and Nordström, 1994), are based directly on type theory.

Constable (1998) and Pfenning (1999) discuss the history of these systems.

Interest in type systems is also on the increase in the database community,

with the explosion of “web metadata” in the form of Document Type Defini-

tions (XML 1998) and other kinds of schemas (such as the new XML-Schema

standard [XS 2000]) for describing structured data in XML. New languages for

querying and manipulating XML provide powerful static type systems based

directly on these schema languages (Hosoya and Pierce, 2000; Hosoya, Vouil-

lon, and Pierce, 2001; Hosoya and Pierce, 2001; Relax, 2000; Shields, 2001).

A quite different application of type systems appears in the field of compu-

tational linguistics, where typed lambda-calculi form the basis for formalisms

such as categorial grammar (van Benthem, 1995; van Benthem and Meulen,

1997; Ranta, 1995; etc.).

1.3 Type Systems and Language Design

Retrofitting a type system onto a language not designed with typechecking

in mind can be tricky; ideally, language design should go hand-in-hand with

type system design.

10 1 Introduction

One reason for this is that languages without type systems—even safe, dy-

namically checked languages—tend to offer features or encourage program-

ming idioms that make typechecking difficult or infeasible. Indeed, in typed

languages the type system itself is often taken as the foundation of the de-

sign and the organizing principle in light of which every other aspect of the

design is considered.

Another factor is that the concrete syntax of typed languages tends to be

more complicated than that of untyped languages, since type annotations

must be taken into account. It is easier to do a good job of designing a clean

and comprehensible syntax when all the issues can be addressed together.

The assertion that types should be an integral part of a programming lan-

guage is separate from the question of where the programmer must phys-

ically write down type annotations and where they can instead be inferred

by the compiler. A well-designed statically typed language will never require

huge amounts of type information to be explicitly and tediously maintained

by the programmer. There is some disagreement, though, about how much

explicit type information is too much. The designers of languages in the ML

family have worked hard to keep annotations to a bare minimum, using type

inference methods to recover the necessary information. Languages in the C

family, including Java, have chosen a somewhat more verbose style.

1.4 Capsule History

In computer science, the earliest type systems were used to make very simple

distinctions between integer and floating point representations of numbers

(e.g., in Fortran). In the late 1950s and early 1960s, this classification was ex-

tended to structured data (arrays of records, etc.) and higher-order functions.

In the 1970s, a number of even richer concepts (parametric polymorphism,

abstract data types, module systems, and subtyping) were introduced, and

type systems emerged as a field in its own right. At the same time, computer

scientists began to be aware of the connections between the type systems

found in programming languages and those studied in mathematical logic,

leading to a rich interplay that continues to the present.

Figure 1-1 presents a brief (and scandalously incomplete!) chronology of

some high points in the history of type systems in computer science. Related

developments in logic are included, in italics, to show the importance of this

field’s contributions. Citations in the right-hand column can be found in the

bibliography.

1.4 Capsule History 11

1870s origins of formal logic Frege (1879)

1900s formalization of mathematics Whitehead and Russell (1910)

1930s untyped lambda-calculus Church (1941)

1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)

1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)

1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)

Curry-Howard correspondence Howard (1980)

Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)

Martin-Löf type theory Martin-Löf (1973, 1982)

System F, Fω Girard (1972)

polymorphic lambda-calculus Reynolds (1974)

CLU Liskov et al. (1981)

polymorphic type inference Milner (1978), Damas and Milner (1982)

ML Gordon, Milner, and Wadsworth (1979)

intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)

1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)

ADTs as existential types Mitchell and Plotkin (1988)

calculus of constructions Coquand (1985), Coquand and Huet (1988)

linear logic Girard (1987) , Girard et al. (1989)

bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)

Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)

Forsythe Reynolds (1988)

pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)

dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)

Quest Cardelli (1991)

effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)

row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)

object calculus Abadi and Cardelli (1996)

translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)

typed assembly language Morrisett et al. (1998)

Figure 1-1: Capsule history of types in computer science and logic

12 1 Introduction

1.5 Related Reading

While this book attempts to be self contained, it is far from comprehensive;

the area is too large, and can be approached from too many angles, to do it

justice in one book. This section lists a few other good entry points.

Handbook articles by Cardelli (1996) and Mitchell (1990b) offer quick in-

troductions to the area. Barendregt’s article (1992) is for the more mathemat-

ically inclined. Mitchell’s massive textbook on Foundations for Programming

Languages (1996) covers basic lambda-calculus, a range of type systems, and

many aspects of semantics. The focus is on semantic rather than imple-

mentation issues. Reynolds’s Theories of Programming Languages (1998b),

a graduate-level survey of the theory of programming languages, includes

beautiful expositions of polymorphism, subtyping, and intersection types.

The Structure of Typed Programming Languages, by Schmidt (1994), develops

core concepts of type systems in the context of language design, including

several chapters on conventional imperative languages. Hindley’s monograph

Basic Simple Type Theory (1997) is a wonderful compendium of results about

the simply typed lambda-calculus and closely related systems. Its coverage is

deep rather than broad.

Abadi and Cardelli’s A Theory of Objects (1996) develops much of the same

material as the present book, de-emphasizing implementation aspects and

concentrating instead on the application of these ideas in a foundation treat-

ment of object-oriented programming. Kim Bruce’s Foundations of Object-

Oriented Languages: Types and Semantics (2002) covers similar ground. In-

troductory material on object-oriented type systems can also be found in

Palsberg and Schwartzbach (1994) and Castagna (1997).

Semantic foundations for both untyped and typed languages are covered in

depth in the textbooks of Gunter (1992), Winskel (1993), and Mitchell (1996).

Operational semantics is also covered in detail by Hennessy (1990). Founda-

tions for the semantics of types in the mathematical framework of category

theory can also be found in many sources, including the books by Jacobs

(1999), Asperti and Longo (1991), and Crole (1994); a brief primer can be

found in Basic Category Theory for Computer Scientists (Pierce, 1991a).

Girard, Lafont, and Taylor’s Proofs and Types (1989) treats logical aspects

of type systems (the Curry-Howard correspondence, etc.). It also includes a

description of System F from its creator, and an appendix introducing linear

logic. Connections between types and logic are further explored in Pfenning’s

Computation and Deduction (2001). Thompson’s Type Theory and Functional

Programming (1991) and Turner’s Constructive Foundations for Functional

Languages (1991) focus on connections between functional programming (in

the “pure functional programming” sense of Haskell or Miranda) and con-

1.5 Related Reading 13

structive type theory, viewed from a logical perspective. A number of relevant

topics from proof theory are developed in Goubault-Larrecq and Mackie’s

Proof Theory and Automated Deduction (1997). The history of types in logic

and philosophy is described in more detail in articles by Constable (1998),

Wadler (2000), Huet (1990), and Pfenning (1999), in Laan’s doctoral thesis

(1997), and in books by Grattan-Guinness (2001) and Sommaruga (2000).

It turns out that a fair amount of careful analysis is required to avoid false

and embarrassing claims of type soundness for programming languages. As

a consequence, the classification, description, and study of type systems has

emerged as a formal discipline. —Luca Cardelli (1996)

2 Mathematical Preliminaries

Before getting started, we need to establish some common notation and state

a few basic mathematical facts. Most readers should just skim this chapter

and refer back to it as necessary.

2.1 Sets, Relations, and Functions

2.1.1 Definition: We use standard notation for sets: curly braces for listing the

elements of a set explicitly ({. . .}) or showing how to construct one set from

another by “comprehension” ({x ∈ S | . . .}), ∅ for the empty set, and S \ T

for the set difference of S and T (the set of elements of S that are not also

elements of T). The size of a set S is written |S|. The powerset of S, i.e., the

set of all the subsets of S, is written P(S). �

2.1.2 Definition: The set {0,1,2,3,4,5, . . .} of natural numbers is denoted by the

symbol N. A set is said to be countable if its elements can be placed in one-

to-one correspondence with the natural numbers. �

2.1.3 Definition: An n-place relation on a collection of sets S1, S2, . . . , Sn is a set

R ⊆ S1 × S2 × . . .× Sn of tuples of elements from S1 through Sn. We say that

the elements s1 ∈ S1 through sn ∈ Sn are related by R if (s1, . . . , sn) is an

element of R. �

2.1.4 Definition: A one-place relation on a set S is called a predicate on S. We say

that P is true of an element s ∈ S if s ∈ P . To emphasize this intuition, we

often write P(s) instead of s ∈ P , regarding P as a function mapping elements

of S to truth values. �

2.1.5 Definition: A two-place relation R on sets S and T is called a binary rela-

tion. We often write s R t instead of (s, t) ∈ R. When S and T are the same

setU, we say that R is a binary relation on U. �

16 2 Mathematical Preliminaries

2.1.6 Definition: For readability, three- or more place relations are often writ-

ten using a “mixfix” concrete syntax, where the elements in the relation are

separated by a sequence of symbols that jointly constitute the name of the

relation. For example, for the typing relation for the simply typed lambda-

calculus in Chapter 9, we write Γ ` s : T to mean “the triple (Γ ,s,T) is in the

typing relation.” �

2.1.7 Definition: The domain of a relation R on sets S and T , written dom(R), is

the set of elements s ∈ S such that (s, t) ∈ R for some t . The codomain or

range of R, written range(R), is the set of elements t ∈ T such that (s, t) ∈ R

for some s. �

2.1.8 Definition: A relation R on sets S and T is called a partial function from S

to T if, whenever (s, t1) ∈ R and (s, t2) ∈ R, we have t1 = t2. If, in addition,

dom(R) = S , then R is called a total function (or just function) from S to T . �

2.1.9 Definition: A partial function R from S to T is said to be defined on an

argument s ∈ S if s ∈ dom(R), and undefined otherwise. We write f (x) ↑,

or f (x) =↑, to mean “f is undefined on x,” and f (x)↓” to mean “f is defined

on x.”

In some of the implementation chapters, we will also need to define func-

tions that may fail on some inputs (see, e.g., Figure 22-2). It is important to

distinguish failure (which is a legitimate, observable result) from divergence;

a function that may fail can be either partial (i.e., it may also diverge) or to-

tal (it must always return a result or explicitly fail)—indeed, we will often be

interested in proving totality. We write f (x) = fail when f returns a failure

result on the input x.

Formally, a function from S to T that may also fail is actually a function

from S to T ∪ {fail}, where we assume that fail does not belong to T . �

2.1.10 Definition: Suppose R is a binary relation on a set S and P is a predicate on

S. We say that P is preserved by R if whenever we have s R s ′ and P(s), we

also have P(s′). �

2.2 Ordered Sets

2.2.1 Definition: A binary relation R on a set S is reflexive if R relates every ele-

ment of S to itself—that is, s R s (or (s, s) ∈ R) for all s ∈ S. R is symmetric

if s R t implies t R s, for all s and t in S. R is transitive if s R t and t R u

together imply s R u. R is antisymmetric if s R t and t R s together imply that

s = t . �

2.2 Ordered Sets 17

2.2.2 Definition: A reflexive and transitive relation R on a set S is called a pre-

order on S. (When we speak of “a preordered set S ,” we always have in mind

some particular preorder R on S.) Preorders are usually written using symbols

like ≤ or v. We write s < t (“s is strictly less than t”) to mean s ≤ t ∧ s ≠ t .

A preorder (on a set S) that is also antisymmetric is called a partial order

on S. A partial order ≤ is called a total order if it also has the property that,

for each s and t in S, either s ≤ t or t ≤ s. �

2.2.3 Definition: Suppose that ≤ is a partial order on a set S and s and t are

elements of S . An element j ∈ S is said to be a join (or least upper bound) of

s and t if

1. s ≤ j and t ≤ j , and

2. for any element k ∈ S with s ≤ k and t ≤ k, we have j ≤ k.

Similarly, an element m ∈ S is said to be a meet (or greatest lower bound) of

s and t if

1. m ≤ s and m ≤ t , and

2. for any element n ∈ S with n ≤ s and n ≤ t , we have n ≤m. �

2.2.4 Definition: A reflexive, transitive, and symmetric relation on a set S is called

an equivalence on S. �

2.2.5 Definition: Suppose R is a binary relation on a set S. The reflexive closure

of R is the smallest reflexive relation R ′ that contains R. (“Smallest” in the

sense that if R′′ is some other reflexive relation that contains all the pairs in

R, then we have R′ ⊆ R′′.) Similarly, the transitive closure of R is the smallest

transitive relation R′ that contains R. The transitive closure of R is often

written R+. The reflexive and transitive closure of R is the smallest reflexive

and transitive relation that contains R. It is often written R∗. �

2.2.6 Exercise [«« 3]: Suppose we are given a relation R on a set S. Define the

relation R′ as follows:

R′ = R ∪ {(s, s) | s ∈ S}.

That is, R′ contains all the pairs in R plus all pairs of the form (s, s). Show

that R′ is the reflexive closure of R. �

2.2.7 Exercise [««, 3]: Here is a more constructive definition of the transitive clo-

sure of a relation R. First, we define the following sequence of sets of pairs:

R0 = R

Ri+1 = Ri ∪ {(s, u) | for some t , (s, t) ∈ Ri and (t, u) ∈ Ri}

18 2 Mathematical Preliminaries

That is, we construct each Ri+1 by adding to Ri all the pairs that can be ob-

tained by “one step of transitivity” from pairs already in Ri . Finally, define the

relation R+ as the union of all the Ri :

R+ =
⋃

i

Ri

Show that this R+ is really the transitive closure of R—i.e., that it satisfies the

conditions given in Definition 2.2.5. �

2.2.8 Exercise [««, 3]: Suppose R is a binary relation on a set S and P is a predi-

cate on S that is preserved by R. Show that P is also preserved by R∗. �

2.2.9 Definition: Suppose we have a preorder ≤ on a set S. A decreasing chain in

≤ is a sequence s1, s2, s3, . . . of elements of S such that each member of the

sequence is strictly less than its predecessor: si+1 < si for every i. (Chains can

be either finite or infinite, but we are more interested in infinite ones, as in

the next definition.) �

2.2.10 Definition: Suppose we have a set S with a preorder ≤. We say that ≤ is well

founded if it contains no infinite decreasing chains. For example, the usual

order on the natural numbers, with 0 < 1 < 2 < 3 < . . . is well founded, but

the same order on the integers, . . . < −3 < −2 < −1 < 0 < 1 < 2 < 3 < . . . is

not. We sometimes omit mentioning ≤ explicitly and simply speak of S as a

well-founded set . �

2.3 Sequences

2.3.1 Definition: A sequence is written by listing its elements, separated by com-

mas. We use comma as both the “cons” operation for adding an element to

either end of a sequence and as the “append” operation on sequences. For ex-

ample, if a is the sequence 3,2,1 and b is the sequence 5,6, then 0, a denotes

the sequence 0,3,2,1, while a,0 denotes 3,2,1,0 and b,a denotes 5,6,3,2,1.

(The use of comma for both “cons” and “append” operations leads to no con-

fusion, as long as we do not need to talk about sequences of sequences.) The

sequence of numbers from 1 to n is abbreviated 1..n (with just two dots).

We write |a| for the length of the sequence a. The empty sequence is written

either as • or as a blank. One sequence is said to be a permutation of another

if it contains exactly the same elements, possibly in a different order. �

2.4 Induction 19

2.4 Induction

Proofs by induction are ubiquitous in the theory of programming languages,

as in most of computer science. Many of these proofs are based on one of the

following principles.

2.4.1 Axiom [Principle of ordinary induction on natural numbers]:

Suppose that P is a predicate on the natural numbers. Then:

If P(0)

and, for all i, P(i) implies P(i + 1),

then P(n) holds for all n. �

2.4.2 Axiom [Principle of complete induction on natural numbers]:

Suppose that P is a predicate on the natural numbers. Then:

If, for each natural number n,

given P(i) for all i < n

we can show P(n),

then P(n) holds for all n. �

2.4.3 Definition: The lexicographic order (or “dictionary order”) on pairs of natu-

ral numbers is defined as follows: (m,n) ≤ (m′, n′) iff either m < m′ or else

m =m′ and n ≤ n′. �

2.4.4 Axiom [Principle of lexicographic induction]: Suppose that P is a pred-

icate on pairs of natural numbers.

If, for each pair (m,n) of natural numbers,

given P(m′, n′) for all (m′, n′) < (m,n)

we can show P(m,n),

then P(m,n) holds for all m,n. �

The lexicograpic induction principle is the basis for proofs by nested induc-

tion, where some case of an inductive proof proceeds “by an inner induction.”

It can be generalized to lexicographic induction on triples of numbers, 4-

tuples, etc. (Induction on pairs is fairly common; on triples it is occasionally

useful; beyond triples it is rare.)

Theorem 3.3.4 in Chapter 3 will introduce yet another format for proofs

by induction, called structural induction, that is particularly useful for proofs

about tree structures such as terms or typing derivations. The mathemati-

cal foundations of inductive reasoning will be considered in more detail in

Chapter 21, where we will see that all these specific induction principles are

instances of a single deeper idea.

20 2 Mathematical Preliminaries

2.5 Background Reading

If the material summarized in this chapter is unfamiliar, you may want to

start with some background reading. There are many sources for this, but

Winskel’s book (1993) is a particularly good choice for intuitions about in-

duction. The beginning of Davey and Priestley (1990) has an excellent review

of ordered sets. Halmos (1987) is a good introduction to basic set theory.

A proof is a repeatable experiment in persuasion. —Jim Horning

P a r t I

Untyped Systems

3 Untyped Arithmetic Expressions

To talk rigorously about type systems and their properties, we need to start

by dealing formally with some more basic aspects of programming languages.

In particular, we need clear, precise, and mathematically tractable tools for

expressing and reasoning about the syntax and semantics of programs.

This chapter and the next develop the required tools for a small language

of numbers and booleans. This language is so trivial as to be almost beneath

consideration, but it serves as a straightforward vehicle for the introduction

of several fundamental concepts—abstract syntax, inductive definitions and

proofs, evaluation, and the modeling of run-time errors. Chapters 5 through

7 elaborate the same story for a much more powerful language, the untyped

lambda-calculus, where we must also deal with name binding and substitu-

tion. Looking further ahead, Chapter 8 commences the study of type systems

proper, returning to the simple language of the present chapter and using it

to introduce basic concepts of static typing. Chapter 9 extends these concepts

to the lambda-calculus.

3.1 Introduction

The language used in this chapter contains just a handful of syntactic forms:

the boolean constants true and false, conditional expressions, the numeric

constant 0, the arithmetic operators succ (successor) and pred (predecessor),

and a testing operation iszero that returns true when it is applied to 0

and false when it is applied to some other number. These forms can be

summarized compactly by the following grammar.

The system studied in this chapter is the untyped calculus of booleans and numbers (Figure 3-

2, on page 41). The associated OCaml implementation, called arith in the web repository, is

described in Chapter 4. Instructions for downloading and building this checker can be found

at http://www.cis.upenn.edu/~bcpierce/tapl.

24 3 Untyped Arithmetic Expressions

t ::= terms:

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

The conventions used in this grammar (and throughout the book) are close to

those of standard BNF (cf. Aho, Sethi, and Ullman, 1986). The first line (t ::=)

declares that we are defining the set of terms, and that we are going to use

the letter t to range over terms. Each line that follows gives one alternative

syntactic form for terms. At every point where the symbol t appears, we may

substitute any term. The italicized phrases on the right are just comments.

The symbol t in the right-hand sides of the rules of this grammar is called

a metavariable. It is a variable in the sense that it is a place-holder for some

particular term, and “meta” in the sense that it is not a variable of the object

language—the simple programming language whose syntax we are currently

describing—but rather of the metalanguage—the notation in which the de-

scription is given. (In fact, the present object language doesn’t even have

variables; we’ll introduce them in Chapter 5.) The prefix meta- comes from

meta-mathematics, the subfield of logic whose subject matter is the mathe-

matical properties of systems for mathematical and logical reasoning (which

includes programming languages). This field also gives us the term metathe-

ory, meaning the collection of true statements that we can make about some

particular logical system (or programming language)—and, by extension, the

study of such statements. Thus, phrases like “metatheory of subtyping” in

this book can be understood as, “the formal study of the properties of sys-

tems with subtyping.”

Throughout the book, we use the metavariable t, as well as nearby letters

such as s, u, and r and variants such as t1 and s′, to stand for terms of

whatever object language we are discussing at the moment; other letters will

be introduced as we go along, standing for expressions drawn from other

syntactic categories. A complete summary of metavariable conventions can

be found in Appendix B.

For the moment, the words term and expression are used interchangeably.

Starting in Chapter 8, when we begin discussing calculi with additional syn-

tactic categories such as types, we will use expression for all sorts of syntac-

tic phrases (including term expressions, type expressions, kind expressions,

etc.), reserving term for the more specialized sense of phrases representing

3.1 Introduction 25

computations (i.e., phrases that can be substituted for the metavariable t).

A program in the present language is just a term built from the forms given

by the grammar above. Here are some examples of programs, along with the

results of evaluating them:

if false then 0 else 1;

ñ 1

iszero (pred (succ 0));

ñ true

Throughout the book, the symbol ñ is used to display the results of evalu-

ating examples. (For brevity, results will be elided when they are obvious or

unimportant.) During typesetting, examples are automatically processed by

the implementation corresponding to the formal system in under discussion

(arith here); the displayed responses are the implementation’s actual output.

In examples, compound arguments to succ, pred, and iszero are enclosed

in parentheses for readability.1 Parentheses are not mentioned in the gram-

mar of terms, which defines only their abstract syntax. Of course, the pres-

ence or absence of parentheses makes little difference in the extremely simple

language that we are dealing with at the moment: parentheses are usually

used to resolve ambiguities in the grammar, but this grammar is does not

have any ambiguities—each sequence of tokens can be parsed as a term in at

most one way. We will return to the discussion of parentheses and abstract

syntax in Chapter 5 (p. 52).

For brevity in examples, we use standard arabic numerals for numbers,

which are represented formally as nested applications of succ to 0. For ex-

ample, succ(succ(succ(0))) is written as 3.

The results of evaluation are terms of a particularly simple form: they will

always be either boolean constants or numbers (nested applications of zero

or more instances of succ to 0). Such terms are called values, and they will

play a special role in our formalization of the evaluation order of terms.

Notice that the syntax of terms permits the formation of some dubious-

looking terms like succ true and if 0 then 0 else 0. We shall have more to

say about such terms later—indeed, in a sense they are precisely what makes

this tiny language interesting for our purposes, since they are examples of

the sorts of nonsensical programs we will want a type system to exclude.

1. In fact, the implementation used to process the examples in this chapter (called arith on

the book’s web site) actually requires parentheses around compound arguments to succ, pred,

and iszero, even though they can be parsed unambiguously without parentheses. This is for

consistency with later calculi, which use similar-looking syntax for function application.

26 3 Untyped Arithmetic Expressions

3.2 Syntax

There are several equivalent ways of defining the syntax of our language. We

have already seen one in the grammar on page 24. This grammar is actually

just a compact notation for the following inductive definition:

3.2.1 Definition [Terms, inductively]: The set of terms is the smallest set T

such that

1. {true, false, 0} ⊆ T ;

2. if t1 ∈ T , then {succ t1, pred t1, iszero t1} ⊆ T ;

3. if t1 ∈ T , t2 ∈ T , and t3 ∈ T , then if t1 then t2 else t3 ∈ T . �

Since inductive definitions are ubiquitous in the study of programming lan-

guages, it is worth pausing for a moment to examine this one in detail. The

first clause tells us three simple expressions that are in T . The second and

third clauses give us rules by which we can judge that certain compound

expressions are in T . Finally, the word “smallest” tells us that T has no

elements besides the ones required by these three clauses.

Like the grammar on page 24, this definition says nothing about the use of

parentheses to mark compound subterms. Formally, what’s really going on is

that we are defining T as a set of trees, not as a set of strings. The use of

parentheses in examples is just a way of clarifying the relation between the

linearized form of terms that we write on the page and the real underlying

tree form.

A different shorthand for the same inductive definition of terms employs

the two-dimensional inference rule format commonly used in “natural deduc-

tion style” presentations of logical systems:

3.2.2 Definition [Terms, by inference rules]: The set of terms is defined by the

following rules:

true ∈ T false ∈ T 0 ∈ T

t1 ∈ T

succ t1 ∈ T

t1 ∈ T

pred t1 ∈ T

t1 ∈ T

iszero t1 ∈ T

t1 ∈ T t2 ∈ T t3 ∈ T

if t1 then t2 else t3 ∈ T �

The first three rules here restate the first clause of Definition 3.2.1; the next

four capture clauses (2) and (3). Each rule is read, “If we have established the

3.2 Syntax 27

statements in the premise(s) listed above the line, then we may derive the

conclusion below the line.” The fact that T is the smallest set satisfying these

rules is often (as here) not stated explicitly.

Two points of terminology deserve mention. First, rules with no premises

(like the first three above) are often called axioms. In this book, the term infer-

ence rule is used generically to include both axioms and “proper rules” with

one or more premises. Axioms are usually written with no bar, since there

is nothing to go above it. Second, to be completely pedantic, what we are

calling “inference rules” are actually rule schemas, since their premises and

conclusions may include metavariables. Formally, each schema represents the

infinite set of concete rules that can be obtained by replacing each metavari-

able consistently by all phrases from the appropriate syntactic category—i.e.,

in the rules above, replacing each t by every possible term.

Finally, here is yet another definition of the same set of terms in a slightly

different, more “concrete” style that gives an explicit procedure for generat-

ing the elements of T .

3.2.3 Definition [Terms, concretely]: For each natural number i, define a set Si
as follows:

S0 = ∅

Si+1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si}

∪ {if t1 then t2 else t3 | t1,t2,t3 ∈ Si}.

Finally, let

S =
⋃

i

Si.

S0 is empty; S1 contains just the constants; S2 contains the constants plus

the phrases that can be built with constants and just one succ, pred, iszero,

or if; S3 contains these and all phrases that can be built using succ, pred,

iszero, and if on phrases in S2; and so on. S collects together all the phrases

that can be built in this way—i.e., all phrases built by some finite number of

arithmetic and conditional operators, beginning with just constants. �

3.2.4 Exercise [««]: How many elements does S3 have? �

3.2.5 Exercise [««]: Show that the sets Si are cumulative—that is, that for each i

we have Si ⊆ Si+1. �

The definitions we have seen characterize the same set of terms from dif-

ferent directions: Definitions 3.2.1 and 3.2.2 simply characterize the set as

28 3 Untyped Arithmetic Expressions

the smallest set satisfying certain “closure properties”; Definition 3.2.3 shows

how to actually construct the set as the limit of a sequence.

To finish off the discussion, let us verify that these two views actually de-

fine the same set. We’ll do the proof in quite a bit of detail, to show how all

the pieces fit together.

3.2.6 Proposition: T = S. �

Proof: T was defined as the smallest set satisfying certain conditions. So

it suffices to show (a) that S satisfies these conditions, and (b) that any set

satisfying the conditions has S as a subset (i.e., that S is the smallest set

satisfying the conditions).

For part (a), we must check that each of the three conditions in Defini-

tion 3.2.1 holds of S. First, since S1 = {true, false, 0}, it is clear that the

constants are in S. Second, if t1 ∈ S, then (since S =
⋃

i Si) there must be some

i such that t1 ∈ Si . But then, by the definition of Si+1, we must have succ t1 ∈

Si+1, hence succ t1 ∈ S; similarly, we see that pred t1 ∈ S and iszero t1 ∈

S. Third, if t1 ∈ S, t2 ∈ S, and t3 ∈ S, then if t1 then t2 else t3 ∈ S, by a

similar argument.

For part (b), suppose that some set S′ satisfies the three conditions in Def-

inition 3.2.1. We will argue, by complete induction on i, that every Si ⊆ S
′,

from which it clearly follows that S ⊆ S′.

Suppose that Sj ⊆ S
′ for all j < i; we must show that Si ⊆ S

′. Since the

definition of Si has two clauses (for i = 0 and i > 0), there are two cases to

consider. If i = 0, then Si = ∅; but ∅ ⊆ S′ trivially. Otherwise, i = j + 1 for

some j . Let t be some element of Sj+1. Since Sj+1 is defined as the union

of three smaller sets, t must come from one of these sets; there are three

possibilities to consider. (1) If t is a constant, then t ∈ S′ by condition 1. (2)

If t has the form succ t1, pred t1, or iszero t1, for some t1 ∈ Sj , then, by

the induction hypothesis, t1 ∈ S
′, and so, by condition (2), t ∈ S′. (3) If t has

the form if t1 then t2 else t3, for some t1,t2,t3 ∈ Si , then again, by the

induction hypothesis, t1, t2, and t3 are all in S′, and, by condition 3, so is t.

Thus, we have shown that each Si ⊆ S
′. By the definition of S as the union

of all the Si , this gives S ⊆ S′, completing the argument. �

It is worth noting that this proof goes by complete induction on the natural

numbers, not the more familiar “base case / induction case” form. For each i,

we suppose that the desired predicate holds for all numbers strictly less than

i and prove that it then holds for i as well. In essence, every step here is an

induction step; the only thing that is special about the case where i = 0 is that

the set of smaller values of i, for which we can invoke the induction hypoth-

esis, happens to be empty. The same remark will apply to most induction

3.3 Induction on Terms 29

proofs we will see throughout the book—particularly proofs by “structural

induction.”

3.3 Induction on Terms

The explicit characterization of the set of terms T in Proposition 3.2.6 justi-

fies an important principle for reasoning about its elements. If t ∈ T , then

one of three things must be true about t: (1) t is a constant, or (2) t has the

form succ t1, pred t1, or iszero t1 for some smaller term t1, or (3) t has

the form if t1 then t2 else t3 for some smaller terms t1, t2, and t3. We can

put this observation to work in two ways: we can give inductive definitions of

functions over the set of terms, and we can give inductive proofs of proper-

ties of terms. For example, here is a simple inductive definition of a function

mapping each term t to the set of constants used in t.

3.3.1 Definition: The set of constants appearing in a term t, written Consts(t), is

defined as follows:

Consts(true) = {true}

Consts(false) = {false}

Consts(0) = {0}

Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(t1)

Consts(iszero t1) = Consts(t1)

Consts(if t1 then t2 else t3) = Consts(t1)∪ Consts(t2)∪ Consts(t3) �

Another property of terms that can be calculated by an inductive definition

is their size.

3.3.2 Definition: The size of a term t, written size(t), is defined as follows:

size(true) = 1

size(false) = 1

size(0) = 1

size(succ t1) = size(t1)+ 1

size(pred t1) = size(t1)+ 1

size(iszero t1) = size(t1)+ 1

size(if t1 then t2 else t3) = size(t1)+ size(t2)+ size(t3)+ 1

That is, the size of t is the number of nodes in its abstract syntax tree. Simi-

larly, the depth of a term t, written depth(t), is defined as follows:

30 3 Untyped Arithmetic Expressions

depth(true) = 1

depth(false) = 1

depth(0) = 1

depth(succ t1) = depth(t1)+ 1

depth(pred t1) = depth(t1)+ 1

depth(iszero t1) = depth(t1)+ 1

depth(if t1 then t2 else t3) = max(depth(t1),depth(t2),depth(t3))+ 1

Equivalently, depth(t) is the smallest i such that t ∈ Si according to Defini-

tion 3.2.3. �

Here is an inductive proof of a simple fact relating the number of constants

in a term to its size. (The property in itself is entirely obvious, of course.

What’s interesting is the form of the inductive proof, which we’ll see repeated

many times as we go along.)

3.3.3 Lemma: The number of distinct constants in a term t is no greater than the

size of t (i.e., |Consts(t)| ≤ size(t)). �

Proof: By induction on the depth of t. Assuming the desired property for all

terms smaller than t, we must prove it for t itself. There are three cases to

consider:

Case: t is a constant

Immediate: |Consts(t)| = |{t}| = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, |Consts(t1)| ≤ size(t1). We now calculate as

follows: |Consts(t)| = |Consts(t1)| ≤ size(t1) < size(t).

Case: t = if t1 then t2 else t3

By the induction hypothesis, |Consts(t1)| ≤ size(t1), |Consts(t2)| ≤ size(t2),

and |Consts(t3)| ≤ size(t3). We now calculate as follows:

|Consts(t)| = |Consts(t1)∪ Consts(t2)∪ Consts(t3)|

≤ |Consts(t1)| + |Consts(t2)| + |Consts(t3)|

≤ size(t1)+ size(t2)+ size(t3)

< size(t). �

The form of this proof can be clarified by restating it as a general reasoning

principle. For good measure, we include two similar principles that are often

used in proofs about terms.

3.3 Induction on Terms 31

3.3.4 Theorem [Principles of induction on terms]: Suppose P is a predicate on

terms.

Induction on depth:

If, for each term s,

given P(r) for all r such that depth(r) < depth(s)

we can show P(s),

then P(s) holds for all s.

Induction on size:

If, for each term s,

given P(r) for all r such that size(r) < size(s)

we can show P(s),

then P(s) holds for all s.

Structural induction:

If, for each term s,

given P(r) for all immediate subterms r of s

we can show P(s),

then P(s) holds for all s. �

Proof: Exercise (««). �

Induction on depth or size of terms is analogous to complete induction

on natural numbers (2.4.2). Ordinary structural induction corresponds to the

ordinary natural number induction principle (2.4.1) where the induction step

requires that P(n+ 1) be established from just the assumption P(n).

Like the different styles of natural-number induction, the choice of one

term induction principle over another is determined by which one leads to

a simpler structure for the proof at hand—formally, they are inter-derivable.

For simple proofs, it generally makes little difference whether we argue by

induction on size, depth, or structure. As a matter of style, it is common prac-

tice to use structural induction wherever possible, since it works on terms

directly, avoiding the detour via numbers.

Most proofs by induction on terms have a similar structure. At each step of

the induction, we are given a term t for which we are to show some property

P , assuming that P holds for all subterms (or all smaller terms). We do this

by separately considering each of the possible forms that t could have (true,

false, conditional, 0, etc.), arguing in each case that P must hold for any t of

this form. Since the only parts of this structure that vary from one inductive

proof to another are the details of the arguments for the individual cases, it is

common practice to elide the unvarying parts and write the proof as follows.

32 3 Untyped Arithmetic Expressions

Proof: By induction on t.

Case: t = true

. . . show P(true) . . .

Case: t = false

. . . show P(false) . . .

Case: t = if t1 then t2 else t3

. . . show P(if t1 then t2 else t3), using P(t1), P(t2), and P(t3) . . .

(And similarly for the other syntactic forms.) �

For many inductive arguments (including the proof of 3.3.3), it is not really

worth writing even this much detail: in the base cases (for terms t with no

subterms) P(t) is immediate, while in the inductive cases P(t) is obtained by

applying the induction hypothesis to the subterms of t and combining the

results in some completely obvious way. It is actually easier for the reader

simply to regenerate the proof on the fly (by examining the grammar while

keeping the induction hypothesis in mind) than to check a written-out argu-

ment. In such cases, simply writing “by induction on t” constitutes a perfectly

acceptable proof.

3.4 Semantic Styles

Having formulated the syntax of our language rigorously, we next need a

similarly precise definition of how terms are evaluated—i.e., the semantics of

the language. There are three basic approaches to formalizing semantics:

1. Operational semantics specifies the behavior of a programming language

by defining a simple abstract machine for it. This machine is “abstract” in

the sense that it uses the terms of the language as its machine code, rather

than some low-level microprocessor instruction set. For simple languages,

a state of the machine is just a term, and the machine’s behavior is defined

by a transition function that, for each state, either gives the next state

by performing a step of simplification on the term or declares that the

machine has halted. The meaning of a term t can be taken to be the final

state that the machine reaches when started with t as its initial state.2

2. Strictly speaking, what we are describing here is the so-called small-step style of operational

semantics, sometimes called structural operational semantics (Plotkin, 1981). Exercise 3.5.17

introduces an alternate big-step style, sometimes called natural semantics (Kahn, 1987), in

which a single transition of the abstract machine evaluates a term to its final result.

3.4 Semantic Styles 33

It is sometimes useful to give two or more different operational semantics

for a single language—some more abstract, with machine states that look

similar to the terms that the programmer writes, others closer to the struc-

tures manipulated by an actual interpreter or compiler for the language.

Proving that the behaviors of these different machines correspond in some

suitable sense when executing the same program amounts to proving the

correctness of an implementation of the language.

2. Denotational semantics takes a more abstract view of meaning: instead of

just a sequence of machine states, the meaning of a term is taken to be

some mathematical object, such as a number or a function. Giving denota-

tional semantics for a language consists of finding a collection of semantic

domains and then defining an interpretation function mapping terms into

elements of these domains. The search for appropriate semantic domains

for modeling various language features has given rise to a rich and elegant

research area known as domain theory.

One major advantage of denotational semantics is that it abstracts from

the gritty details of evaluation and highlights the essential concepts of

the language. Also, the properties of the chosen collection of semantic do-

mains can be used to derive powerful laws for reasoning about program

behaviors—laws for proving that two programs have exactly the same be-

havior, for example, or that a program’s behavior satisfies some specifi-

cation. Finally, from the properties of the chosen collection of semantic

domains, it is often immediately evident that various (desirable or unde-

sirable) things are impossible in a language.

3. Axiomatic semantics takes a more direct approach to these laws: instead

of first defining the behaviors of programs (by giving some operational

or denotational semantics) and then deriving laws from this definition, ax-

iomatic methods take the laws themselves as the definition of the language.

The meaning of a term is just what can be proved about it.

The beauty of axiomatic methods is that they focus attention on the pro-

cess of reasoning about programs. It is this line of thought that has given

computer science such powerful ideas as invariants.

During the ’60s and ’70s, operational semantics was generally regarded as

inferior to the other two styles—useful for quick and dirty definitions of

language features, but inelegant and mathematically weak. But in the ’80s,

the more abstract methods began to encounter increasingly thorny technical

problems,3 and the simplicity and flexibility of operational methods came

3. The bête noire of denotational semantics turned out to be the treatment of nondeterminism

and concurrency; for axiomatic semantics, it was procedures.

34 3 Untyped Arithmetic Expressions

B (untyped)

Syntax

t ::= terms:

true constant true

false constant false

if t then t else t conditional

v ::= values:

true true value

false false value

Evaluation t -→ t′

if true then t2 else t3 -→ t2 (E-IfTrue)

if false then t2 else t3 -→ t3 (E-IfFalse)

t1 -→ t′1

if t1 then t2 else t3

-→ if t′1 then t2 else t3

(E-If)

Figure 3-1: Booleans (B)

to seem more and more attractive by comparison—especially in the light

of new developments in the area by a number of researchers, beginning

with Plotkin’s Structural Operational Semantics (1981), Kahn’s Natural Se-

mantics (1987), and Milner’s work on CCS (1980; 1989; 1999), which intro-

duced more elegant formalisms and showed how many of the powerful math-

ematical techniques developed in the context of denotational semantics could

be transferred to an operational setting. Operational semantics has become

an energetic research area in its own right and is often the method of choice

for defining programming languages and studying their properties. It is used

exclusively in this book.

3.5 Evaluation

Leaving numbers aside for the moment, let us begin with the operational

semantics of just boolean expressions. Figure 3-1 summarizes the definition.

We now examine its parts in detail.

The left-hand column of Figure 3-1 is a grammar defining two sets of ex-

pressions. The first is just a repetition (for convenience) of the syntax of

terms. The second defines a subset of terms, called values, that are possible

final results of evaluation. Here, the values are just the constants true and

false. The metavariable v is used throughout the book to stand for values.

The right-hand column defines an evaluation relation4 on terms, written

4. Some experts prefer to use the term reduction for this relation, reserving evaluation for the

“big-step” variant described in Exercise 3.5.17, which maps terms directly to their final values.

3.5 Evaluation 35

t -→ t′ and pronounced “t evaluates to t′ in one step.” The intuition is that,

if t is the state of the abstract machine at a given moment, then the machine

can make a step of computation and change its state to t′. This relation is

defined by three inference rules (or, if you prefer, two axioms and a rule, since

the first two have no premises).

The first rule, E-IfTrue, says that, if the term being evaluated is a condi-

tional whose guard is literally the constant true, then the machine can throw

away the conditional expression and leave the then part, t2, as the new state

of the machine (i.e., the next term to be evaluated). Similarly, E-IfFalse says

that a conditional whose guard is literally false evaluates in one step to its

else branch, t3. The E- in the names of these rules is a reminder that they

are part of the evaluation relation; rules for other relations will have different

prefixes.

The third evaluation rule, E-If, is more interesting. It says that, if the guard

t1 evaluates to t′1, then the whole conditional if t1 then t2 else t3 evalu-

ates to if t′1 then t2 else t3. In terms of abstract machines, a machine in

state if t1 then t2 else t3 can take a step to state if t′1 then t2 else t3 if

another machine whose state is just t1 can take a step to state t′1.

What these rules do not say is just as important as what they do say. The

constants true and false do not evaluate to anything, since they do not

appear as the left-hand sides of any of the rules. Moreover, there is no rule

allowing the evaluation of a then- or else-subexpression of an if before eval-

uating the if itself: for example, the term

if true then (if false then false else false) else true

does not evaluate to if true then false else true. Our only choice is to

evaluate the outer conditional first, using E-If. This interplay between the

rules determines a particular evaluation strategy for conditionals, correspond-

ing to the familiar order of evaluation in common programming languages:

to evaluate a conditional, we must first evaluate its guard; if the guard is it-

self a conditional, we must first evaluate its guard; and so on. The E-IfTrue

and E-IfFalse rules tell us what to do when we reach the end of this process

and find ourselves with a conditional whose guard is already fully evaluated.

In a sense, E-IfTrue and E-IfFalse do the real work of evaluation, while E-If

helps determine where the work is to be done. The different character of

the rules is sometimes emphasized by referring to E-IfTrue and E-IfFalse as

computation rules and E-If as a congruence rule.

To be a bit more precise about these intuitions, we can define the evaluation

relation formally as follows.

36 3 Untyped Arithmetic Expressions

3.5.1 Definition: An instance of an inference rule is obtained by consistently re-

placing each metavariable by the same term in the rule’s conclusion and all

its premises (if any). �

For example,

if true then true else (if false then false else false) -→ true

is an instance of E-IfTrue, where both occurrences of t2 have been replaced

by true and t3 has been replaced by if false then false else false.

3.5.2 Definition: A rule is satisfied by a relation if, for each instance of the rule,

either the conclusion is in the relation or one of the premises is not. �

3.5.3 Definition: The one-step evaluation relation -→ is the smallest binary rela-

tion on terms satisfying the three rules in Figure 3-1. When the pair (t,t′) is

in the evaluation relation, we say that “the evaluation statement (or judgment)

t -→ t′ is derivable.” �

The force of the word “smallest” here is that a statement t -→ t′ is deriv-

able iff it is justified by the rules: either it is an instance of one of the axioms

E-IfTrue and E-IfFalse, or else it is the conclusion of an instance of rule E-If

whose premise is derivable. The derivability of a given statement can be jus-

tified by exhibiting a derivation tree whose leaves are labeled with instances

of E-IfTrue or E-IfFalse and whose internal nodes are labeled with instances

of E-If. For example, if we abbreviate

s
def
= if true then false else false

t
def
= if s then true else true

u
def
= if false then true else true

to avoid running off the edge of the page, then the derivability of the state-

ment

if t then false else false -→ if u then false else false

is witnessed by the following derivation tree:

E-IfTrue
s -→ false

E-If
t -→ u

E-If
if t then false else false -→ if u then false else false

Calling this structure a tree may seem a bit strange, since it doesn’t contain

any branches. Indeed, the derivation trees witnessing evaluation statements

3.5 Evaluation 37

will always have this slender form: since no evaluation rule has more than

one premise, there is no way to construct a branching derivation tree. The

terminology will make more sense when we consider derivations for other

inductively defined relations, such as typing, where some of the rules do have

multiple premises.

The fact that an evaluation statement t -→ t′ is derivable iff there is a

derivation tree with t -→ t′ as the label at its root is often useful when

reasoning about properties of the evaluation relation. In particular, it leads

directly to a proof technique called induction on derivations. The proof of the

following theorem illustrates this technique.

3.5.4 Theorem [Determinacy of one-step evaluation]: If t -→ t′ and t -→ t′′,

then t′ = t′′. �

Proof: By induction on a derivation of t -→ t′. At each step of the induction,

we assume the desired result for all smaller derivations, and proceed by a

case analysis of the evaluation rule used at the root of the derivation. (Notice

that the induction here is not on the length of an evaluation sequence: we

are looking just at a single step of evaluation. We could just as well say that

we are performing induction on the structure of t, since the structure of

an “evaluation derivation” directly follows the structure of the term being

reduced. Alternatively, we could just as well perform the induction on the

derivation of t -→ t′′ instead.)

If the last rule used in the derivation of t -→ t′ is E-IfTrue, then we know

that t has the form if t1 then t2 else t3, where t1 = true. But now it is

obvious that the last rule in the derivation of t -→ t′′ cannot be E-IfFalse,

since we cannot have both t1 = true and t1 = false. Moreover, the last rule

in the second derivation cannot be E-If either, since the premise of this rule

demands that t1 -→ t′1 for some t′1, but we have already observed that true

does not evaluate to anything. So the last rule in the second derivation can

only be E-IfTrue, and it immediately follows that t′ = t′′.

Similarly, if the last rule used in the derivation of t -→ t′ is E-IfFalse, then

the last rule in the derivation of t -→ t′′ must be the same and the result is

immediate.

Finally, if the last rule used in the derivation of t -→ t′ is E-If, then the

form of this rule tells us that t has the form if t1 then t2 else t3, where

t1 -→ t′1 for some t′1. By the same reasoning as above, the last rule in the

derivation of t -→ t′′ can only be E-If, which tells us that t has the form

if t1 then t2 else t3 (which we already know) and that t1 -→ t′′1 for some

t′′1 . But now the induction hypothesis applies (since the derivations of t1 -→

t′1 and t1 -→ t′′1 are subderivations of the original derivations of t -→ t′ and

38 3 Untyped Arithmetic Expressions

t -→ t′′), yielding t′1 = t′′1 . This tells us that t′ = if t′1 then t2 else t3 =

if t′′1 then t2 else t3 = t′′, as required. �

3.5.5 Exercise [«]: Spell out the induction principle used in the preceding proof,

in the style of Theorem 3.3.4. �

Our one-step evaluation relation shows how an abstract machine moves

from one state to the next while evaluating a given term. But as programmers

we are just as interested in the final results of evaluation—i.e., in states from

which the machine cannot take a step.

3.5.6 Definition: A term t is in normal form if no evaluation rule applies to it—

i.e., if there is no t′ such that t -→ t′. (We sometimes say “t is a normal form”

as shorthand for “t is a term in normal form.”) �

We have already observed that true and false are normal forms in the

present system (since all the evaluation rules have left-hand sides whose out-

ermost constructor is an if, there is obviously no way to instantiate any of

the rules so that its left-hand side becomes true or false). We can rephrase

this observation in more general terms as a fact about values:

3.5.7 Theorem: Every value is in normal form. �

When we enrich the system with arithmetic expressions (and, in later chap-

ters, other constructs), we will always arrange that Theorem 3.5.7 remains

valid: being in normal form is part of what it is to be a value (i.e., a fully

evaluated result), and any language definition in which this is not the case is

simply broken.

In the present system, the converse of Theorem 3.5.7 is also true: every

normal form is a value. This will not be the case in general; in fact, normal

forms that are not values play a critical role in our analysis of run-time errors,

as we shall see when we get to arithmetic expressions later in this section.

3.5.8 Theorem: If t is in normal form, then t is a value. �

Proof: Suppose that t is not a value. It is easy to show, by structural induc-

tion on t, that it is not a normal form.

Since t is not a value, it must have the form if t1 then t2 else t3 for

some t1, t2, and t3. Consider the possible forms of t1.

If t1 = true, then clearly t is not a normal form, since it matches the

left-hand side of E-IfTrue. Similarly if t1 = false.

If t1 is neither true nor false, then it is not a value. The induction hy-

pothesis then applies, telling us that t1 is not a normal form—that is, that

there is some t′1 such that t1 -→ t′1. But this means we can use E-If to derive

t -→ if t′1 then t2 else t3, so t is not a normal form either. �

3.5 Evaluation 39

It is sometimes convenient to be able to view many steps of evaluation

as one big state transition. We do this by defining a multi-step evaluation

relation that relates a term to all of the terms that can be derived from it by

zero or more single steps of evaluation.

3.5.9 Definition: The multi-step evaluation relation -→∗ is the reflexive, transitive

closure of one-step evaluation. That is, it is the smallest relation such that (1)

if t -→ t′ then t -→∗ t′, (2) t -→∗ t for all t, and (3) if t -→∗ t′ and t′ -→∗ t′′,

then t -→∗ t′′. �

3.5.10 Exercise [«]: Rephrase Definition 3.5.9 as a set of inference rules. �

Having an explicit notation for multi-step evaluation makes it easy to state

facts like the following:

3.5.11 Theorem [Uniqueness of normal forms]: If t -→∗ u and t -→∗ u′, where u

and u′ are both normal forms, then u = u′. �

Proof: Corollary of the determinacy of single-step evaluation (3.5.4). �

The last property of evaluation that we consider before turning our atten-

tion to arithmetic expressions is the fact that every term can be evaluated to a

value. Clearly, this is another property that need not hold in richer languages

with features like recursive function definitions. Even in situations where it

does hold, its proof is generally much more subtle than the one we are about

to see. In Chapter 12 we will return to this point, showing how a type system

can be used as the backbone of a termination proof for certain languages.

Most termination proofs in computer science have the same basic form:5

First, we choose some well-founded set S and give a function f mapping “ma-

chine states” (here, terms) into S. Next, we show that, whenever a machine

state t can take a step to another state t′, we have f (t′) < f (t). We now

observe that an infinite sequence of evaluation steps beginning from t can

be mapped, via f , into an infinite decreasing chain of elements of S. Since

S is well founded, there can be no such infinite decreasing chain, and hence

no infinite evaluation sequence. The function f is often called a termination

measure for the evaluation relation.

3.5.12 Theorem [Termination of Evaluation]: For every term t there is some

normal form t′ such that t -→∗ t′. �

Proof: Just observe that each evaluation step reduces the size of the term

and that size is a termination measure because the usual order on the natural

numbers is well founded. �

5. In Chapter 12 we will see a termination proof with a somewhat more complex structure.

40 3 Untyped Arithmetic Expressions

3.5.13 Exercise [Recommended, ««]:

1. Suppose we add a new rule

if true then t2 else t3 -→ t3 (E-Funny1)

to the ones in Figure 3-1. Which of the above theorems (3.5.4, 3.5.7, 3.5.8,

3.5.11, and 3.5.12) remain valid?

2. Suppose instead that we add this rule:

t2 -→ t′2

if t1 then t2 else t3 -→ if t1 then t
′
2 else t3

(E-Funny2)

Now which of the above theorems remain valid? Do any of the proofs need

to change? �

Our next job is to extend the definition of evaluation to arithmetic expres-

sions. Figure 3-2 summarizes the new parts of the definition. (The notation in

the upper-right corner of 3-2 reminds us to regard this figure as an extension

of 3-1, not a free-standing language in its own right.)

Again, the definition of terms is just a repetition of the syntax we saw in

§3.1. The definition of values is a little more interesting, since it requires

introducing a new syntactic category of numeric values. The intuition is that

the final result of evaluating an arithmetic expression can be a number, where

a number is either 0 or the successor of a number (but not the successor of an

arbitrary value: we will want to say that succ(true) is an error, not a value).

The evaluation rules in the right-hand column of Figure 3-2 follow the

same pattern as we saw in Figure 3-1. There are four computation rules

(E-PredZero, E-PredSucc, E-IszeroZero, and E-IszeroSucc) showing how

the operators pred and iszero behave when applied to numbers, and three

congruence rules (E-Succ, E-Pred, and E-Iszero) that direct evaluation into

the “first” subterm of a compound term.

Strictly speaking, we should now repeat Definition 3.5.3 (“the one-step eval-

uation relation on arithmetic expressions is the smallest relation satisfying

all instances of the rules in Figures 3-1 and 3-2. . .”). To avoid wasting space

on this kind of boilerplate, it is common practice to take the inference rules

as constituting the definition of the relation all by themselves, leaving “the

smallest relation containing all instances. . .” as understood.

The syntactic category of numeric values (nv) plays an important role in

these rules. In E-PredSucc, for example, the fact that the left-hand side is

pred (succ nv1) (rather than pred (succ t1), for example) means that this

rule cannot be used to evaluate pred (succ (pred 0)) to pred 0, since this

3.5 Evaluation 41

B N (untyped) Extends B (3-1)

New syntactic forms

t ::= ... terms:

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= ... values:

nv numeric value

nv ::= numeric values:

0 zero value

succ nv successor value

New evaluation rules t -→ t′

t1 -→ t′1

succ t1 -→ succ t′1
(E-Succ)

pred 0 -→ 0 (E-PredZero)

pred (succ nv1) -→ nv1 (E-PredSucc)

t1 -→ t′1

pred t1 -→ pred t′1
(E-Pred)

iszero 0 -→ true (E-IszeroZero)

iszero (succ nv1) -→ false (E-IszeroSucc)

t1 -→ t′1

iszero t1 -→ iszero t′1
(E-IsZero)

Figure 3-2: Arithmetic expressions (NB)

would require instantiating the metavariable nv1 with pred 0, which is not

a numeric value. Instead, the unique next step in the evaluation of the term

pred (succ (pred 0)) has the following derivation tree:

E-PredZero
pred 0 -→ 0

E-Succ
succ (pred 0) -→ succ 0

E-Pred
pred (succ (pred 0)) -→ pred (succ 0)

3.5.14 Exercise [««]: Show that Theorem 3.5.4 is also valid for the evaluation rela-

tion on arithmetic expressions: if t -→ t′ and t -→ t′′, then t′ = t′′. �

Formalizing the operational semantics of a language forces us to specify

the behavior of all terms, including, in the case at hand, terms like pred 0 and

succ false. Under the rules in Figure 3-2, the predecessor of 0 is defined to

be 0. The successor of false, on the other hand, is not defined to evaluate to

anything (i.e., it is a normal form). We call such terms stuck.

3.5.15 Definition: A closed term is stuck if it is in normal form but not a value. �

42 3 Untyped Arithmetic Expressions

“Stuckness” gives us a simple notion of run-time error for our simple ma-

chine. Intuitively, it characterizes the situations where the operational seman-

tics does not know what to do because the program has reached a “meaning-

less state.” In a more concrete implementation of the language, these states

might correspond to machine failures of various kinds: segmentation faults,

execution of illegal instructions, etc. Here, we collapse all these kinds of bad

behavior into the single concept of “stuck state.”

3.5.16 Exercise [Recommended, «««]: A different way of formalizing meaningless

states of the abstract machine is to introduce a new term called wrong and

augment the operational semantics with rules that explicitly generate wrong

in all the situations where the present semantics gets stuck. To do this in

detail, we introduce two new syntactic categories

badnat ::= non-numeric normal forms:

wrong run-time error

true constant true

false constant false

badbool ::= non-boolean normal forms:

wrong run-time error

nv numeric value

and we augment the evaluation relation with the following rules:

if badbool then t1 else t2 -→ wrong (E-If-Wrong)

succ badnat -→ wrong (E-Succ-Wrong)

pred badnat -→ wrong (E-Pred-Wrong)

iszero badnat -→ wrong (E-IsZero-Wrong)

Show that these two treatments of run-time errors agree by (1) finding a

precise way of stating the intuition that “the two treatments agree,” and (2)

proving it. As is often the case when proving things about programming lan-

guages, the tricky part here is formulating a precise statement to be proved—

the proof itself should be straightforward. �

3.5.17 Exercise [Recommended, «««]: Two styles of operational semantics are in

common use. The one used in this book is called the small-step style, because

the definition of the evaluation relation shows how individual steps of com-

putation are used to rewrite a term, bit by bit, until it eventually becomes a

value. On top of this, we define a multi-step evaluation relation that allows us

to talk about terms evaluating (in many steps) to values. An alternative style,

3.6 Notes 43

called big-step semantics (or sometimes natural semantics), directly formu-

lates the notion of “this term evaluates to that final value,” written t ⇓ v. The

big-step evaluation rules for our language of boolean and arithmetic expres-

sions look like this:

v ⇓ v (B-Value)

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

(B-IfTrue)

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

(B-IfFalse)

t1 ⇓ nv1

succ t1 ⇓ succ nv1

(B-Succ)

t1 ⇓ 0

pred t1 ⇓ 0
(B-PredZero)

t1 ⇓ succ nv1

pred t1 ⇓ nv1

(B-PredSucc)

t1 ⇓ 0

iszero t1 ⇓ true
(B-IszeroZero)

t1 ⇓ succ nv1

iszero t1 ⇓ false
(B-IszeroSucc)

Show that the small-step and big-step semantics for this language coincide,

i.e. t -→∗ v iff t ⇓ v. �

3.5.18 Exercise [«« 3]: Suppose we want to change the evaluation strategy of our

language so that the then and else branches of an if expression are eval-

uated (in that order) before the guard is evaluated. Show how the evaluation

rules need to change to achieve this effect. �

3.6 Notes

The ideas of abstract and concrete syntax, parsing, etc., are explained in

dozens of textbooks on compilers. Inductive definitions, systems of infer-

ence rules, and proofs by induction are covered in more detail by Winskel

(1993) and Hennessy (1990).

44 3 Untyped Arithmetic Expressions

The style of operational semantics that we are using here goes back to a

technical report by Plotkin (1981). The big-step style (Exercise 3.5.17) was

developed by Kahn (1987). See Astesiano (1991) and Hennessy (1990) for

more detailed developments.

Structural induction was introduced to computer science by Burstall (1969).

Q: Why bother doing proofs about programming languages? They are almost

always boring if the definitions are right.

A: The definitions are almost always wrong. —Anonymous

4
An ML Implementation of Arithmetic

Expressions

Working with formal definitions such as those in the previous chapter is often

easier when the intuitions behind the definitions are “grounded” by a connec-

tion to a concrete implementation. We describe here the key components of

an implementation of our language of booleans and arithmetic expressions.

(Readers who do not intend to work with the implementations of the type-

checkers described later can skip this chapter and all later chapters with the

phrase “ML Implementation” in their titles.)

The code presented here (and in the implementation sections throughout

the book) is written in a popular language from the ML family (Gordon, Mil-

ner, and Wadsworth, 1979) called Objective Caml, or OCaml for short (Leroy,

2000; Cousineau and Mauny, 1998). Only a small subset of the full OCaml lan-

guage is used; it should be easy to translate the examples here into most other

languages. The most important requirements are automatic storage manage-

ment (garbage collection) and easy facilities for defining recursive functions

by pattern matching over structured data types. Other functional languages

such as Standard ML (Milner, Tofte, Harper, and MacQueen, 1997), Haskell

(Hudak et al., 1992; Thompson, 1999), and Scheme (Kelsey, Clinger, and Rees,

1998; Dybvig, 1996) (with some pattern-matching extension) are fine choices.

Languages with garbage collection but without pattern matching, such as

Java (Arnold and Gosling, 1996) and pure Scheme, are somewhat heavy for

the sorts of programming we’ll be doing. Languages with neither, such as C

(Kernighan and Ritchie, 1988), are even less suitable.1

The code in this chapter can be found in the arith implementation in the web repository,

http://www.cis.upenn.edu/~bcpierce/tapl, along with instructions on downloading and

building the implementations.

1. Of course, tastes in languages vary and good programmers can use whatever tools come to

hand to get the job done; you are free to use whatever language you prefer. But be warned:

doing manual storage management (in particular) for the sorts of symbol processing needed

by a typechecker is a tedious and error-prone business.

46 4 An ML Implementation of Arithmetic Expressions

4.1 Syntax

Our first job is to define a type of OCaml values representing terms. OCaml’s

datatype definition mechanism makes this easy: the following declaration is

a straightforward transliteration of the grammar on page 24.

type term =

TmTrue of info

| TmFalse of info

| TmIf of info * term * term * term

| TmZero of info

| TmSucc of info * term

| TmPred of info * term

| TmIsZero of info * term

The constructors TmTrue to TmIsZero name the different sorts of nodes in

the abstract syntax trees of type term; the type following of in each case

specifies the number of subtrees that will be attached to that type of node.

Each abstract syntax tree node is annotated with a value of type info,

which describes where (what character position in which source file) the node

originated. This information is created by the parser when it scans the input

file, and it is used by printing functions to indicate to the user where an error

occurred. For purposes of understanding the basic algorithms of evaluation,

typechecking, etc., this information could just as well be omitted; it is in-

cluded here only so that readers who wish to experiment with the implemen-

tations themselves will see the code in exactly the same form as discussed in

the book.

In the definition of the evaluation relation, we’ll need to check whether a

term is a numeric value:

let rec isnumericval t = match t with

TmZero(_) → true

| TmSucc(_,t1) → isnumericval t1

| _ → false

This is a typical example of recursive definition by pattern matching in OCaml:

isnumericval is defined as the function that, when applied to TmZero, re-

turns true; when applied to TmSucc with subtree t1 makes a recursive call

to check whether t1 is a numeric value; and when applied to any other term

returns false. The underscores in some of the patterns are “don’t care” en-

tries that match anything in the term at that point; they are used in the first

two clauses to ignore the info annotations and in the final clause to match

any term whatsoever. The rec keyword tells the compiler that this is a recur-

sive function definition—i.e., that the reference to isnumericval in its body

4.2 Evaluation 47

refers to the function now being defined, rather than to some earlier binding

with the same name.

Note that the ML code in the above definition has been “prettified” in some

small ways during typesetting, both for ease of reading and for consistency

with the lambda-calculus examples. For instance, we use a real arrow sym-

bol (→) instead of the two-character sequence ->. A complete list of these

prettifications can be found on the book’s web site.

The function that checks whether a term is a value is similar:

let rec isval t = match t with

TmTrue(_) → true

| TmFalse(_) → true

| t when isnumericval t → true

| _ → false

The third clause is a “conditional pattern”: it matches any term t, but only so

long as the boolean expression isnumericval t yields true.

4.2 Evaluation

The implementation of the evaluation relation closely follows the single-step

evaluation rules in Figures 3-1 and 3-2. As we have seen, these rules define

a partial function that, when applied to a term that is not yet a value, yields

the next step of evaluation for that term. When applied to a value, the re-

sult of the evaluation function yields no result. To translate the evaluation

rules into OCaml, we need to make a decision about how to handle this case.

One straightforward approach is to write the single-step evaluation function

eval1 so that it raises an exception when none of the evaluation rules apply

to the term that it is given. (Another possibility would be to make the single-

step evaluator return a term option indicating whether it was successful and,

if so, giving the resulting term; this would also work fine, but would require

a little more bookkeeping.) We begin by defining the exception to be raised

when no evaluation rule applies:

exception NoRuleApplies

Now we can write the single-step evaluator itself.

let rec eval1 t = match t with

TmIf(_,TmTrue(_),t2,t3) →

t2

| TmIf(_,TmFalse(_),t2,t3) →

t3

| TmIf(fi,t1,t2,t3) →

48 4 An ML Implementation of Arithmetic Expressions

let t1’ = eval1 t1 in

TmIf(fi, t1’, t2, t3)

| TmSucc(fi,t1) →

let t1’ = eval1 t1 in

TmSucc(fi, t1’)

| TmPred(_,TmZero(_)) →

TmZero(dummyinfo)

| TmPred(_,TmSucc(_,nv1)) when (isnumericval nv1) →

nv1

| TmPred(fi,t1) →

let t1’ = eval1 t1 in

TmPred(fi, t1’)

| TmIsZero(_,TmZero(_)) →

TmTrue(dummyinfo)

| TmIsZero(_,TmSucc(_,nv1)) when (isnumericval nv1) →

TmFalse(dummyinfo)

| TmIsZero(fi,t1) →

let t1’ = eval1 t1 in

TmIsZero(fi, t1’)

| _ →

raise NoRuleApplies

Note that there are several places where we are constructing terms from

scratch rather than reorganizing existing terms. Since these new terms do

not exist in the user’s original source file, their info annotations are not use-

ful. The constant dummyinfo is used as the info annotation in such terms.

The variable name fi (for “file information”) is consistently used to match

info annotations in patterns.

Another point to notice in the definition of eval1 is the use of explicit when

clauses in patterns to capture the effect of metavariable names like v and nv

in the presentation of the evaluation relation in Figures 3-1 and 3-2. In the

clause for evaluating TmPred(_,TmSucc(_,nv1)), for example, the seman-

tics of OCaml patterns will allow nv1 to match any term whatsoever, which

is not what we want; adding when (isnumericval nv1) restricts the rule so

that it can fire only when the term matched by nv1 is actually a numeric value.

(We could, if we wanted, rewrite the original inference rules in the same style

as the ML patterns, turning the implicit constraints arising from metavariable

names into explicit side conditions on the rules

t1 is a numeric value

pred (succ t1) -→ t1

(E-PredSucc)

at some cost in compactness and readability.)

Finally, the eval function takes a term and finds its normal form by repeat-

edly calling eval1. Whenever eval1 returns a new term t′, we make a recur-

4.3 The Rest of the Story 49

sive call to eval to continue evaluating from t′. When eval1 finally reaches a

point where no rule applies, it raises the exception NoRuleApplies, causing

eval to break out of the loop and return the final term in the sequence.2

let rec eval t =

try let t’ = eval1 t

in eval t’

with NoRuleApplies → t

Obviously, this simple evaluator is tuned for easy comparison with the

mathematical definition of evaluation, not for finding normal forms as quickly

as possible. A somewhat more efficient algorithm can be obtained by starting

instead from the “big-step” evaluation rules in Exercise 4.2.2.

4.2.2 Exercise [Recommended, ««« 3]: Change the definition of the eval func-

tion in the arith implementation to the big-step style introduced in Exer-

cise 3.5.17. �

4.3 The Rest of the Story

Of course, there are many parts to an interpreter or compiler—even a very

simple one—besides those we have discussed explicitly here. In reality, terms

to be evaluated start out as sequences of characters in files. They must be

read from the file system, processed into streams of tokens by a lexical an-

alyzer, and further processed into abstract syntax trees by a parser, before

they can actually be evaluated by the functions that we have seen. Further-

more, after evaluation, the results need to be printed out.

file I/O
chars

// lexing
tokens

// parsing
terms

// evaluation
values

// printing

Interested readers are encouraged to have a look at the on-line OCaml code

for the whole interpreter.

2. We write eval this way for the sake of simplicity, but putting a try handler in a recursive

loop is not actually very good style in ML.

4.2.1 Exercise [««]: Why not? What is a better way to write eval? �

5 The Untyped Lambda-Calculus

This chapter reviews the definition and some basic properties of the untyped

or pure lambda-calculus, the underlying “computational substrate” for most

of the type systems described in the rest of the book.

In the mid 1960s, Peter Landin observed that a complex programming lan-

guage can be understood by formulating it as a tiny core calculus capturing

the language’s essential mechanisms, together with a collection of conve-

nient derived forms whose behavior is understood by translating them into

the core (Landin 1964, 1965, 1966; also see Tennent 1981). The core lan-

guage used by Landin was the lambda-calculus, a formal system invented

in the 1920s by Alonzo Church (1936, 1941), in which all computation is

reduced to the basic operations of function definition and application. Fol-

lowing Landin’s insight, as well as the pioneering work of John McCarthy

on Lisp (1959, 1981), the lambda-calculus has seen widespread use in the

specification of programming language features, in language design and im-

plementation, and in the study of type systems. Its importance arises from

the fact that it can be viewed simultaneously as a simple programming lan-

guage in which computations can be described and as a mathematical object

about which rigorous statements can be proved.

The lambda-calculus is just one of a large number of core calculi that have

been used for similar purposes. The pi-calculus of Milner, Parrow, and Walker

(1992, 1991) has become a popular core language for defining the semantics

of message-based concurrent languages, while Abadi and Cardelli’s object cal-

culus (1996) distills the core features of object-oriented languages. Most of

the concepts and techniques that we will develop for the lambda-calculus can

be transferred quite directly to these other calculi. One case study along these

lines is developed in Chapter 19.

The examples in this chapter are terms of the pure untyped lambda-calculus, λ (Figure 5-3),

or of the lambda-calculus extended with booleans and arithmetic operations, λNB (3-2). The

associated OCaml implementation is fulluntyped.

52 5 The Untyped Lambda-Calculus

The lambda-calculus can be enriched in a variety of ways. First, it is often

convenient to add special concrete syntax for features like numbers, tuples,

records, etc., whose behavior can already be simulated in the core language.

More interestingly, we can add more complex features such as mutable refer-

ence cells or nonlocal exception handling, which can be modeled in the core

language only by using rather heavy translations. Such extensions lead even-

tually to languages such as ML (Gordon, Milner, and Wadsworth, 1979; Mil-

ner, Tofte, and Harper, 1990; Weis, Aponte, Laville, Mauny, and Suárez, 1989;

Milner, Tofte, Harper, and MacQueen, 1997), Haskell (Hudak et al., 1992), or

Scheme (Sussman and Steele, 1975; Kelsey, Clinger, and Rees, 1998). As we

shall see in later chapters, extensions to the core language often involve ex-

tensions to the type system as well.

5.1 Basics

Procedural (or functional) abstraction is a key feature of essentially all pro-

gramming languages. Instead of writing the same calculation over and over,

we write a procedure or function that performs the calculation generically, in

terms of one or more named parameters, and then instantiate this function

as needed, providing values for the parameters in each case. For example, it

is second nature for a programmer to take a long and repetitive expression

like

(5*4*3*2*1) + (7*6*5*4*3*2*1) - (3*2*1)

and rewrite it as factorial(5) + factorial(7) - factorial(3), where:

factorial(n) = if n=0 then 1 else n * factorial(n-1).

For each nonnegative number n, instantiating the function factorial with

the argument n yields the factorial of n as result. If we write “λn. ...” as

a shorthand for “the function that, for each n, yields. . .,” we can restate the

definition of factorial as:

factorial = λn. if n=0 then 1 else n * factorial(n-1)

Then factorial(0) means “the function (λn. if n=0 then 1 else ...) ap-

plied to the argument 0,” that is, “the value that results when the argument

variable n in the function body (λn. if n=0 then 1 else ...) is replaced by

0,” that is, “if 0=0 then 1 else ...,” that is, 1.

The lambda-calculus (or λ-calculus) embodies this kind of function defi-

nition and application in the purest possible form. In the lambda-calculus

everything is a function: the arguments accepted by functions are themselves

functions and the result returned by a function is another function.

5.1 Basics 53

The syntax of the lambda-calculus comprises just three sorts of terms.1 A

variable x by itself is a term; the abstraction of a variable x from a term t1,

written λx.t1, is a term; and the application of a term t1 to another term t2,

written t1 t2, is a term. These ways of forming terms are summarized in the

following grammar.

t ::= terms:

x variable

λx.t abstraction

t t application

The subsections that follow explore some fine points of this definition.

Abstract and Concrete Syntax

When discussing the syntax of programming languages, it is useful to dis-

tinguish two levels2 of structure. The concrete syntax (or surface syntax) of

the language refers to the strings of characters that programmers directly

read and write. Abstract syntax is a much simpler internal representation of

programs as labeled trees (called abstract syntax trees or ASTs). The tree rep-

resentation renders the structure of terms immediately obvious, making it

a natural fit for the complex manipulations involved in both rigorous lan-

guage definitions (and proofs about them) and the internals of compilers and

interpreters.

The transformation from concrete to abstract syntax takes place in two

stages. First, a lexical analyzer (or lexer) converts the string of characters writ-

ten by the programmer into a sequence of tokens—identifiers, keywords, con-

stants, punctuation, etc. The lexer removes comments and deals with issues

such as whitespace and capitalization conventions, and formats for numeric

and string constants. Next, a parser transforms this sequence of tokens into

an abstract syntax tree. During parsing, various conventions such as operator

precedence and associativity reduce the need to clutter surface programs with

parentheses to explicitly indicate the structure of compound expressions. For

example, * binds more tightly than +, so the parser interprets the unparen-

1. The phrase lambda-term is used to refer to arbitrary terms in the lambda-calculus. Lambda-

terms beginning with a λ are often called lambda-abstractions.

2. Definitions of full-blown languages sometimes use even more levels. For example, following

Landin, it is often useful to define the behaviors of some languages constructs as derived

forms, by translating them into combinations of other, more basic, features. The restricted

sublanguage containing just these core features is then called the internal language (or IL),

while the full language including all derived forms is called the external language (EL). The

transformation from EL to IL is (at least conceptually) performed in a separate pass, following

parsing. Derived forms are discussed in Section 11.3.

54 5 The Untyped Lambda-Calculus

thesized expression 1+2*3 as the abstract syntax tree to the left below rather

than the one to the right:

3

1

2

*

+

1 2

3

*

+

The focus of attention in this book is on abstract, not concrete, syntax.

Grammars like the one for lambda-terms above should be understood as de-

scribing legal tree structures, not strings of tokens or characters. Of course,

when we write terms in examples, definitions, theorems, and proofs, we will

need to express them in a concrete, linear notation, but we always have their

underlying abstract syntax trees in mind.

To save writing too many parentheses, we adopt two conventions when

writing lambda-terms in linear form. First, application associates to the left—

that is, s t u stands for the same tree as (s t) u:

apply u

apply

s t

Second, the bodies of abstractions are taken to extend as far to the right

as possible, so that, for example, λx. λy. x y x stands for the same tree as

λx. (λy. ((x y) x)):

x

apply

apply

y

λy

λx

x

Variables and Metavariables

Another subtlety in the syntax definition above concerns the use of metavari-

ables. We will continue to use the metavariable t (as well as s, and u, with or

5.1 Basics 55

without subscripts) to stand for an arbitrary term.3 Similarly, x (as well as

y and z) stands for an arbitrary variable. Note, here, that x is a metavariable

ranging over variables! To make matters worse, the set of short names is lim-

ited, and we will also want to use x, y, etc. as object-language variables. In

such cases, however, the context will always make it clear which is which. For

example, in a sentence like “The term λx. λy. x y has the form λz.s, where

z = x and s = λy. x y,” the names z and s are metavariables, whereas x and

y are object-language variables.

Scope

A final point we must address about the syntax of the lambda-calculus is the

scopes of variables.

An occurrence of the variable x is said to be bound when it occurs in the

body t of an abstraction λx.t. (More precisely, it is bound by this abstraction.

Equivalently, we can say that λx is a binder whose scope is t.) An occurrence

of x is free if it appears in a position where it is not bound by an enclosing

abstraction on x. For example, the occurrences of x in x y and λy. x y are

free, while the ones in λx.x and λz. λx. λy. x (y z) are bound. In (λx.x) x,

the first occurrence of x is bound and the second is free.

A term with no free variables is said to be closed; closed terms are also

called combinators. The simplest combinator, called the identity function,

id = λx.x;

does nothing but return its argument.

Operational Semantics

In its pure form, the lambda-calculus has no built-in constants or primitive

operators—no numbers, arithmetic operations, conditionals, records, loops,

sequencing, I/O, etc. The sole means by which terms “compute” is the ap-

plication of functions to arguments (which themselves are functions). Each

step in the computation consists of rewriting an application whose left-hand

component is an abstraction, by substituting the right-hand component for

the bound variable in the abstraction’s body. Graphically, we write

(λx. t12) t2 -→ [x, t2]t12,

where [x , t2]t12 means “the term obtained by replacing all free occur-

rences of x in t12 by t2.” For example, the term (λx.x) y evaluates to y and

3. Naturally, in this chapter, t ranges over lambda-terms, not arithmetic expressions. Through-

out the book, t will always range over the terms of calculus under discussion at the moment.

A footnote on the first page of each chapter specifies which system this is.

56 5 The Untyped Lambda-Calculus

the term (λx. x (λx.x)) (u r) evaluates to u r (λx.x). Following Church,

a term of the form (λx. t12) t2 is called a redex (“reducible expression”),

and the operation of rewriting a redex according to the above rule is called

beta-reduction.

Several different evaluation strategies for the lambda-calculus have been

studied over the years by programming language designers and theorists.

Each strategy defines which redex or redexes in a term can fire on the next

step of evaluation.4

• Under full beta-reduction, any redex may be reduced at any time. At each

step we pick some redex, anywhere inside the term we are evaluating, and

reduce it. For example, consider the term

(λx.x) ((λx.x) (λz. (λx.x) z)),

which we can write more readably as id (id (λz. id z)). This term con-

tains three redexes:

id (id (λz. id z))

id ((id (λz. id z)))

id (id (λz. id z))

Under full beta-reduction, we might choose, for example, to begin with the

innermost redex, then do the one in the middle, then the outermost:

id (id (λz. id z))

-→ id (id (λz.z))

-→ id (λz.z)

-→ λz.z

6-→

• Under the normal order strategy, the leftmost, outermost redex is always

reduced first. Under this strategy, the term above would be reduced as

follows:

id (id (λz. id z))

-→ id (λz. id z)

-→ λz. id z

-→ λz.z

6-→

4. Some people use the terms “reduction” and “evaluation” synonymously. Others use “evalu-

ation” only for strategies that involve some notion of “value” and “reduction” otherwise.

5.1 Basics 57

Under this strategy (and the ones below), the evaluation relation is actually

a partial function: each term t evaluates in one step to at most one term t′.

• The call by name strategy is yet more restrictive, allowing no reductions

inside abstractions. Starting from the same term, we would perform the

first two reductions as under normal-order, but then stop before the last

and regard λz. id z as a normal form:

id (id (λz. id z))

-→ id (λz. id z)

-→ λz. id z

6-→

Variants of call by name have been used in some well-known program-

ming languages, notably Algol-60 (Naur et al., 1963) and Haskell (Hudak

et al., 1992). Haskell actually uses an optimized version known as call by

need (Wadsworth, 1971; Ariola et al., 1995) that, instead of re-evaluating

an argument each time it is used, overwrites all occurrences of the argu-

ment with its value the first time it is evaluated, avoiding the need for

subsequent re-evaluation. This strategy demands that we maintain some

sharing in the run-time representation of terms—in effect, it is a reduction

relation on abstract syntax graphs, rather than syntax trees.

• Most languages use a call by value strategy, in which only outermost re-

dexes are reduced and where a redex is reduced only when its right-hand

side has already been reduced to a value—a term that is finished comput-

ing and cannot be reduced any further.5 Under this strategy, our example

term reduces as follows:

id (id (λz. id z))

-→ id (λz. id z)

-→ λz. id z

6-→

The call-by-value strategy is strict , in the sense that the arguments to func-

tions are always evaluated, whether or not they are used by the body of the

function. In contrast, non-strict (or lazy) strategies such as call-by-name

and call-by-need evaluate only the arguments that are actually used.

5. In the present bare-bones calculus, the only values are lambda-abstractions. Richer calculi

will include other values: numeric and boolean constants, strings, tuples of values, records of

values, lists of values, etc.

58 5 The Untyped Lambda-Calculus

The choice of evaluation strategy actually makes little difference when dis-

cussing type systems. The issues that motivate various typing features, and

the techniques used to address them, are much the same for all the strate-

gies. In this book, we use call by value, both because it is found in most

well-known languages and because it is the easiest to enrich with features

such as exceptions (Chapter 14) and references (Chapter 13).

5.2 Programming in the Lambda-Calculus

The lambda-calculus is much more powerful than its tiny definition might

suggest. In this section, we develop a number of standard examples of pro-

gramming in the lambda-calculus. These examples are not intended to sug-

gest that the lambda-calculus should be taken as a full-blown programming

language in its own right—all widely used high-level languages provide clearer

and more efficient ways of accomplishing the same tasks—but rather are in-

tended as warm-up exercises to get the feel of the system.

Multiple Arguments

To begin, observe that the lambda-calculus provides no built-in support for

multi-argument functions. Of course, this would not be hard to add, but it is

even easier to achieve the same effect using higher-order functions that yield

functions as results. Suppose that s is a term involving two free variables x

and y and that we want to write a function f that, for each pair (v,w) of

arguments, yields the result of substituting v for x and w for y in s. Instead

of writing f = λ(x,y).s, as we might in a richer programming language, we

write f = λx.λy.s. That is, f is a function that, given a value v for x, yields a

function that, given a value w for y, yields the desired result. We then apply

f to its arguments one at a time, writing f v w (i.e., (f v) w), which reduces

to ((λy.[x , v]s) w) and thence to [y , w][x, v]s. This transformation

of multi-argument functions into higher-order functions is called currying in

honor of Haskell Curry, a contemporary of Church.

Church Booleans

Another language feature that can easily be encoded in the lambda-calculus

is boolean values and conditionals. Define the terms tru and fls as follows:

tru = λt. λf. t;

fls = λt. λf. f;

5.2 Programming in the Lambda-Calculus 59

(The abbreviated spellings of these names are intended to help avoid confu-

sion with the primitive boolean constants true and false from Chapter 3.)

The terms tru and fls can be viewed as representing the boolean values

“true” and “false,” in the sense that we can use these terms to perform the

operation of testing the truth of a boolean value. In particular, we can use

application to define a combinator test with the property that test b v w

reduces to v when b is tru and reduces to w when b is fls.

test = λl. λm. λn. l m n;

The test combinator does not actually do much: test b v w just reduces to

b v w. In effect, the boolean b itself is the conditional: it takes two arguments

and chooses the first (if it is tru) or the second (if it is fls). For example, the

term test tru v w reduces as follows:

test tru v w

= (λl. λm. λn. l m n) tru v w by definition

-→ (λm. λn. tru m n) v w reducing the underlined redex

-→ (λn. tru v n) w reducing the underlined redex

-→ tru v w reducing the underlined redex

= (λt.λf.t) v w by definition

-→ (λf. v) w reducing the underlined redex

-→ v reducing the underlined redex

We can also define boolean operators like logical conjunction as functions:

and = λb. λc. b c fls;

That is, and is a function that, given two boolean values b and c, returns c if

b is tru and fls if b is fls; thus and b c yields tru if both b and c are tru

and fls if either b or c is fls.

and tru tru;

ñ (λt. λf. t)

and tru fls;

ñ (λt. λf. f)

5.2.1 Exercise [«]: Define logical or and not functions. �

60 5 The Untyped Lambda-Calculus

Pairs

Using booleans, we can encode pairs of values as terms.

pair = λf.λs.λb. b f s;

fst = λp. p tru;

snd = λp. p fls;

That is, pair v w is a function that, when applied to a boolean value b, applies

b to v and w. By the definition of booleans, this application yields v if b is tru

and w if b is fls, so the first and second projection functions fst and snd

can be implemented simply by supplying the appropriate boolean. To check

that fst (pair v w) -→∗ v, calculate as follows:

fst (pair v w)

= fst ((λf. λs. λb. b f s) v w) by definition

-→ fst ((λs. λb. b v s) w) reducing the underlined redex

-→ fst (λb. b v w) reducing the underlined redex

= (λp. p tru) (λb. b v w) by definition

-→ (λb. b v w) tru reducing the underlined redex

-→ tru v w reducing the underlined redex

-→∗ v as before.

Church Numerals

Representing numbers by lambda-terms is only slightly more intricate than

what we have just seen. Define the Church numerals c0, c1, c2, etc., as follows:

c0 = λs. λz. z;

c1 = λs. λz. s z;

c2 = λs. λz. s (s z);

c3 = λs. λz. s (s (s z));

etc.

That is, each number n is represented by a combinator cn that takes two

arguments, s and z (for “successor” and “zero”), and applies s, n times, to z.

As with booleans and pairs, this encoding makes numbers into active entities:

the number n is represented by a function that does something n times—a

kind of active unary numeral.

(The reader may already have observed that c0 and fls are actually the

same term. Similar “puns” are common in assembly languages, where the

same pattern of bits may represent many different values—an int, a float,

5.2 Programming in the Lambda-Calculus 61

an address, four characters, etc.—depending on how it is interpreted, and in

low-level languages such as C, which also identifies 0 and false.)

We can define the successor function on Church numerals as follows:

scc = λn. λs. λz. s (n s z);

The term scc is a combinator that takes a Church numeral n and returns

another Church numeral—that is, it yields a function that takes arguments s

and z and applies s repeatedly to z. We get the right number of applications

of s to z by first passing s and z as arguments to n, and then explicitly

applying s one more time to the result.

5.2.2 Exercise [««]: Find another way to define the successor function on Church

numerals. �

Similarly, addition of Church numerals can be performed by a term plus

that takes two Church numerals, m and n, as arguments, and yields another

Church numeral—i.e., a function—that accepts arguments s and z, applies s

iterated n times to z (by passing s and z as arguments to n), and then applies

s iterated m more times to the result:

plus = λm. λn. λs. λz. m s (n s z);

The implementation of multiplication uses another trick: since plus takes

its arguments one at a time, applying it to just one argument n yields the

function that adds n to whatever argument it is given. Passing this function

as the first argument to m and c0 as the second argument means “apply the

function that adds n to its argument, iterated m times, to zero,” i.e., “add

together m copies of n.”

times = λm. λn. m (plus n) c0;

5.2.3 Exercise [««]: Is it possible to define multiplication on Church numerals

without using plus? �

5.2.4 Exercise [Recommended, ««]: Define a term for raising one number to the

power of another. �

To test whether a Church numeral is zero, we must find some appropriate

pair of arguments that will give us back this information—specifically, we

must apply our numeral to a pair of terms zz and ss such that applying ss

to zz one or more times yields fls, while not applying it at all yields tru.

Clearly, we should take zz to be just tru. For ss, we use a function that

throws away its argument and always returns fls:

62 5 The Untyped Lambda-Calculus

copy +1ss

copy +1ss

copy +1ss

pair c0 c0

copy +1ss

pair c0 c1

pair c1 c2

pair c2 c3

pair c3 c4

...

Figure 5-1: The predecessor function’s “inner loop”

iszro = λm. m (λx. fls) tru;

iszro c1;

ñ (λt. λf. f)

iszro (times c0 c2);

ñ (λt. λf. t)

Surprisingly, subtraction using Church numerals is quite a bit more difficult

than addition. It can be done using the following rather tricky “predecessor

function,” which, given c0 as argument, returns c0 and, given ci+1, returns ci :

zz = pair c0 c0;

ss = λp. pair (snd p) (plus c1 (snd p));

prd = λm. fst (m ss zz);

This definition works by using m as a function to apply m copies of the func-

tion ss to the starting value zz. Each copy of ss takes a pair of numerals

pair ci cj as its argument and yields pair cj cj+1 as its result (see Figure 5-

1). So applying ss, m times, to pair c0 c0 yields pair c0 c0 when m = 0 and

pair cm−1 cm when m is positive. In both cases, the predecessor of m is found

in the first component.

5.2.5 Exercise [««]: Use prd to define a subtraction function. �

5.2 Programming in the Lambda-Calculus 63

5.2.6 Exercise [««]: Approximately how many steps of evaluation (as a function

of n) are required to calculate prd cn? �

5.2.7 Exercise [««]: Write a function equal that tests two numbers for equality

and returns a Church boolean. For example,

equal c3 c3;

ñ (λt. λf. t)

equal c3 c2;

ñ (λt. λf. f) �

Other common datatypes like lists, trees, arrays, and variant records can

be encoded using similar techniques.

5.2.8 Exercise [Recommended, «««]: A list can be represented in the lambda-

calculus by its fold function. (OCaml’s name for this function is fold_left;

it is also sometimes called reduce .) For example, the list [x,y,z] becomes

a function that takes two arguments c and n and returns c x (c y (c z n))).

What would the representation of nil be? Write a function cons that takes

an element h and a list (that is, a fold function) t and returns a similar rep-

resentation of the list formed by prepending h to t. Write isnil and head

functions, each taking a list parameter. Finally, write a tail function for this

representation of lists (this is quite a bit harder and requires a trick analogous

to the one used to define prd for numbers). �

Enriching the Calculus

We have seen that booleans, numbers, and the operations on them can be

encoded in the pure lambda-calculus. Indeed, strictly speaking, we can do all

the programming we ever need to without going outside of the pure system.

However, when working with examples it is often convenient to include the

primitive booleans and numbers (and possibly other data types) as well. When

we need to be clear about precisely which system we are working in, we will

use the symbol λ for the pure lambda-calculus as defined in Figure 5-3 and

λNB for the enriched system with booleans and arithmetic expressions from

Figures 3-1 and 3-2.

In λNB, we actually have two different implementations of booleans and

two of numbers to choose from when writing programs: the real ones and

the encodings we’ve developed in this chapter. Of course, it is easy to convert

back and forth between the two. To turn a Church boolean into a primitive

boolean, we apply it to true and false:

64 5 The Untyped Lambda-Calculus

realbool = λb. b true false;

To go the other direction, we use an if expression:

churchbool = λb. if b then tru else fls;

We can build these conversions into higher-level operations. Here is an equal-

ity function on Church numerals that returns a real boolean:

realeq = λm. λn. (equal m n) true false;

In the same way, we can convert a Church numeral into the corresponding

primitive number by applying it to succ and 0:

realnat = λm. m (λx. succ x) 0;

We cannot apply m to succ directly, because succ by itself does not make

syntactic sense: the way we defined the syntax of arithmetic expressions,

succ must always be applied to something. We work around this by pack-

aging succ inside a little function that does nothing but return the succ of

its argument.

The reasons that primitive booleans and numbers come in handy for ex-

amples have to do primarily with evaluation order. For instance, consider

the term scc c1. From the discussion above, we might expect that this term

should evaluate to the Church numeral c2. In fact, it does not:

scc c1;

ñ (λs. λz. s ((λs’. λz’. s’ z’) s z))

This term contains a redex that, if we were to reduce it, would bring us (in

two steps) to c2, but the rules of call-by-value evaluation do not allow us to

reduce it yet, since it is under a lambda-abstraction.

There is no fundamental problem here: the term that results from evalu-

ation of scc c1 is obviously behaviorally equivalent to c2, in the sense that

applying it to any pair of arguments v and w will yield the same result as

applying c2 to v and w. Still, the leftover computation makes it a bit difficult

to check that our scc function is behaving the way we expect it to. For more

complicated arithmetic calculations, the difficulty is even worse. For example,

times c2 c2 evaluates not to c4 but to the following monstrosity:

times c2 c2;

ñ (λs.

λz.

(λs’. λz’. s’ (s’ z’)) s

((λs’.

5.2 Programming in the Lambda-Calculus 65

λz’.

(λs”. λz”. s” (s” z”)) s’

((λs”. λz”.z”) s’ z’))

s

z))

One way to check that this term behaves like c4 is to test them for equality:

equal c4 (times c2 c2);

ñ (λt. λf. t)

But it is more direct to take times c2 c2 and convert it to a primitive number:

realnat (times c2 c2);

ñ 4

The conversion has the effect of supplying the two extra arguments that

times c2 c2 is waiting for, forcing all of the latent computation in its body.

Recursion

Recall that a term that cannot take a step under the evaluation relation is

called a normal form. Interestingly, some terms cannot be evaluated to a nor-

mal form. For example, the divergent combinator

omega = (λx. x x) (λx. x x);

contains just one redex, and reducing this redex yields exactly omega again!

Terms with no normal form are said to diverge.

The omega combinator has a useful generalization called the fixed-point

combinator ,6 which can be used to help define recursive functions such as

factorial.7

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

Like omega, the fix combinator has an intricate, repetitive structure; it is

difficult to understand just by reading its definition. Probably the best way

of getting some intuition about its behavior is to watch how it works on a

specific example.8 Suppose we want to write a recursive function definition

6. It is often called the call-by-value Y-combinator . Plotkin (1975) called it Z.

7. Note that the simpler call-by-name fixed point combinator

Y = λf. (λx. f (x x)) (λx. f (x x))

is useless in a call-by-value setting, since the expression Y g diverges, for any g.

8. It is also possible to derive the definition of fix from first principles (e.g., Friedman and

Felleisen, 1996, Chapter 9), but such derivations are also fairly intricate.

66 5 The Untyped Lambda-Calculus

of the form h = 〈body containing h〉—i.e., we want to write a definition where

the term on the right-hand side of the = uses the very function that we are

defining, as in the definition of factorial on page 52. The intention is that

the recursive definition should be “unrolled” at the point where it occurs; for

example, the definition of factorial would intuitively be

if n=0 then 1

else n * (if n-1=0 then 1

else (n-1) * (if (n-2)=0 then 1

else (n-2) * ...))

or, in terms of Church numerals:

if realeq n c0 then c1

else times n (if realeq (prd n) c0 then c1

else times (prd n)

(if realeq (prd (prd n)) c0 then c1

else times (prd (prd n)) ...))

This effect can be achieved using the fix combinator by first defining g =

λf.〈body containing f〉 and then h = fix g. For example, we can define the

factorial function by

g = λfct. λn. if realeq n c0 then c1 else (times n (fct (prd n)));

factorial = fix g;

Figure 5-2 shows what happens to the term factorial c3 during evaluation.

The key fact that makes this calculation work is that fct n -→∗ g fct n. That

is, fct is a kind of “self-replicator” that, when applied to an argument, sup-

plies itself and n as arguments to g. Wherever the first argument to g appears

in the body of g, we will get another copy of fct, which, when applied to

an argument, will again pass itself and that argument to g, etc. Each time we

make a recursive call using fct, we unroll one more copy of the body of g

and equip it with new copies of fct that are ready to do the unrolling again.

5.2.9 Exercise [«]: Why did we use a primitive if in the definition of g, instead of

the Church-boolean test function on Church booleans? Show how to define

the factorial function in terms of test rather than if. �

5.2.10 Exercise [««]: Define a function churchnat that converts a primitive natural

number into the corresponding Church numeral. �

5.2.11 Exercise [Recommended, ««]: Use fix and the encoding of lists from Exer-

cise 5.2.8 to write a function that sums lists of Church numerals. �

5.2 Programming in the Lambda-Calculus 67

factorial c3

= fix g c3

-→ h h c3

where h = λx. g (λy. x x y)

-→ g fct c3

where fct = λy. h h y

-→ (λn. if realeq n c0

then c1

else times n (fct (prd n)))

c3

-→ if realeq c3 c0

then c1

else times c3 (fct (prd c3))

-→∗ times c3 (fct (prd c3))

-→∗ times c3 (fct c′2)

where c′2 is behaviorally equivalent to c2

-→∗ times c3 (g fct c′2)

-→∗ times c3 (times c′2 (g fct c′1)).

where c′1 is behaviorally equivalent to c1

(by repeating the same calculation for g fct c′2)

-→∗ times c3 (times c′2 (times c′1 (g fct c′0))).

where c′0 is behaviorally equivalent to c0

(similarly)

-→∗ times c3 (times c′2 (times c′1 (if realeq c′0 c0 then c1

else ...)))

-→∗ times c3 (times c′2 (times c′1 c1))

-→∗ c′6
where c′6 is behaviorally equivalent to c6.

Figure 5-2: Evaluation of factorial c3

Representation

Before leaving our examples behind and proceeding to the formal definition

of the lambda-calculus, we should pause for one final question: What, exactly,

does it mean to say that the Church numerals represent ordinary numbers?

To answer, we first need to remind ourselves of what the ordinary numbers

are. There are many (equivalent) ways to define them; the one we have chosen

here (in Figure 3-2) is to give:

• a constant 0,

68 5 The Untyped Lambda-Calculus

• an operation iszero mapping numbers to booleans, and

• two operations, succ and pred, mapping numbers to numbers.

The behavior of the arithmetic operations is defined by the evaluation rules

in Figure 3-2. These rules tell us, for example, that 3 is the successor of 2,

and that iszero 0 is true.

The Church encoding of numbers represents each of these elements as a

lambda-term (i.e., a function):

• The term c0 represents the number 0.

As we saw on page 64, there are also “non-canonical representations” of

numbers as terms. For example, λs. λz. (λx. x) z, which is behaviorally

equivalent to c0, also represents 0.

• The terms scc and prd represent the arithmetic operations succ and

pred, in the sense that, if t is a representation of the number n, then

scc t evaluates to a representation of n + 1 and prd t evaluates to a rep-

resentation of n− 1 (or of 0, if n is 0).

• The term iszro represents the operation iszero, in the sense that, if t is

a representation of 0, then iszro t evaluates to true,9 and if t represents

any number other than 0, then iszro t evaluates to false.

Putting all this together, suppose we have a whole program that does some

complicated calculation with numbers to yield a boolean result. If we replace

all the numbers and arithmetic operations with lambda-terms representing

them and evaluate the program, we will get the same result. Thus, in terms

of their effects on the overall results of programs, there is no observable dif-

ference between the real numbers and their Church-numeral representation.

5.3 Formalities

For the rest of the chapter, we consider the syntax and operational semantics

of the lambda-calculus in more detail. Most of the structure we need is closely

analogous to what we saw in Chapter 3 (to avoid repeating that structure

verbatim, we address here just the pure lambda-calculus, unadorned with

booleans or numbers). However, the operation of substituting a term for a

variable involves some surprising subtleties.

9. Strictly speaking, as we defined it, iszro t evaluates to a representation of true as another

term, but let’s elide that distinction to simplify the present discussion. An analogous story can

be given to explain in what sense the Church booleans represent the real ones.

5.3 Formalities 69

Syntax

As in Chapter 3, the abstract grammar defining terms (on page 53) should be

read as shorthand for an inductively defined set of abstract syntax trees.

5.3.1 Definition [Terms]: Let V be a countable set of variable names. The set of

terms is the smallest set T such that

1. x ∈ T for every x ∈ V ;

2. if t1 ∈ T and x ∈ V , then λx.t1 ∈ T ;

3. if t1 ∈ T and t2 ∈ T , then t1 t2 ∈ T . �

The size of a term t can be defined exactly as we did for arithmetic expres-

sions in Definition 3.3.2. More interestingly, we can give a simple inductive

definition of the set of variables appearing free in a lambda-term.

5.3.2 Definition: The set of free variables of a term t, written FV(t), is defined as

follows:

FV(x) = {x}

FV(λx.t1) = FV(t1) \ {x}

FV(t1 t2) = FV(t1)∪ FV(t2) �

5.3.3 Exercise [««]: Give a careful proof that |FV(t)| ≤ size(t) for every term t. �

Substitution

The operation of substitution turns out to be quite tricky, when examined in

detail. In this book, we will actually use two different definitions, each opti-

mized for a different purpose. The first, introduced in this section, is compact

and intuitive, and works well for examples and in mathematical definitions

and proofs. The second, developed in Chapter 6, is notationally heavier, de-

pending on an alternative “de Bruijn presentation” of terms in which named

variables are replaced by numeric indices, but is more convenient for the

concrete ML implementations discussed in later chapters.

It is instructive to arrive at a definition of substitution via a couple of wrong

attempts. First, let’s try the most naive possible recursive definition. (For-

mally, we are defining a function [x, s] by induction over its argument t.)

[x, s]x = s

[x, s]y = y if x ≠ y

[x, s](λy.t1) = λy. [x, s]t1

[x, s](t1 t2) = ([x, s]t1) ([x, s]t2)

70 5 The Untyped Lambda-Calculus

This definition works fine for most examples. For instance, it gives

[x, (λz. z w)](λy.x) = λy.λz. z w,

which matches our intuitions about how substitution should behave. How-

ever, if we are unlucky with our choice of bound variable names, the definition

breaks down. For example:

[x, y](λx.x) = λx.y

This conflicts with the basic intuition about functional abstractions that the

names of bound variables do not matter—the identity function is exactly the

same whether we write it λx.x or λy.y or λfranz.franz. If these do not

behave exactly the same under substitution, then they will not behave the

same under reduction either, which seems wrong.

Clearly, the first mistake that we’ve made in the naive definition of substitu-

tion is that we have not distinguished between free occurrences of a variable

x in a term t (which should get replaced during substitution) and bound ones,

which should not. When we reach an abstraction binding the name x inside

of t, the substitution operation should stop. This leads to the next attempt:

[x, s]x = s

[x, s]y = y if y ≠ x

[x, s](λy.t1) =

{

λy. t1 if y = x

λy. [x, s]t1 if y ≠ x

[x, s](t1 t2) = ([x, s]t1) ([x, s]t2)

This is better, but still not quite right. For example, consider what happens

when we substitute the term z for the variable x in the term λz.x:

[x, z](λz.x) = λz.z

This time, we have made essentially the opposite mistake: we’ve turned the

constant function λz.x into the identity function! Again, this occurred only

because we happened to choose z as the name of the bound variable in the

constant function, so something is clearly still wrong.

This phenomenon of free variables in a term s becoming bound when s is

naively substituted into a term t is called variable capture. To avoid it, we

need to make sure that the bound variable names of t are kept distinct from

the free variable names of s. A substitution operation that does this correctly

is called capture-avoiding substitution. (This is almost always what is meant

5.3 Formalities 71

by the unqualified term “substitution.”) We can achieve the desired effect by

adding another side condition to the second clause of the abstraction case:

[x, s]x = s

[x, s]y = y if y ≠ x

[x, s](λy.t1) =

{

λy. t1 if y = x

λy. [x, s]t1 if y ≠ x and y ∉ FV(s)

[x, s](t1 t2) = ([x, s]t1 ([x, s]t2)

Now we are almost there: this definition of substitution does the right thing

when it does anything at all. The problem now is that our last fix has changed

substitution into a partial operation. For example, the new definition does not

give any result at all for [x, y z](λy. x y): the bound variable y of the term

being substituted into is not equal to x, but it does appear free in (y z), so

none of the clauses of the definition apply.

One common fix for this last problem in the type systems and lambda-

calculus literature is to work with terms “up to renaming of bound variables.”

(Church used the term alpha-conversion for the operation of consistently

renaming a bound variable in a term. This terminology is still common—

we could just as well say that we are working with terms “up to alpha-

conversion.”)

5.3.4 Convention: Terms that differ only in the names of bound variables are

interchangeable in all contexts. �

What this means in practice is that the name of any λ-bound variable can

be changed to another name (consistently making the same change in the

body of the λ), at any point where this is convenient. For example, if we want

to calculate [x, y z](λy. x y), we first rewrite (λy. x y) as, say, (λw. x w).

We then calculate [x, y z](λw. x w), giving (λw. y z w).

This convention renders the substitution operation “as good as total,” since

whenever we find ourselves about to apply it to arguments for which it is

undefined, we can rename as necessary, so that the side conditions are satis-

fied. Indeed, having adopted this convention, we can formulate the definition

of substitution a little more tersely. The first clause for abstractions can be

dropped, since we can always assume (renaming if necessary) that the bound

variable y is different from both x and the free variables of s. This yields the

final form of the definition.

5.3.5 Definition [Substitution]:

[x, s]x = s

[x, s]y = y if y ≠ x

[x, s](λy.t1) = λy. [x, s]t1 if y ≠ x and y ∉ FV(s)

[x, s](t1 t2) = [x, s]t1 [x, s]t2 �

72 5 The Untyped Lambda-Calculus

→ (untyped)

Syntax

t ::= terms:

x variable

λx.t abstraction

t t application

v ::= values:

λx.t abstraction value

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx.t12) v2 -→ [x, v2]t12 (E-AppAbs)

Figure 5-3: Untyped lambda-calculus (λ)

Operational Semantics

The operational semantics of lambda-terms is summarized in Figure 5-3. The

set of values here is more interesting than we saw in the case of arithmetic

expressions. Since (call-by-value) evaluation stops when it reaches a lambda,

values can be arbitrary lambda-terms.

The evaluation relation appears in the right-hand column of the figure.

As in evaluation for arithmetic expressions, there are two sorts of rules: the

computation rule E-AppAbs and the congruence rules E-App1 and E-App2.

Notice how the choice of metavariables in these rules helps control the

order of evaluation. Since v2 ranges only over values, the left-hand side of

rule E-AppAbs can match any application whose right-hand side is a value.

Similarly, rule E-App1 applies to any application whose left-hand side is not

a value, since t1 can match any term whatsoever, but the premise further

requires that t1 can take a step. E-App2, on the other hand, cannot fire until

the left-hand side is a value so that it can be bound to the value-metavariable

v. Taken together, these rules completely determine the order of evaluation

for an application t1 t2: we first use E-App1 to reduce t1 to a value, then

use E-App2 to reduce t2 to a value, and finally use E-AppAbs to perform the

application itself.

5.3.6 Exercise [««]: Adapt these rules to describe the other three strategies for

evaluation—full beta-reduction, normal-order, and lazy evaluation. �

Note that, in the pure lambda-calculus, lambda-abstractions are the only

possible values, so if we reach a state where E-App1 has succeeded in reducing

t1 to a value, then this value must be a lambda-abstraction. This observation

5.4 Notes 73

fails, of course, when we add other constructs such as primitive booleans to

the language, since these introduce forms of values other than abstractions.

5.3.7 Exercise [«« 3]: Exercise 3.5.16 gave an alternative presentation of the op-

erational semantics of booleans and arithmetic expressions in which stuck

terms are defined to evaluate to a special constant wrong. Extend this seman-

tics to λNB. �

5.3.8 Exercise [««]: Exercise 4.2.2 introduced a “big-step” style of evaluation for

arithmetic expressions, where the basic evaluation relation is “term t evalu-

ates to final result v.” Show how to formulate the evaluation rules for lambda-

terms in the big-step style. �

5.4 Notes

The untyped lambda-calculus was developed by Church and his co-workers

in the 1920s and ’30s (Church, 1941). The standard text for all aspects of

the untyped lambda-calculus is Barendregt (1984); Hindley and Seldin (1986)

is less comprehensive, but more accessible. Barendregt’s article (1990) in

the Handbook of Theoretical Computer Science is a compact survey. Mate-

rial on lambda-calculus can also be found in many textbooks on functional

programming languages (e.g. Abelson and Sussman, 1985; Friedman, Wand,

and Haynes, 2001; Peyton Jones and Lester, 1992) and programming language

semantics (e.g. Schmidt, 1986; Gunter, 1992; Winskel, 1993; Mitchell, 1996). A

systematic method for encoding a wide variety of data structures as lambda-

terms can be found in Böhm and Berarducci (1985).

Despite its name, Curry denied inventing the idea of currying. It is com-

monly credited to Schönfinkel (1924), but the underlying idea was familiar to

a number of 19th-century mathematicians, including Frege and Cantor.

There may, indeed, be other applications of the system than its use as a logic.

—Alonzo Church, 1932

6 Nameless Representation of Terms

In the previous chapter, we worked with terms “up to renaming of bound

variables,” introducing a general convention that bound variables can be re-

named, at any moment, to enable substitution or because a new name is more

convenient for some other reason. In effect, the “spelling” of a bound variable

name is whatever we want it to be. This convention works well for discussing

basic concepts and for presenting proofs cleanly, but for building an imple-

mentation we need to choose a single representation for each term; in par-

ticular, we must decide how occurrences of variables are to be represented.

There is more than one way to do this:

1. We can represent variables symbolically, as we have done so far, but re-

place the convention about implicit renaming of bound variables with an

operation that explicitly replaces bound variables with “fresh” names dur-

ing substitution as necessary to avoid capture.

2. We can represent variables symbolically, but introduce a general condi-

tion that the names of all bound variables must all be different from each

other and from any free variables we may use. This convention (sometimes

called the Barendregt convention) is more stringent than ours, since it does

not allow renaming “on the fly” at arbitrary moments. However, it is not

stable under substitution (or beta-reduction): since substitution involves

copying the term being substituted, it is easy to construct examples where

the result of substitution is a term in which some λ-abstractions have the

same bound variable name. This implies that each evaluation step involv-

ing substitution must be followed by a step of renaming to restore the

invariant.

3. We can devise some “canonical” representation of variables and terms that

does not require renaming.

The system studied in this chapter is the pure untyped lambda-calculus, λ (Figure 5-3). The

associated OCaml implementation is fulluntyped.

76 6 Nameless Representation of Terms

4. We can avoid substitution altogether by introducing mechanisms such as

explicit substitutions (Abadi, Cardelli, Curien, and Lévy, 1991a).

5. We can avoid variables altogether by working in a language based directly

on combinators, such as combinatory logic (Curry and Feys, 1958; Baren-

dregt, 1984)—a variant of the lambda-calculus based on combinators in-

stead of procedural abstraction—or Backus’ functional language FP (1978).

Each scheme has its proponents, and choosing between them is somewhat

a matter of taste (in serious compiler implementations, there are also per-

formance considerations, but these do not concern us here). We choose the

third, which, in our experience, scales better when we come to some of the

more complex implementations later in the book. The main reason for this

is that it tends to fail catastrophically rather than subtly when it is imple-

mented wrong, allowing mistakes to be detected and corrected sooner rather

than later. Bugs in implementations using named variables, by contrast, have

been known to manifest months or years after they are introduced. Our for-

mulation uses a well-known technique due to Nicolas de Bruijn (1972).

6.1 Terms and Contexts

De Bruijn’s idea was that we can represent terms more straightforwardly—if

less readably—by making variable occurrences point directly to their binders,

rather than referring to them by name. This can be accomplished by replacing

named variables by natural numbers, where the number k stands for “the

variable bound by the k’th enclosing λ.” For example, the ordinary term λx.x

corresponds to the nameless term λ.0, while λx.λy. x (y x) corresponds to

λ.λ. 1 (0 1). Nameless terms are also sometimes called de Bruijn terms, and

the numeric variables in them are called de Bruijn indices.1 Compiler writers

use the term “static distances” for the same concept.

6.1.1 Exercise [«]: For each of the following combinators

c0 = λs. λz. z;

c2 = λs. λz. s (s z);

plus = λm. λn. λs. λz. m s (n z s);

fix = λf. (λx. f (λy. (x x) y)) (λx. f (λy. (x x) y));

foo = (λx. (λx. x)) (λx. x);

write down the corresponding nameless term. �

1. Note on pronunciation: the nearest English approximation to the second syllable in “de

Bruijn” is “brown,” not “broyn.”

6.1 Terms and Contexts 77

Formally, we define the syntax of nameless terms almost exactly like the

syntax of ordinary terms (5.3.1). The only difference is that we need to keep

careful track of how many free variables each term may contain. That is, we

distinguish the sets of terms with no free variables (called the 0-terms), terms

with at most one free variable (1-terms), and so on.

6.1.2 Definition [Terms]: Let T be the smallest family of sets {T0, T1, T2, . . .}

such that

1. k ∈ Tn whenever 0 ≤ k < n;

2. if t1 ∈ Tn and n > 0, then λ.t1 ∈ Tn−1;

3. if t1 ∈ Tn and t2 ∈ Tn, then (t1 t2) ∈ Tn.

(Note that this is a standard inductive definition, except that what we are

defining is a family of sets indexed by numbers, rather than a single set.) The

elements of each Tn are called n-terms. �

The elements of Tn are terms with at most n free variables, numbered

between 0 and n− 1: a given element of Tn need not have free variables with

all these numbers, or indeed any free variables at all. When t is closed, for

example, it will be an element of Tn for every n.

Note that each (closed) ordinary term has just one de Bruijn representa-

tion, and that two ordinary terms are equivalent modulo renaming of bound

variables iff they have the same de Bruijn representation.

To deal with terms containing free variables, we need the idea of a naming

context . For example, suppose we want to represent λx. y x as a nameless

term. We know what to do with x, but we cannot see the binder for y, so it

is not clear how “far away” it might be and we do not know what number

to assign to it. The solution is to choose, once and for all, an assignment

(called a naming context) of de Bruijn indices to free variables, and use this

assignment consistently when we need to choose numbers for free variables.

For example, suppose that we choose to work under the following naming

context:

Γ = x, 4

y, 3

z, 2

a, 1

b, 0

Then x (y z) would be represented as 4 (3 2), while λw. y w would be repre-

sented as λ. 4 0 and λw.λa.x as λ.λ.6.

Since the order in which the variables appear in Γ determines their numer-

ical indices, we can write it compactly as a sequence.

78 6 Nameless Representation of Terms

6.1.3 Definition: Suppose x0 through xn are variable names from V . The naming

context Γ = xn, xn−1, . . .x1, x0 assigns to each xi the de Bruijn index i. Note

that the rightmost variable in the sequence is given the index 0; this matches

the way we count λ binders—from right to left—when converting a named

term to nameless form. We write dom(Γ) for the set {xn, . . . , x0} of variable

names mentioned in Γ . �

6.1.4 Exercise [««« 3]: Give an alternative construction of the sets of n-terms in

the style of Definition 3.2.3, and show (as we did in Proposition 3.2.6) that it

is equivalent to the one above. �

6.1.5 Exercise [Recommended, «««]:

1. Define a function removenamesΓ (t) that takes a naming context Γ and

an ordinary term t (with FV(t) ⊆ dom(Γ)) and yields the corresponding

nameless term.

2. Define a function restorenamesΓ (t) that takes a nameless term t and a

naming context Γ and produces an ordinary term. (To do this, you will

need to “make up” names for the variables bound by abstractions in t.

You may assume that the names in Γ are pairwise distinct and that the set

V of variable names is ordered, so that it makes sense to say “choose the

first variable name that is not already in dom(Γ).”)

This pair of functions should have the property that

removenamesΓ (restorenamesΓ (t)) = t

for any nameless term t, and similarly

restorenamesΓ (removenamesΓ (t)) = t,

up to renaming of bound variables, for any ordinary term t. �

Strictly speaking, it does not make sense to speak of “some t ∈ T ”—we

always need to specify how many free variables t might have. In practice,

though, we will usually have some fixed naming context Γ in mind; we will

then abuse the notation slightly and write t ∈ T to mean t ∈ Tn, where n is

the length of Γ .

6.2 Shifting and Substitution

Our next job is defining a substitution operation ([k , s]t) on nameless

terms. To to this, we need one auxiliary operation, called “shifting,” which

renumbers the indices of the free variables in a term.

6.2 Shifting and Substitution 79

When a substitution goes under a λ-abstraction, as in [1 , s](λ.2) (i.e.,

[x , s](λy.x), assuming that 1 is the index of x in the outer context), the

context in which the substitution is taking place becomes one variable longer

than the original; we need to increment the indices of the free variables in

s so that they keep referring to the same names in the new context as they

did before. But we need to do this carefully: we can’t just shift every variable

index in s up by one, because this could also shift bound variables within

s. For example, if s = 2 (λ.0) (i.e., s = z (λw.w), assuming 2 is the index

of z in the outer context), we need to shift the 2 but not the 0. The shifting

function below takes a “cutoff” parameter c that controls which variables

should be shifted. It starts off at 0 (meaning all variables should be shifted)

and gets incremented by one every time the shifting function goes through

a binder. So, when calculating ↑dc (t), we know that the term t comes from

inside c-many binders in the original argument to ↑d . Therefore all identifiers

k < c in t are bound in the original argument and should not be shifted, while

identifiers k ≥ c in t are free and should be shifted.

6.2.1 Definition [Shifting]: The d-place shift of a term t above cutoff c, written

↑dc (t), is defined as follows:

↑dc (k) =

{

k if k < c

k+ d if k ≥ c

↑dc (λ.t1) = λ. ↑dc+1 (t1)

↑dc (t1 t2) = ↑dc (t1) ↑
d
c (t2)

We write ↑d (t) for ↑d0 (t). �

6.2.2 Exercise [«]:

1. What is ↑2 (λ.λ. 1 (0 2))?

2. What is ↑2 (λ. 0 1 (λ. 0 1 2))? �

6.2.3 Exercise [«« 3]: Show that if t is an n-term, then ↑dc (t) is an (n+d)-term. �

Now we are ready to define the substitution operator [j , s]t. When we

use substitution, we will usually be interested in substituting for the last vari-

able in the context (i.e., j = 0), since that is the case we need in order to

define the operation of beta-reduction. However, to substitute for variable 0

in a term that happens to be a λ-abstraction, we need to be able to substi-

tute for the variable number numbered 1 in its body. Thus, the definition of

substitution must work on an arbitrary variable.

80 6 Nameless Representation of Terms

6.2.4 Definition [Substitution]: The substitution of a term s for variable num-

ber j in a term t, written [j, s]t, is defined as follows:

[j, s]k =

{

s if k = j

k otherwise

[j, s](λ.t1) = λ. [j+1 ,↑1 (s)]t1

[j, s](t1 t2) = ([j, s]t1 [j, s]t2) �

6.2.5 Exercise [«]: Convert the following uses of substitution to nameless form,

assuming the global context is Γ = a,b, and calculate their results using the

above definition. Do the answers correspond to the original definition of sub-

stitution on ordinary terms from §5.3?

1. [b, a] (b (λx.λy.b))

2. [b, a (λz.a)] (b (λx.b))

3. [b, a] (λb. b a)

4. [b, a] (λa. b a) �

6.2.6 Exercise [«« 3]: Show that if s and t are n-terms and j ≤ n, then [j , s]t

is an n-term. �

6.2.7 Exercise [« 3]: Take a sheet of paper and, without looking at the definitions

of substitution and shifting above, regenerate them. �

6.2.8 Exercise [Recommended, «««]: The definition of substitution on nameless

terms should agree with our informal definition of substitution on ordinary

terms. (1) What theorem needs to be proved to justify this correspondence

rigorously? (2) Prove it. �

6.3 Evaluation

To define the evaluation relation on nameless terms, the only thing we need

to change (because it is the only place where variable names are mentioned) is

the beta-reduction rule, which must now use our new nameless substitution

operation.

The only slightly subtle point is that reducing a redex “uses up” the bound

variable: when we reduce ((λx.t12) v2) to [x , v2]t12, the bound variable

x disappears in the process. Thus, we will need to renumber the variables of

6.3 Evaluation 81

the result of substitution to take into account the fact that x is no longer part

of the context. For example:

(λ.1 0 2) (λ.0) -→ 0 (λ.0) 1 (not 1 (λ.0) 2).

Similarly, we need to shift the variables in v2 up by one before substituting

into t12, since t12 is defined in a larger context than v2. Taking these points

into account, the beta-reduction rule looks like this:

(λ.t12) v2 -→ ↑−1 ([0 ,↑1 (v2)]t12) (E-AppAbs)

The other rules are identical to what we had before (Figure 5-3).

6.3.1 Exercise [«]: Should we be worried that the negative shift in this rule might

create ill-formed terms containing negative indices? �

6.3.2 Exercise [«««]: De Bruijn’s original article actually contained two different

proposals for nameless representations of terms: the deBruijn indices pre-

sented here, which number lambda-binders “from the inside out,” and de

Bruijn levels, which number binders “from the outside in.” For example, the

term λx. (λy. x y) x is represented using deBruijn indices as λ. (λ. 1 0) 0

and using deBruijn levels as λ. (λ. 0 1) 0. Define this variant precisely and

show that the representations of a term using indices and levels are isomor-

phic (i.e., each can be recovered uniquely from the other). �

7
An ML Implementation of the

Lambda-Calculus

In this chapter we construct an interpreter for the untyped lambda-calculus,

based on the interpreter for arithmetic expressions in Chapter 4 and on the

treatment of variable binding and substitution in Chapter 6.

An executable evaluator for untyped lambda-terms can be obtained by a

straightforward translation of the foregoing definitions into OCaml. As in

Chapter 4, we show just the core algorithms, ignoring issues of lexical analy-

sis, parsing, printing, and so forth.

7.1 Terms and Contexts

We can obtain a datatype representing abstract syntax trees for terms by

directly transliterating Definition 6.1.2:

type term =

TmVar of int

| TmAbs of term

| TmApp of term * term

The representation of a variable is a number—its de Bruijn index. The repre-

sentation of an abstraction carries just a subterm for the abstraction’s body.

An application carries the two subterms being applied.

The definition actually used in our implementation, however, will carry a

little bit more information. First, as before, it is useful to annotate every term

with an element of the type info recording the file position where that term

was originally found, so that error printing routines can direct the user (or

even the user’s text editor, automatically) to the precise point where the error

occurred.

The system studied in most of this chapter is the pure untyped lambda-calculus (Figure 5-

3). The associated implementation is untyped. The fulluntyped implementation includes

extensions such as numbers and booleans.

84 7 An ML Implementation of the Lambda-Calculus

type term =

TmVar of info * int

| TmAbs of info * term

| TmApp of info * term * term

Second, for purposes of debugging, it is helpful to carry an extra number on

each variable node, as a consistency check. The convention will be that this

second number will always contain the total length of the context in which

the variable occurs.

type term =

TmVar of info * int * int

| TmAbs of info * term

| TmApp of info * term * term

Whenever a variable is printed, we will verify that this number corresponds

to the actual size of the current context; if it does not, then a shift operation

has been forgotten someplace.

One last refinement also concerns printing. Although terms are represented

internally using de Bruijn indices, this is obviously not how they should be

presented to the user: we should convert from the ordinary representation

to nameless terms during parsing, and convert back to ordinary form dur-

ing printing. There is nothing very hard about this, but we should not do it

completely naively (for example, generating completely fresh symbols for the

names of variables), since then the names of the bound variables in the terms

that are printed would have nothing to do with the names in the original pro-

gram. This can be fixed by annotating each abstraction with a string to be

used as a hint for the name of the bound variable.

type term =

TmVar of info * int * int

| TmAbs of info * string * term

| TmApp of info * term * term

The basic operations on terms (substitution in particular) do not do anything

fancy with these strings: they are simply carried along in their original form,

with no checks for name clashes, capture, etc. When the printing routine

needs to generate a fresh name for a bound variable, it tries first to use the

supplied hint; if this turns out to clash with a name already used in the cur-

rent context, it tries similar names, adding primes until it finds one that is

not currently being used. This ensures that the printed term will be similar

to what the user expects, modulo a few primes.

7.2 Shifting and Substitution 85

The printing routine itself looks like this:

let rec printtm ctx t = match t with

TmAbs(fi,x,t1) →

let (ctx’,x’) = pickfreshname ctx x in

pr "(lambda "; pr x’; pr ". "; printtm ctx’ t1; pr ")"

| TmApp(fi, t1, t2) →

pr "("; printtm ctx t1; pr " "; printtm ctx t2; pr ")"

| TmVar(fi,x,n) →

if ctxlength ctx = n then

pr (index2name fi ctx x)

else

pr "[bad index]"

It uses the datatype context,

type context = (string * binding) list

which is just a list of strings and associated bindings. For the moment, the

bindings themselves are completely trivial

type binding = NameBind

carrying no interesting information. Later on (in Chapter 10), we’ll introduce

other clauses of the binding type that will keep track of the type assump-

tions associated with variables and other similar information.

The printing function also relies on several lower-level functions: pr sends

a string to the standard output stream; ctxlength returns the length of a

context; index2name looks up the string name of a variable from its index.

The most interesting one is pickfreshname, which takes a context ctx and a

string hint x, finds a name x′ similar to x such that x′ is not already listed in

ctx, adds x′ to ctx to form a new context ctx′, and returns both ctx′ and x′

as a pair.

The actual printing function found in the untyped implementation on the

book’s web site is somewhat more complicated than this one, taking into

account two additional issues. First, it leaves out as many parentheses as pos-

sible, following the conventions that application associates to the left and the

bodies of abstractions extend as far to the right as possible. Second, it gener-

ates formatting instructions for a low-level pretty printing module (the OCaml

Format library) that makes decisions about line breaking and indentation.

7.2 Shifting and Substitution

The definition of shifting (6.2.1) can be translated almost symbol for symbol

into OCaml.

86 7 An ML Implementation of the Lambda-Calculus

let termShift d t =

let rec walk c t = match t with

TmVar(fi,x,n) → if x>=c then TmVar(fi,x+d,n+d)

else TmVar(fi,x,n+d)

| TmAbs(fi,x,t1) → TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) → TmApp(fi, walk c t1, walk c t2)

in walk 0 t

The internal shifting ↑dc (t) is here represented by a call to the inner function

walk c t. Since d never changes, there is no need to pass it along to each call

to walk: we just use the outer binding of d when we need it in the variable

case of walk. The top-level shift ↑d (t) is represented by termShift d t. (Note

that termShift itself is not marked recursive, since all it does is call walk

once.)

Similarly, the substitution function comes almost directly from Definition

6.2.4:

let termSubst j s t =

let rec walk c t = match t with

TmVar(fi,x,n) → if x=j+c then termShift c s else TmVar(fi,x,n)

| TmAbs(fi,x,t1) → TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) → TmApp(fi, walk c t1, walk c t2)

in walk 0 t

The substitution [j , s]t of term s for the variable numbered j in term

t is written as termSubst j s t here. The only difference from the original

definition of substitution is that here we do all the shifting of s at once, in

the TmVar case, rather than shifting s up by one every time we go through a

binder. This means that the argument j is the same in every call to walk, and

we can omit it from the inner definition.

The reader may note that the definitions of termShift and termSubst

are very similar, differing only in the action that is taken when a variable

is reached. The untyped implementation available from the book’s web site

exploits this observation to express both shifting and substitution operations

as special cases of a more general function called tmmap. Given a term t and

a function onvar, the result of tmmap onvar t is a term of the same shape as

t in which every variable has been replaced by the result of calling onvar on

that variable. This notational trick saves quite a bit of tedious repetition in

some of the larger calculi; §25.2 explains it in more detail.

In the operational semantics of the lambda-calculus, the only place where

substitution is used is in the beta-reduction rule. As we noted before, this

rule actually performs several operations: the term being substituted for the

bound variable is first shifted up by one, then the substitution is made, and

7.3 Evaluation 87

then the whole result is shifted down by one to account for the fact that the

bound variable has been used up. The following definition encapsulates this

sequence of steps:

let termSubstTop s t =

termShift (-1) (termSubst 0 (termShift 1 s) t)

7.3 Evaluation

As in Chapter 3, the evaluation function depends on an auxiliary predicate

isval:

let rec isval ctx t = match t with

TmAbs(_,_,_) → true

| _ → false

The single-step evaluation function is a direct transcription of the evaluation

rules, except that we pass a context ctx along with the term. This argument

is not used in the present eval1 function, but it is needed by some of the

more complex evaluators later on.

let rec eval1 ctx t = match t with

TmApp(fi,TmAbs(_,x,t12),v2) when isval ctx v2 →

termSubstTop v2 t12

| TmApp(fi,v1,t2) when isval ctx v1 →

let t2’ = eval1 ctx t2 in

TmApp(fi, v1, t2’)

| TmApp(fi,t1,t2) →

let t1’ = eval1 ctx t1 in

TmApp(fi, t1’, t2)

| _ →

raise NoRuleApplies

The multi-step evaluation function is the same as before, except for the ctx

argument:

let rec eval ctx t =

try let t’ = eval1 ctx t

in eval ctx t’

with NoRuleApplies → t

7.3.1 Exercise [Recommended, ««« 3]: Change this implementation to use the

“big-step” style of evaluation introduced in Exercise 5.3.8. �

88 7 An ML Implementation of the Lambda-Calculus

7.4 Notes

The treatment of substitution presented in this chapter, though sufficient

for our purposes in this book, is far from the final word on the subject. In

particular, the beta-reduction rule in our evaluator “eagerly” substitutes the

argument value for the bound variable in the function’s body. Interpreters

(and compilers) for functional languages that are tuned for speed instead of

simplicity use a different strategy: instead of actually performing the sub-

stitution, we simply record an association between the bound variable name

and the argument value in an auxiliary data structure called the environment,

which is carried along with the term being evaluated. When we reach a vari-

able, we look up its value in the current environment. This strategy can be

modeled by regarding the environment as a kind of explicit substitution—i.e.,

by moving the mechanism of substitution from the meta-language into the

object language, making it a part of the syntax of the terms manipulated by

the evaluator, rather than an external operation on terms. Explicit substitu-

tions were first studied by Abadi, Cardelli, Curien, and Lévy (1991a) and have

since become an active research area.

Just because you’ve implemented something doesn’t mean you understand it.

—Brian Cantwell Smith

P a r t I I

Simple Types

8 Typed Arithmetic Expressions

In Chapter 3, we used a simple language of boolean and arithmetic expres-

sions to introduce basic tools for the precise description of syntax and eval-

uation. We now return to this simple language and augment it with static

types. Again, the type system itself is nearly trivial, but it provides a setting

in which to introduce concepts that will recur throughout the book.

8.1 Types

Recall the syntax for arithmetic expressions:

t ::= terms:

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

We saw in Chapter 3 that evaluating a term can either result in a value...

v ::= values:

true true value

false false value

nv numeric value

nv ::= numeric values:

0 zero value

succ nv successor value

The system studied in this chapter is the typed calculus of booleans and numbers (Figure 8-2).

The corresponding OCaml implementation is tyarith.

92 8 Typed Arithmetic Expressions

or else get stuck at some stage, by reaching a term like pred false, for which

no evaluation rule applies.

Stuck terms correspond to meaningless or erroneous programs. We would

therefore like to be able to tell, without actually evaluating a term, that its

evaluation will definitely not get stuck. To do this, we need to be able to dis-

tinguish between terms whose result will be a numeric value (since these are

the only ones that should appear as arguments to pred, succ, and iszero)

and terms whose result will be a boolean (since only these should appear as

the guard of a conditional). We introduce two types, Nat and Bool, for classi-

fying terms in this way. The metavariables S, T, U, etc. will be used throughout

the book to range over types.

Saying that “a term t has type T” (or “t belongs to T,” or “t is an element of

T”) means that t “obviously” evaluates to a value of the appropriate form—

where by “obviously” we mean that we can see this statically, without doing

any evaluation of t. For example, the term if true then false else true

has type Bool, while pred (succ (pred (succ 0))) has type Nat. However,

our analysis of the types of terms will be conservative, making use only of

static information. This means that we will not be able to conclude that terms

like if (iszero 0) then 0 else false or even if true then 0 else false

have any type at all, even though their evaluation does not, in fact, get stuck.

8.2 The Typing Relation

The typing relation for arithmetic expressions, written1 “t : T”, is defined by

a set of inference rules assigning types to terms, summarized in Figures 8-

1 and 8-2. As in Chapter 3, we give the rules for booleans and those for

numbers in two different figures, since later on we will sometimes want to

refer to them separately.

The rules T-True and T-False in Figure 8-1 assign the type Bool to the

boolean constants true and false. Rule T-If assigns a type to a conditional

expression based on the types of its subexpressions: the guard t1 must eval-

uate to a boolean, while t2 and t3 must both evaluate to values of the same

type. The two uses of the single metavariable T express the constraint that

the result of the if is the type of the then- and else- branches, and that this

may be any type (either Nat or Bool or, when we get to calculi with more

interesting sets of types, any other type).

The rules for numbers in Figure 8-2 have a similar form. T-Zero gives the

type Nat to the constant 0. T-Succ gives a term of the form succ t1 the type

Nat, as long as t1 has type Nat. Likewise, T-Pred and T-IsZero say that pred

1. The symbol ∈ is often used instead of :.

8.2 The Typing Relation 93

B (typed) Extends B (3-1)

New syntactic forms

T ::= types:

Bool type of booleans

New typing rules t : T

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Figure 8-1: Typing rules for booleans (B)

B N (typed) Extends NB (3-2) and 8-1

New syntactic forms

T ::= ... types:

Nat type of natural numbers

New typing rules t : T

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

Figure 8-2: Typing rules for numbers (NB)

yields a Nat when its argument has type Nat and iszero yields a Bool when

its argument has type Nat.

8.2.1 Definition: Formally, the typing relation for arithmetic expressions is the

smallest binary relation between terms and types satisfying all instances of

the rules in Figures 8-1 and 8-2. A term t is typable (or well typed) if there is

some T such that t : T. �

When reasoning about the typing relation, we will often make statements

like “If a term of the form succ t1 has any type at all, then it has type Nat.”

The following lemma gives us a compendium of basic statements of this form,

each following immediately from the shape of the corresponding typing rule.

94 8 Typed Arithmetic Expressions

8.2.2 Lemma [Inversion of the typing relation]:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat. �

Proof: Immediate from the definition of the typing relation. �

The inversion lemma is sometimes called the generation lemma for the

typing relation, since, given a valid typing statement, it shows how a proof of

this statement could have been generated. The inversion lemma leads directly

to a recursive algorithm for calculating the types of terms, since it tells us,

for a term of each syntactic form, how to calculate its type (if it has one) from

the types of its subterms. We will return to this point in detail in Chapter 9.

8.2.3 Exercise [« 3]: Prove that every subterm of a well-typed term is well typed. �

In §3.5 we introduced the concept of evaluation derivations. Similarly, a

typing derivation is a tree of instances of the typing rules. Each pair (t,T) in

the typing relation is justified by a typing derivation with conclusion t : T.

For example, here is the derivation tree for the typing statement “if iszero 0

then 0 else pred 0 : Nat”:

T-Zero
0 : Nat

T-IsZero
iszero 0 : Bool

T-Zero
0 : Nat

T-Zero
0 : Nat

T-Pred
pred 0 : Nat

T-If
if iszero 0 then 0 else pred 0 : Nat

In other words, statements are formal assertions about the typing of pro-

grams, typing rules are implications between statements, and derivations are

deductions based on typing rules.

8.2.4 Theorem [Uniqueness of Types]: Each term t has at most one type. That is,

if t is typable, then its type is unique. Moreover, there is just one derivation

of this typing built from the inference rules in Figures 8-1 and 8-2. �

8.3 Safety = Progress + Preservation 95

Proof: Straightforward structural induction on t, using the appropriate clause

of the inversion lemma (plus the induction hypothesis) for each case. �

In the simple type system we are dealing with in this chapter, every term

has a single type (if it has any type at all), and there is always just one deriva-

tion tree witnessing this fact. Later on—e.g., when we get to type systems

with subtyping in Chapter 15—both of these properties will be relaxed: a sin-

gle term may have many types, and there may in general be many ways of

deriving the statement that a given term has a given type.

Properties of the typing relation will often be proved by induction on deriva-

tion trees, just as properties of the evaluation relation are typically proved by

induction on evaluation derivations. We will see many examples of induction

on typing derivations, beginning in the next section.

8.3 Safety = Progress + Preservation

The most basic property of this type system or any other is safety (also called

soundness): well-typed terms do not “go wrong.” We have already chosen how

to formalize what it means for a term to go wrong: it means reaching a “stuck

state” (Definition 3.5.15) that is not designated as a final value but where the

evaluation rules do not tell us what to do next. What we want to know, then, is

that well-typed terms do not get stuck. We show this in two steps, commonly

known as the progress and preservation theorems.2

Progress: A well-typed term is not stuck (either it is a value or it can take a

step according to the evaluation rules).

Preservation: If a well-typed term takes a step of evaluation, then the re-

sulting term is also well typed.3

These properties together tell us that a well-typed term can never reach a

stuck state during evaluation.

For the proof of the progress theorem, it is convenient to record a couple

of facts about the possible shapes of the canonical forms of types Bool and

Nat (i.e., the well-typed values of these types).

2. The slogan “safety is progress plus preservation” (using a canonical forms lemma) was

articulated by Harper; a variant was proposed by Wright and Felleisen (1994).

3. In most of the type systems we will consider, evaluation preserves not only well-typedness

but the exact types of terms. In some systems, however, types can change during evaluation.

For example, in systems with subtyping (Chapter 15), types can become smaller (more infor-

mative) during evaluation.

96 8 Typed Arithmetic Expressions

8.3.1 Lemma [Canonical Forms]: 1. If v is a value of type Bool, then v is either

true or false.

2. If v is a value of type Nat, then v is a numeric value according to the

grammar in Figure 3-2. �

Proof: For part (1), according to the grammar in Figures 3-1 and 3-2, values

in this language can have four forms: true, false, 0, and succ nv, where nv

is a numeric value. The first two cases give us the desired result immediately.

The last two cannot occur, since we assumed that v has type Bool and cases 4

and 5 of the inversion lemma tell us that 0 and succ nv can have only type

Nat, not Bool. Part (2) is similar. �

8.3.2 Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for some

T). Then either t is a value or else there is some t′ with t -→ t′. �

Proof: By induction on a derivation of t : T. The T-True, T-False, and

T-Zero cases are immediate, since t in these cases is a value. For the other

cases, we argue as follows.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is some t′1 such

that t1 -→ t′1. If t1 is a value, then the canonical forms lemma (8.3.1) assures

us that it must be either true or false, in which case either E-IfTrue or

E-IfFalse applies to t. On the other hand, if t1 -→ t′1, then, by T-If, t -→

if t′1 then t2 else t3.

Case T-Succ: t = succ t1 t1 : Nat

By the induction hypothesis, either t1 is a value or else there is some t′1 such

that t1 -→ t′1. If t1 is a value, then, by the canonical forms lemma, it must be

a numeric value, in which case so is t. On the other hand, if t1 -→ t′1, then,

by E-Succ, succ t1 -→ succ t′1.

Case T-Pred: t = pred t1 t1 : Nat

By the induction hypothesis, either t1 is a value or else there is some t′1 such

that t1 -→ t′1. If t1 is a value, then, by the canonical forms lemma, it must be

a numeric value, i.e., either 0 or succ nv1 for some nv1, and one of the rules

E-PredZero or E-PredSucc applies to t. On the other hand, if t1 -→ t′1, then,

by E-Pred, pred t1 -→ pred t′1.

Case T-IsZero: t = iszero t1 t1 : Nat

Similar. �

The proof that types are preserved by evaluation is also quite straightfor-

ward for this system.

8.3 Safety = Progress + Preservation 97

8.3.3 Theorem [Preservation]: If t : T and t -→ t′, then t′ : T. �

Proof: By induction on a derivation of t : T. At each step of the induction, we

assume that the desired property holds for all subderivations (i.e., that if s : S

and s -→ s′, then s′ : S, whenever s : S is proved by a subderivation of the

present one) and proceed by case analysis on the final rule in the derivation.

(We show only a subset of the cases; the others are similar.)

Case T-True: t = true T = Bool

If the last rule in the derivation is T-True, then we know from the form of

this rule that t must be the constant true and T must be Bool. But then t is

a value, so it cannot be the case that t -→ t′ for any t′, and the requirements

of the theorem are vacuously satisfied.

Case T-If: t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

If the last rule in the derivation is T-If, then we know from the form of this

rule that t must have the form if t1 then t2 else t3, for some t1, t2, and

t3. We must also have subderivations with conclusions t1 : Bool, t2 : T,

and t3 : T. Now, looking at the evaluation rules with if on the left-hand side

(Figure 3-1), we find that there are three rules by which t -→ t′ can be derived:

E-IfTrue, E-IfFalse, and E-If. We consider each case separately (omitting the

E-False case, which is similar to E-True).

Subcase E-IfTrue: t1 = true t′ = t2

If t -→ t′ is derived using E-IfTrue, then from the form of this rule

we see that t1 must be true and the resulting term t′ is the second

subexpression t2. This means we are finished, since we know (by the

assumptions of the T-If case) that t2 : T, which is what we need.

Subcase E-If: t1 -→ t′1 t′ = if t′1 then t2 else t3

From the assumptions of the T-If case, we have a subderivation of

the original typing derivation whose conclusion is t1 : Bool. We can

apply the induction hypothesis to this subderivation, obtaining t′1 :

Bool. Combining this with the facts (from the assumptions of the T-If

case) that t2 : T and t3 : T, we can apply rule T-If to conclude that

if t′1 then t2 else t3 : T, that is t′ : T.

Case T-Zero: t = 0 T = Nat

Can’t happen (for the same reasons as T-True above).

Case T-Succ: t = succ t1 T = Nat t1 : Nat

By inspecting the evaluation rules in Figure 3-2, we see that there is just one

rule, E-Succ, that can be used to derive t -→ t′. The form of this rule tells

98 8 Typed Arithmetic Expressions

us that t1 -→ t′1. Since we also know t1 : Nat, we can apply the induction

hypothesis to obtain t′1 : Nat, from which we obtain succ t′1 : Nat, i.e.,

t′ : T, by applying rule T-Succ. �

8.3.4 Exercise [«« 3]: Restructure this proof so that it goes by induction on eval-

uation derivations rather than typing derivations. �

The preservation theorem is often called subject reduction (or subject eval-

uation)—the intuition being that a typing statement t : T can be thought of

as a sentence, “t has type T.” The term t is the subject of this sentence, and

the subject reduction property then says that the truth of the sentence is

preserved under reduction of the subject.

Unlike uniqueness of types, which holds in some type systems and not in

others, progress and preservation will be basic requirements for all of the

type systems that we consider.4

8.3.5 Exercise [«]: The evaluation rule E-PredZero (Figure 3-2) is a bit counterin-

tuitive: we might feel that it makes more sense for the predecessor of zero

to be undefined, rather than being defined to be zero. Can we achieve this

simply by removing the rule from the definition of single-step evaluation? �

8.3.6 Exercise [««, Recommended]: Having seen the subject reduction property,

it is reasonable to wonder whether the opposite property—subject expan-

sion—also holds. Is it always the case that, if t -→ t′ and t′ : T, then t : T?

If so, prove it. If not, give a counterexample. �

8.3.7 Exercise [Recommended, ««]: Suppose our evaluation relation is defined in

the big-step style, as in Exercise 3.5.17. How should the intuitive property of

type safety be formalized? �

8.3.8 Exercise [Recommended, ««]: Suppose our evaluation relation is augmented

with rules for reducing nonsensical terms to an explicit wrong state, as in

Exercise 3.5.16. Now how should type safety be formalized? �

The road from untyped to typed universes has been followed many times, in

many different fields, and largely for the same reasons.

—Luca Cardelli and Peter Wegner (1985)

4. There are languages where these properties do not hold, but which can nevertheless be

considered to be type-safe. For example, if we formalize the operational semantics of Java in a

small-step style (Flatt, Krishnamurthi, and Felleisen, 1998a; Igarashi, Pierce, and Wadler, 1999),

type preservation in the form we have given it here fails (see Chapter 19 for details). However,

this should be considered an artifact of the formalization, rather than a defect in the language

itself, since it disappears, for example, in a big-step presentation of the semantics.

9 Simply Typed Lambda-Calculus

This chapter introduces the most elementary member of the family of typed

languages that we shall be studying for the rest of the book: the simply typed

lambda-calculus of Church (1940) and Curry (1958).

9.1 Function Types

In Chapter 8, we introduced a simple static type system for arithmetic ex-

pressions with two types: Bool, classifying terms whose evaluation yields a

boolean, and Nat, classifying terms whose evaluation yields a number. The

“ill-typed” terms not belonging to either of these types include all the terms

that reach stuck states during evaluation (e.g., if 0 then 1 else 2) as well as

some terms that actually behave fine during evaluation, but for which our

static classification is too conservative (like if true then 0 else false).

Suppose we want to construct a similar type system for a language com-

bining booleans (for the sake of brevity, we’ll ignore numbers in this chapter)

with the primitives of the pure lambda-calculus. That is, we want to introduce

typing rules for variables, abstractions, and applications that (a) maintain

type safety—i.e., satisfy the type preservation and progress theorems, 8.3.2

and 8.3.3—and (b) are not too conservative—i.e., they should assign types to

most of the programs we actually care about writing.

Of course, since the pure lambda-calculus is Turing complete, there is no

hope of giving an exact type analysis for these primitives. For example, there

is no way of reliably determining whether a program like

if <long and tricky computation> then true else (λx.x)

yields a boolean or a function without actually running the long and tricky

computation and seeing whether it yields true or false. But, in general, the

The system studied in this chapter is the simply typed lambda-calculus (Figure 9-1) with

booleans (8-1). The associated OCaml implementation is fullsimple.

100 9 Simply Typed Lambda-Calculus

long and tricky computation might even diverge, and any typechecker that

tries to predict its outcome precisely will then diverge as well.

To extend the type system for booleans to include functions, we clearly

need to add a type classifying terms whose evaluation results in a function.

As a first approximation, let’s call this type →. If we add a typing rule

λx.t :→

giving every λ-abstraction the type →, we can classify both simple terms like

λx.x and compound terms like if true then (λx.true) else (λx.λy.y)

as yielding functions.

But this rough analysis is clearly too conservative: functions like λx.true

and λx.λy.y are lumped together in the same type →, ignoring the fact that

applying the first to true yields a boolean, while applying the second to true

yields another function. In general, in order to give a useful type to the re-

sult of an application, we need to know more about the left-hand side than

just that it is a function: we need to know what type the function returns.

Moreover, in order to be sure that the function will behave correctly when it

is called, we need to keep track of what type of arguments it expects. To keep

track of this information, we replace the bare type → by an infinite family of

types of the form T1→T2, each classifying functions that expect arguments of

type T1 and return results of type T2.

9.1.1 Definition: The set of simple types over the type Bool is generated by the

following grammar:

T ::= types:

Bool type of booleans

T→T type of functions

The type constructor → is right-associative—that is, the expression T1→T2→T3

stands for T1→(T2→T3). �

For example Bool→Bool is the type of functions mapping boolean argu-

ments to boolean results. (Bool→Bool)→(Bool→Bool)—or, equivalently,

(Bool→Bool)→Bool→Bool—is the type of functions that take boolean-to-

boolean functions as arguments and return them as results.

9.2 The Typing Relation

In order to assign a type to an abstraction like λx.t, we need to calculate

what will happen when the abstraction is applied to some argument. The

next question that arises is: how do we know what type of arguments to ex-

pect? There are two possible responses: either we can simply annotate the

9.2 The Typing Relation 101

λ-abstraction with the intended type of its arguments, or else we can ana-

lyze the body of the abstraction to see how the argument is used and try to

deduce, from this, what type it should have. For now, we choose the first al-

ternative. Instead of just λx.t, we will write λx:T1.t2, where the annotation

on the bound variable tells us to assume that the argument will be of type T1.

In general, languages in which type annotations in terms are used to help

guide the typechecker are called explicitly typed. Languages in which we ask

the typechecker to infer or reconstruct this information are called implicitly

typed. (In the λ-calculus literature, the term type-assignment systems is also

used.) Most of this book will concentrate on explicitly typed languages; im-

plicit typing is explored in Chapter 22.

Once we know the type of the argument to the abstraction, it is clear that

the type of the function’s result will be just the type of the body t2, where

occurrences of x in t2 are assumed to denote terms of type T1. This intuition

is captured by the following typing rule:

x:T1 ` t2 : T2

` λx:T1.t2 : T1→T2

(T-Abs)

Since terms may contain nested λ-abstractions, we will need, in general, to

talk about several such assumptions. This changes the typing relation from a

two-place relation, t : T, to a three-place relation, Γ ` t : T, where Γ is a set

of assumptions about the types of the free variables in t.

Formally, a typing context (also called a type environment) Γ is a sequence

of variables and their types, and the “comma” operator extends Γ by adding

a new binding on the right. The empty context is sometimes written ∅, but

usually we just omit it, writing ` t : T for “The closed term t has type T

under the empty set of assumptions.”

To avoid confusion between the new binding and any bindings that may

already appear in Γ , we require that the name x be chosen so that it is distinct

from the variables bound by Γ . Since our convention is that variables bound

by λ-abstractions may be renamed whenever convenient, this condition can

always be satisfied by renaming the bound variable if necessary. Γ can thus

be thought of as a finite function from variables to their types. Following this

intuition, we write dom(Γ) for the set of variables bound by Γ .

The rule for typing abstractions has the general form

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

where the premise adds one more assumption to those in the conclusion.

The typing rule for variables also follows immediately from this discussion:

a variable has whatever type we are currently assuming it to have.

102 9 Simply Typed Lambda-Calculus

x:T ∈ Γ

Γ ` x : T
(T-Var)

The premise x:T ∈ Γ is read “The type assumed for x in Γ is T.”

Finally, we need a typing rule for applications.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

If t1 evaluates to a function mapping arguments in T11 to results in T12 (under

the assumption that the values represented by its free variables have the

types assumed for them in Γ), and if t2 evaluates to a result in T11, then the

result of applying t1 to t2 will be a value of type T12.

The typing rules for the boolean constants and conditional expressions are

the same as before (Figure 8-1). Note, though, that the metavariable T in the

rule for conditionals

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-If)

can now be instantiated to any function type, allowing us to type conditionals

whose branches are functions:1

if true then (λx:Bool. x) else (λx:Bool. not x);

ñ (λx:Bool. x) : Bool → Bool

These typing rules are summarized in Figure 9-1 (along with the syntax and

evaluation rules, for the sake of completeness). The highlighted regions in

the figure indicate material that is new with respect to the untyped lambda-

calculus—both new rules and new bits added to old rules. As we did with

booleans and numbers, we have split the definition of the full calculus into

two pieces: the pure simply typed lambda-calculus with no base types at all,

shown in this figure, and a separate set of rules for booleans, which we have

already seen in Figure 8-1 (we must add a context Γ to every typing statement

in that figure, of course).

We often use the symbol λ→ to refer to the simply typed lambda-calculus

(we use the same symbol for systems with different sets of base types).

9.2.1 Exercise [«]: The pure simply typed lambda-calculus with no base types is

actually degenerate, in the sense that it has no well-typed terms at all. Why? �

Instances of the typing rules for λ→ can be combined into derivation trees,

just as we did for typed arithmetic expressions. For example, here is a deriva-

tion demonstrating that the term (λx:Bool.x) true has type Bool in the

empty context.

1. Examples showing sample interactions with an implementation will display both results and

their types from now on (when they are obvious, they will be sometimes be elided).

9.2 The Typing Relation 103

→ (typed) Based on λ (5-3)

Syntax

t ::= terms:

x variable

λx :T .t abstraction

t t application

v ::= values:

λx :T .t abstraction value

T ::= types:

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx :T11 .t12) v2 -→ [x, v2]t12 (E-AppAbs)

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Figure 9-1: Pure simply typed lambda-calculus (λ→)

x:Bool ∈ x:Bool
T-Var

x:Bool ` x : Bool
T-Abs

` λx:Bool.x : Bool→Bool
T-True

` true : Bool
T-App

` (λx:Bool.x) true : Bool

9.2.2 Exercise [« 3]: Show (by drawing derivation trees) that the following terms

have the indicated types:

1. f:Bool→Bool ` f (if false then true else false) : Bool

2. f:Bool→Bool ` λx:Bool. f (if x then false else x) : Bool→Bool �

9.2.3 Exercise [«]: Find a context Γ under which the term f x y has type Bool. Can

you give a simple description of the set of all such contexts? �

104 9 Simply Typed Lambda-Calculus

9.3 Properties of Typing

As in Chapter 8, we need to develop a few basic lemmas before we can prove

type safety. Most of these are similar to what we saw before—we just need

to add contexts to the typing relation and add clauses to each proof for λ-

abstractions, applications, and variables. The only significant new require-

ment is a substitution lemma for the typing relation (Lemma 9.3.8).

First off, an inversion lemma records a collection of observations about

how typing derivations are built: the clause for each syntactic form tells us

“if a term of this form is well typed, then its subterms must have types of

these forms. . .”

9.3.1 Lemma [Inversion of the typing relation]:

1. If Γ ` x : R, then x:R ∈ Γ .

2. If Γ ` λx:T1. t2 : R, then R = T1→R2 for some R2 with Γ , x:T1 ` t2 : R2.

3. If Γ ` t1 t2 : R, then there is some type T11 such that Γ ` t1 : T11→R and

Γ ` t2 : T11.

4. If Γ ` true : R, then R = Bool.

5. If Γ ` false : R, then R = Bool.

6. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and Γ ` t2,t3 : R . �

Proof: Immediate from the definition of the typing relation. �

9.3.2 Exercise [Recommended, «««]: Is there any context Γ and type T such that

Γ ` x x : T? If so, give Γ and T and show a typing derivation for Γ ` x x : T;

if not, prove it. �

In §9.2, we chose an explicitly typed presentation of the calculus to sim-

plify the job of typechecking. This involved adding type annotations to bound

variables in function abstractions, but nowhere else. In what sense is this

“enough”? One answer is provided by the “uniqueness of types” theorem,

which tells us that well-typed terms are in one-to-one correspondence with

their typing derivations: the typing derivation can be recovered uniquely from

the term (and, of course, vice versa). In fact, the correspondence is so straight-

forward that, in a sense, there is little difference between the term and the

derivation.

9.3.3 Theorem [Uniqueness of Types]: In a given typing context Γ , a term t (with

free variables all in the domain of Γ) has at most one type. That is, if a term is

typable, then its type is unique. Moreover, there is just one derivation of this

typing built from the inference rules that generate the typing relation. �

9.3 Properties of Typing 105

Proof: Exercise. The proof is actually so direct that there is almost nothing

to say; but writing out some of the details is good practice in “setting up”

proofs about the typing relation. �

For many of the type systems that we will see later in the book, this simple

correspondence between terms and derivations will not hold: a single term

will be assigned many types, and each of these will be justified by many typ-

ing derivations. In these systems, there will often be significant work involved

in showing that typing derivations can be recovered effectively from terms.

Next, a canonical forms lemma tells us the possible shapes of values of

various types.

9.3.4 Lemma [Canonical Forms]:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v = λx:T1.t2. �

Proof: Straightforward. (Similar to the proof of the canonical forms lemma

for arithmetic expressions, 8.3.1.) �

Using the canonical forms lemma, we can prove a progress theorem analo-

gous to Theorem 8.3.2. The statement of the theorem needs one small change:

we are interested only in closed terms, with no free variables. For open terms,

the progress theorem actually fails: a term like f true is a normal form,

but not a value. However, this failure does not represent a defect in the lan-

guage, since complete programs—which are the terms we actually care about

evaluating—are always closed.

9.3.5 Theorem [Progress]: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with t -→ t′. �

Proof: Straightforward induction on typing derivations. The cases for boolean

constants and conditions are exactly the same as in the proof of progress for

typed arithmetic expressions (8.3.2). The variable case cannot occur (because

t is closed). The abstraction case is immediate, since abstractions are values.

The only interesting case is the one for application, where t = t1 t2 with

` t1 : T11→T12 and ` t2 : T11. By the induction hypothesis, either t1 is a

value or else it can make a step of evaluation, and likewise t2. If t1 can take a

step, then rule E-App1 applies to t. If t1 is a value and t2 can take a step, then

rule E-App2 applies. Finally, if both t1 and t2 are values, then the canonical

forms lemma tells us that t1 has the form λx:T11.t12, and so rule E-AppAbs

applies to t. �

106 9 Simply Typed Lambda-Calculus

Our next job is to prove that evaluation preserves types. We begin by stat-

ing a couple of “structural lemmas” for the typing relation. These are not

particularly interesting in themselves, but will permit us to perform some

useful manipulations of typing derivations in later proofs.

The first structural lemma tells us that we may permute the elements of a

context, as convenient, without changing the set of typing statements that can

be derived under it. Recall (from page 101) that all the bindings in a context

must have distinct names, and that, whenever we add a binding to a context,

we tacitly assume that the bound name is different from all the names already

bound (using Convention 5.3.4 to rename the new one if needed).

9.3.6 Lemma [Permutation]: If Γ ` t : T and ∆ is a permutation of Γ , then ∆ `

t : T. Moreover, the latter derivation has the same depth as the former. �

Proof: Straightforward induction on typing derivations. �

9.3.7 Lemma [Weakening]: If Γ ` t : T and x ∉ dom(Γ), then Γ , x:S ` t : T.

Moreover, the latter derivation has the same depth as the former. �

Proof: Straightforward induction on typing derivations. �

Using these technical lemmas, we can prove a crucial property of the typing

relation: that well-typedness is preserved when variables are substituted with

terms of appropriate types. Similar lemmas play such a ubiquitous role in

the safety proofs of programming languages that it is often called just “the

substitution lemma.”

9.3.8 Lemma [Preservation of types under substitution]: If Γ , x:S ` t : T

and Γ ` s : S, then Γ ` [x, s]t : T. �

Proof: By induction on a derivation of the statement Γ , x:S ` t : T. For

a given derivation, we proceed by cases on the final typing rule used in the

proof.2 The most interesting cases are the ones for variables and abstrac-

tions.

Case T-Var: t = z

with z:T ∈ (Γ , x:S)

There are two sub-cases to consider, depending on whether z is x or another

variable. If z = x, then [x , s]z = s. The required result is then Γ ` s : S,

which is among the assumptions of the lemma. Otherwise, [x, s]z = z, and

the desired result is immediate.

2. Or, equivalently, by cases on the possible shapes of t, since for each syntactic constructor

there is exactly one typing rule.

9.3 Properties of Typing 107

Case T-Abs: t = λy:T2.t1

T = T2→T1

Γ , x:S, y:T2 ` t1 : T1

By convention 5.3.4, we may assume x ≠ y and y ∉ FV(s). Using permutation

on the given subderivation, we obtain Γ , y:T2, x:S ` t1 : T1. Using weaken-

ing on the other given derivation (Γ ` s : S), we obtain Γ , y:T2 ` s : S.

Now, by the induction hypothesis, Γ , y:T2 ` [x , s]t1 : T1. By T-Abs,

Γ ` λy:T2. [x , s]t1 : T2→T1. But this is precisely the needed result, since,

by the definition of substitution, [x, s]t = λy:T1. [x, s]t1.

Case T-App: t = t1 t2

Γ , x:S ` t1 : T2→T1

Γ , x:S ` t2 : T2

T = T1

By the induction hypothesis, Γ ` [x , s]t1 : T2→T1 and Γ ` [x , s]t2 : T2.

By T-App, Γ ` [x, s]t1 [x, s]t2 : T, i.e., Γ ` [x, s](t1 t2) : T.

Case T-True: t = true

T = Bool

Then [x, s]t = true, and the desired result, Γ ` [x, s]t : T, is immediate.

Case T-False: t = false

T = Bool

Similar.

Case T-If: t = if t1 then t2 else t3

Γ , x:S ` t1 : Bool

Γ , x:S ` t2 : T

Γ , x:S ` t3 : T

Three uses of the induction hypothesis yield

Γ ` [x, s]t1 : Bool

Γ ` [x, s]t2 : T

Γ ` [x, s]t3 : T,

from which the result follows by T-If. �

Using the substitution lemma, we can prove the other half of the type safety

property—that evaluation preserves well-typedness.

9.3.9 Theorem [Preservation]: If Γ ` t : T and t -→ t′, then Γ ` t′ : T. �

Proof: Exercise [Recommended, «««]. The structure is very similar to the

proof of the type preservation theorem for arithmetic expressions (8.3.3),

except for the use of the substitution lemma. �

108 9 Simply Typed Lambda-Calculus

9.3.10 Exercise [Recommended, ««]: In Exercise 8.3.6 we investigated the subject

expansion property for our simple calculus of typed arithmetic expressions.

Does it hold for the “functional part” of the simply typed lambda-calculus?

That is, suppose t does not contain any conditional expressions. Do t -→ t′

and Γ ` t′ : T imply Γ ` t : T? �

9.4 The Curry-Howard Correspondence

The “→” type constructor comes with typing rules of two kinds:

1. an introduction rule (T-Abs) describing how elements of the type can

be created, and

2. an elimination rule (T-App) describing how elements of the type can

be used.

When an introduction form (λ) is an immediate subterm of an elimination

form (application), the result is a redex—an opportunity for computation.

The terminology of introduction and elimination forms is frequently useful

in discussing type systems. When we come to more complex systems later in

the book, we’ll see a similar pattern of linked introduction and elimination

rules for each type constructor we consider.

9.4.1 Exercise [«]: Which of the rules for the type Bool in Figure 8-1 are introduc-

tion rules and which are elimination rules? What about the rules for Nat in

Figure 8-2? �

The introduction/elimination terminology arises from a connection between

type theory and logic known as the Curry-Howard correspondence or Curry-

Howard isomorphism (Curry and Feys, 1958; Howard, 1980). Briefly, the idea

is that, in constructive logics, a proof of a proposition P consists of concrete

evidence for P .3 What Curry and Howard noticed was that such evidence has

a strongly computational feel. For example, a proof of a proposition P ⊃ Q

can be viewed as a mechanical procedure that, given a proof of P , constructs

a proof of Q—or, if you like, a proof of Q abstracted on a proof of P . Simi-

larly, a proof of P ∧ Q consists of a proof of P together with a proof of Q.

This observation gives rise to the following correspondence:

3. The characteristic difference between classical and constructive logics is the omission from

the latter of proof rules like the law of the excluded middle, which says that, for every proposi-

tion Q, either Q holds or ¬Q does. To prove Q∨¬Q in a constructive logic, we must provide

evidence either for Q or for ¬Q.

9.5 Erasure and Typability 109

Logic Programming languages

propositions types

proposition P ⊃ Q type P→Q

proposition P ∧Q type P×Q (see §11.6)

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

On this view, a term of the simply typed lambda-calculus is a proof of a logical

proposition corresponding to its type. Computation—reduction of lambda-

terms—corresponds to the logical operation of proof simplification by cut

elimination. The Curry-Howard correspondence is also called the propositions

as types analogy. Thorough discussions of this correspondence can be found

in many places, including Girard, Lafont, and Taylor (1989), Gallier (1993),

Sørensen and Urzyczyn (1998), Pfenning (2001), Goubault-Larrecq and Mackie

(1997), and Simmons (2000).

The beauty of the Curry-Howard correspondence is that it is not limited

to a particular type system and one related logic—on the contrary, it can be

extended to a huge variety of type systems and logics. For example, System

F (Chapter 23), whose parametric polymorphism involves quantification over

types, corresponds precisely to a second-order constructive logic, which per-

mits quantification over propositions. System Fω (Chapter 30) corresponds

to a higher-order logic. Indeed, the correspondence has often been exploited

to transfer new developments between the fields. Thus, Girard’s linear logic

(1987) gives rise to the idea of linear type systems (Wadler, 1990, Wadler,

1991, Turner, Wadler, and Mossin, 1995, Hodas, 1992, Mackie, 1994, Chir-

imar, Gunter, and Riecke, 1996, Kobayashi, Pierce, and Turner, 1996, and

many others), while modal logics have been used to help design frameworks

for partial evaluation and run-time code generation (see Davies and Pfen-

ning, 1996, Wickline, Lee, Pfenning, and Davies, 1998, and other sources cited

there).

9.5 Erasure and Typability

In Figure 9-1, we defined the evaluation relation directly on simply typed

terms. Although type annotations play no role in evaluation—we don’t do any

sort of run-time checking to ensure that functions are applied to arguments

of appropriate types—we do carry along these annotations inside of terms as

we evaluate them.

Most compilers for full-scale programming languages actually avoid carry-

ing annotations at run time: they are used during typechecking (and during

code generation, in more sophisticated compilers), but do not appear in the

110 9 Simply Typed Lambda-Calculus

compiled form of the program. In effect, programs are converted back to

an untyped form before they are evaluated. This style of semantics can be

formalized using an erasure function mapping simply typed terms into the

corresponding untyped terms.

9.5.1 Definition: The erasure of a simply typed term t is defined as follows:

erase(x) = x

erase(λx:T1. t2) = λx. erase(t2)

erase(t1 t2) = erase(t1) erase(t2) �

Of course, we expect that the two ways of presenting the semantics of

the simply typed calculus actually coincide: it doesn’t really matter whether

we evaluate a typed term directly, or whether we erase it and evaluate the

underlying untyped term. This expectation is formalized by the following

theorem, summarized by the slogan “evaluation commutes with erasure” in

the sense that these operations can be performed in either order—we reach

the same term by evaluating and then erasing as we do by erasing and then

evaluating:

9.5.2 Theorem:

1. If t -→ t′ under the typed evaluation relation, then erase(t) -→ erase(t′).

2. If erase(t) -→ m′ under the typed evaluation relation, then there is a simply

typed term t′ such that t -→ t′ and erase(t′) = m′. �

Proof: Straightforward induction on evaluation derivations. �

Since the “compilation” we are considering here is so straightforward, The-

orem 9.5.2 is obvious to the point of triviality. For more interesting languages

and more interesting compilers, however, it becomes a quite important prop-

erty: it tells us that a “high-level” semantics, expressed directly in terms of the

language that the programmer writes, coincides with an alternative, lower-

level evaluation strategy actually used by an implementation of the language.

Another interesting question arising from the erasure function is: Given an

untyped lambda-term m, can we find a simply typed term t that erases to m?

9.5.3 Definition: A term m in the untyped lambda-calculus is said to be typable

in λ→ if there are some simply typed term t, type T, and context Γ such that

erase(t) = m and Γ ` t : T. �

We will return to this point in more detail in Chapter 22, when we consider

the closely related topic of type reconstruction for λ→.

9.6 Curry-Style vs. Church-Style 111

9.6 Curry-Style vs. Church-Style

We have seen two different styles in which the semantics of the simply typed

lambda-calculus can be formulated: as an evaluation relation defined directly

on the syntax of the simply typed calculus, or as a compilation to an un-

typed calculus plus an evaluation relation on untyped terms. An important

commonality of the two styles is that, in both, it makes sense to talk about

the behavior of a term t, whether or not t is actually well typed. This form

of language definition is often called Curry-style. We first define the terms,

then define a semantics showing how they behave, then give a type system

that rejects some terms whose behaviors we don’t like. Semantics is prior to

typing.

A rather different way of organizing a language definition is to define

terms, then identify the well-typed terms, then give semantics just to these. In

these so-called Church-style systems, typing is prior to semantics: we never

even ask the question “what is the behavior of an ill-typed term?” Indeed,

strictly speaking, what we actually evaluate in Church-style systems is typing

derivations, not terms. (See §15.6 for an example of this.)

Historically, implicitly typed presentations of lambda-calculi are often given

in the Curry style, while Church-style presentations are common only for

explicitly typed systems. This has led to some confusion of terminology:

“Church-style” is sometimes used when describing an explicitly typed syntax

and “Curry-style” for implicitly typed.

9.7 Notes

The simply typed lambda-calculus is studied in Hindley and Seldin (1986),

and in even greater detail in Hindley’s monograph (1997).

Well-typed programs cannot “go wrong.” —Robin Milner (1978)

10 An ML Implementation of Simple Types

The concrete realization of λ→ as an ML program follows the same lines as

our implementation of the untyped lambda-calculus in Chapter 7. The main

addition is a function typeof for calculating the type of a given term in a

given context. Before we get to it, though, we need a little low-level machinery

for manipulating contexts.

10.1 Contexts

Recall from Chapter 7 (p. 85) that a context is just a list of pairs of variable

names and bindings:

type context = (string * binding) list

In Chapter 7, we used contexts just for converting between named and name-

less forms of terms during parsing and printing. For this, we needed to know

just the names of the variables; the binding type was defined as a trivial

one-constructor datatype carrying no information at all:

type binding = NameBind

To implement the typechecker, we will need to use the context to carry typing

assumptions about variables. We support this by adding a new constructor

called VarBind to the binding type:

type binding =

NameBind

| VarBind of ty

The implementation described here corresponds to the simply typed lambda-calculus (Figure

9-1) with booleans (8-1). The code in this chapter can be found in the simplebool implemen-

tation in the web repository.

114 10 An ML Implementation of Simple Types

Each VarBind constructor carries a typing assumption for the corresponding

variable. We keep the old NameBind constructor in addition to VarBind, for

the convenience of the printing and parsing functions, which don’t care about

typing assumptions. (A different implementation strategy would be to define

two completely different context types—one for parsing and printing and

another for typechecking.)

The typeof function uses a function addbinding to extend a context ctx

with a new variable binding (x,bind); since contexts are represented as lists,

addbinding is essentially just cons:

let addbinding ctx x bind = (x,bind)::ctx

Conversely, we use the function getTypeFromContext to extract the typing

assumption associated with a particular variable i in a context ctx (the file

information fi is used for printing an error message if i is out of range):

let getTypeFromContext fi ctx i =

match getbinding fi ctx i with

VarBind(tyT) → tyT

| _ → error fi

("getTypeFromContext: Wrong kind of binding for variable "

^ (index2name fi ctx i))

The match provides some internal consistency checking: under normal cir-

cumstances, getTypeFromContext should always be called with a context

where the ith binding is in fact a VarBind. In later chapters, though, we will

add other forms of bindings (in particular, bindings for type variables), and

it is possible that getTypeFromContext will get called with the wrong kind

of variable. In this case, it uses the low-level error function to print a mes-

sage, passing it an info so that it can report the file position where the error

occurred.

val error : info → string → ’a

The result type of the error function is the variable type ′a, which can be

instantiated to any ML type (this makes sense because it is never going to

return anyway: it prints a message and halts the program). Here, we need to

assume that the result of error is a ty, since that is what the other branch

of the match returns.

Note that we look up typing assumptions by index, since terms are repre-

sented internally in nameless form, with variables represented as numerical

indices. The getbinding function simply looks up the ith binding in the given

context:

val getbinding : info → context → int → binding

10.2 Terms and Types 115

Its definition can be found in the simplebool implementation on the book’s

web site.

10.2 Terms and Types

The syntax of types is transcribed directly into an ML datatype from the ab-

stract syntax in Figures 8-1 and 9-1.

type ty =

TyBool

| TyArr of ty * ty

The representation of terms is the same as we used for the untyped lambda-

calculus (p. 84), just adding a type annotation to the TmAbs clause.

type term =

TmTrue of info

| TmFalse of info

| TmIf of info * term * term * term

| TmVar of info * int * int

| TmAbs of info * string * ty * term

| TmApp of info * term * term

10.3 Typechecking

The typechecking function typeof can be viewed as a direct translation of

the typing rules for λ→ (Figures 8-1 and 9-1), or, more accurately, as a tran-

scription of the inversion lemma (9.3.1). The second view is more accurate

because it is the inversion lemma that tells us, for every syntactic form, ex-

actly what conditions must hold in order for a term of this form to be well

typed. The typing rules tell us that terms of certain forms are well typed un-

der certain conditions, but by looking at an individual typing rule, we can

never conclude that some term is not well typed, since it is always possible

that another rule could be used to type this term. (At the moment, this may

appear to be a difference without a distinction, since the inversion lemma

follows so directly from the typing rules. The difference becomes important,

though, in later systems where proving the inversion lemma requires more

work than in λ→.)

let rec typeof ctx t =

match t with

TmTrue(fi) →

TyBool

116 10 An ML Implementation of Simple Types

| TmFalse(fi) →

TyBool

| TmIf(fi,t1,t2,t3) →

if (=) (typeof ctx t1) TyBool then

let tyT2 = typeof ctx t2 in

if (=) tyT2 (typeof ctx t3) then tyT2

else error fi "arms of conditional have different types"

else error fi "guard of conditional not a boolean"

| TmVar(fi,i,_) → getTypeFromContext fi ctx i

| TmAbs(fi,x,tyT1,t2) →

let ctx’ = addbinding ctx x (VarBind(tyT1)) in

let tyT2 = typeof ctx’ t2 in

TyArr(tyT1, tyT2)

| TmApp(fi,t1,t2) →

let tyT1 = typeof ctx t1 in

let tyT2 = typeof ctx t2 in

(match tyT1 with

TyArr(tyT11,tyT12) →

if (=) tyT2 tyT11 then tyT12

else error fi "parameter type mismatch"

| _ → error fi "arrow type expected")

A couple of details of the OCaml language are worth mentioning here. First,

the OCaml equality operator = is written in parentheses because we are using

it in prefix position, rather than its normal infix position, to facilitate compar-

ison with later versions of typeof where the operation of comparing types

will need to be something more refined than simple equality. Second, the

equality operator computes a structural equality on compound values, not a

pointer equality. That is, the expression

let t = TmApp(t1,t2) in

let t’ = TmApp(t1,t2) in

(=) t t’

is guaranteed to yield true, even though the two instances of TmApp bound

to t and t′ are allocated at different times and live at different addresses in

memory.

11 Simple Extensions

The simply typed lambda-calculus has enough structure to make its theoreti-

cal properties interesting, but it is not yet much of a programming language.

In this chapter, we begin to close the gap with more familiar languages by

introducing a number of familiar features that have straightforward treat-

ments at the level of typing. An important theme throughout the chapter is

the concept of derived forms.

11.1 Base Types

Every programming language provides a variety of base types—sets of simple,

unstructured values such as numbers, booleans, or characters—plus appro-

priate primitive operations for manipulating these values. We have already

examined natural numbers and booleans in detail; as many other base types

as the language designer wants can be added in exactly the same way.

Besides Bool and Nat, we will occasionally use the base types String (with

elements like "hello") and Float (with elements like 3.14159) to spice up

the examples in the rest of the book.

For theoretical purposes, it is often useful to abstract away from the de-

tails of particular base types and their operations, and instead simply sup-

pose that our language comes equipped with some set A of uninterpreted

or unknown base types, with no primitive operations on them at all. This

is accomplished simply by including the elements of A (ranged over by the

metavariable A) in the set of types, as shown in Figure 11-1. We use the letter

A for base types, rather than B, to avoid confusion with the symbol B, which

we have used to indicate the presence of booleans in a given system.A can be

thought of as standing for atomic types—another name that is often used for

base types, because they have no internal structure as far as the type system

The systems studied in this chapter are various extensions of the pure typed lambda-calculus

(Figure 9-1). The associated OCaml implementation, fullsimple, includes all the extensions.

118 11 Simple Extensions

→ A Extends λ→ (9-1)

New syntactic forms

T ::= ... types:

A base type

Figure 11-1: Uninterpreted base types

is concerned. We will use A, B, C, etc. as the names of base types. Note that,

as we did before with variables and type variables, we are using A both as a

base type and as a metavariable ranging over base types, relying on context

to tell us which is intended in a particular instance.

Is an uninterpreted type useless? Not at all. Although we have no way of

naming its elements directly, we can still bind variables that range over the

elements of a base type. For example, the function1

λx:A. x;

ñ <fun> : A → A

is the identity function on the elements of A, whatever these may be. Likewise,

λx:B. x;

ñ <fun> : B → B

is the identity function on B, while

λf:A→A. λx:A. f(f(x));

ñ <fun> : (A→A) → A → A

is a function that repeats two times the behavior of some given function f on

an argument x.

11.2 The Unit Type

Another useful base type, found especially in languages in the ML family,

is the singleton type Unit described in Figure 11-2. In contrast to the unin-

terpreted base types of the previous section, this type is interpreted in the

1. From now on, we will save space by eliding the bodies of λ-abstractions—writing them as

just <fun>—when we display the results of evaluation.

11.3 Derived Forms: Sequencing and Wildcards 119

→ Unit Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

unit constant unit

v ::= ... values:

unit constant unit

T ::= ... types:

Unit unit type

New typing rules Γ ` t : T

Γ ` unit : Unit (T-Unit)

New derived forms

t1;t2

def
= (λx:Unit.t2) t1

where x ∉ FV(t2)

Figure 11-2: Unit type

simplest possible way: we explicitly introduce a single element—the term

constant unit (written with a small u)—and a typing rule making unit an

element of Unit. We also add unit to the set of possible result values of

computations—indeed, unit is the only possible result of evaluating an ex-

pression of type Unit.

Even in a purely functional language, the type Unit is not completely with-

out interest,2 but its main application is in languages with side effects, such

as assignments to reference cells—a topic we will return to in Chapter 13. In

such languages, it is often the side effect, not the result, of an expression that

we care about; Unit is an appropriate result type for such expressions.

This use of Unit is similar to the role of the void type in languages like C

and Java. The name void suggests a connection with the empty type Bot (cf.

§15.4), but the usage of void is actually closer to our Unit.

11.3 Derived Forms: Sequencing and Wildcards

In languages with side effects, it is often useful to evaluate two or more ex-

pressions in sequence. The sequencing notation t1;t2 has the effect of evalu-

ating t1, throwing away its trivial result, and going on to evaluate t2.

2. The reader may enjoy the following little puzzle:

11.2.1 Exercise [«««]: Is there a way of constructing a sequence of terms t1, t2, . . ., in the simply

typed lambda-calculus with only the base type Unit, such that, for each n, the term tn has size

at most O(n) but requires at least O(2n) steps of evaluation to reach a normal form? �

120 11 Simple Extensions

There are actually two different ways to formalize sequencing. One is to

follow the same pattern we have used for other syntactic forms: add t1;t2 as

a new alternative in the syntax of terms, and then add two evaluation rules

t1 -→ t′1

t1;t2 -→ t′1;t2

(E-Seq)

unit;t2 -→ t2 (E-SeqNext)

and a typing rule

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2

(T-Seq)

capturing the intended behavior of ;.

An alternative way of formalizing sequencing is simply to regard t1;t2 as

an abbreviation for the term (λx:Unit.t2) t1, where the variable x is chosen

fresh—i.e., different from all the free variables of t2.

It is intuitively fairly clear that these two presentations of sequencing add

up to the same thing as far as the programmer is concerned: the high-level

typing and evaluation rules for sequencing can be derived from the abbrevia-

tion of t1;t2 as (λx:Unit.t2) t1. This intuitive correspondence is captured

more formally by arguing that typing and evaluation both “commute” with

the expansion of the abbreviation.

11.3.1 Theorem [Sequencing is a derived form]: Write λE (“E” for external lan-

guage) for the simply typed lambda-calculus with the Unit type, the se-

quencing construct, and the rules E-Seq, E-SeqNext, and T-Seq, and λI (“I”

for internal language) for the simply typed lambda-calculus with Unit only.

Let e ∈ λE → λI be the elaboration function that translates from the ex-

ternal to the internal language by replacing every occurrence of t1;t2 with

(λx:Unit.t2) t1, where x is chosen fresh in each case. Now, for each term t

of λE , we have

• t -→E t
′ iff e(t) -→I e(t

′)

• Γ `E t : T iff Γ `I e(t) : T

where the evaluation and typing relations of λE and λI are annotated with E

and I, respectively, to show which is which. �

Proof: Each direction of each “iff” proceeds by straightforward induction on

the structure of t. �

Theorem 11.3.1 justifies our use of the term derived form, since it shows

that the typing and evaluation behavior of the sequencing construct can be

11.4 Ascription 121

derived from those of the more fundamental operations of abstraction and

application. The advantage of introducing features like sequencing as de-

rived forms rather than as full-fledged language constructs is that we can ex-

tend the surface syntax (i.e., the language that the programmer actually uses

to write programs) without adding any complexity to the internal language

about which theorems such as type safety must be proved. This method of

factoring the descriptions of language features can already be found in the

Algol 60 report (Naur et al., 1963), and it is heavily used in many more recent

language definitions, notably the Definition of Standard ML (Milner, Tofte,

and Harper, 1990; Milner, Tofte, Harper, and MacQueen, 1997).

Derived forms are often called syntactic sugar, following Landin. Replacing

a derived form with its lower-level definition is called desugaring.

Another derived form that will be useful in examples later on is the “wild-

card” convention for variable binders. It often happens (for example, in terms

created by desugaring sequencing) that we want to write a “dummy” lambda-

abstraction in which the parameter variable is not actually used in the body

of the abstraction. In such cases, it is annoying to have to explicitly choose a

name for the bound variable; instead, we would like to replace it by a wildcard

binder, written _. That is, we will write λ_:S.t to abbreviate λx:S.t, where

x is some variable not occurring in t.

11.3.2 Exercise [«]: Give typing and evaluation rules for wildcard abstractions, and

prove that they can be derived from the abbreviation stated above. �

11.4 Ascription

Another simple feature that will frequently come in handy later is the ability

to explicitly ascribe a particular type to a given term (i.e., to record in the text

of the program an assertion that this term has this type). We write “t as T”

for “the term t, to which we ascribe the type T.” The typing rule T-Ascribe for

this construct (cf. Figure 11-3) simply verifies that the ascribed type T is, in-

deed, the type of t. The evaluation rule E-Ascribe is equally straightforward:

it just throws away the ascription, leaving t free to evaluate as usual.

There are a number of situations where ascription can be useful in pro-

gramming. One common one is documentation. It can sometimes become dif-

ficult for a reader to keep track of the types of the subexpressions of a large

compound expression. Judicious use of ascription can make such programs

much easier to follow. Similarly, in a particularly complex expression, it may

not even be clear to the writer what the types of all the subexpressions are.

Sprinkling in a few ascriptions is a good way of clarifying the programmer’s

122 11 Simple Extensions

→ as Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

t as T ascription

New evaluation rules t -→ t′

v1 as T -→ v1 (E-Ascribe)

t1 -→ t′1

t1 as T -→ t′1 as T
(E-Ascribe1)

New typing rules Γ ` t : T

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

Figure 11-3: Ascription

thinking. Indeed, ascription is sometimes a valuable aid in pinpointing the

source of puzzling type errors.

Another use of ascription is for controlling the printing of complex types.

The typecheckers used to check the examples shown in this book—and the

accompanying OCaml implementations whose names begin with the prefix

full—provide a simple mechanism for introducing abbreviations for long or

complex type expressions. (The abbreviation mechanism is omitted from the

other implementations to make them easier to read and modify.) For example,

the declaration

UU = Unit→Unit;

makes UU an abbreviation for Unit→Unit in what follows. Wherever UU is

seen, Unit→Unit is understood. We can write, for example:

(λf:UU. f unit) (λx:Unit. x);

During type-checking, these abbreviations are expanded automatically as nec-

essary. Conversely, the typecheckers attempt to collapse abbreviations when-

ever possible. (Specifically, each time they calculate the type of a subterm,

they check whether this type exactly matches any of the currently defined

abbreviations, and if so replace the type by the abbreviation.) This normally

gives reasonable results, but occasionally we may want a type to print dif-

ferently, either because the simple matching strategy causes the typechecker

to miss an opportunity to collapse an abbreviation (for example, in systems

where the fields of record types can be permuted, it will not recognize that

{a:Bool,b:Nat} is interchangeable with {b:Nat,a:Bool}), or because we

want the type to print differently for some other reason. For example, in

11.4 Ascription 123

λf:Unit→Unit. f;

ñ <fun> : (Unit→Unit) → UU

the abbreviation UU is collapsed in the result of the function, but not in its

argument. If we want the type to print as UU→UU, we can either change the

type annotation on the abstraction

λf:UU. f;

ñ <fun> : UU → UU

or else add an ascription to the whole abstraction:

(λf:Unit→Unit. f) as UU→UU;

ñ <fun> : UU → UU

When the typechecker processes an ascription t as T, it expands any abbre-

viations in T while checking that t has type T, but then yields T itself, exactly

as written, as the type of the ascription. This use of ascription to control

the printing of types is somewhat particular to the way the implementations

in this book have been engineered. In a full-blown programming language,

mechanisms for abbreviation and type printing will either be unnecessary

(as in Java, for example, where by construction all types are represented by

short names—cf. Chapter 19) or else much more tightly integrated into the

language (as in OCaml—cf. Rémy and Vouillon, 1998; Vouillon, 2000).

A final use of ascription that will be discussed in more detail in §15.5 is

as a mechanism for abstraction. In systems where a given term t may have

many different types (for example, systems with subtyping), ascription can

be used to “hide” some of these types by telling the typechecker to treat t

as if it had only a smaller set of types. The relation between ascription and

casting is also discussed in §15.5.

11.4.1 Exercise [Recommended, ««]: (1) Show how to formulate ascription as a de-

rived form. Prove that the “official” typing and evaluation rules given here

correspond to your definition in a suitable sense. (2) Suppose that, instead

of the pair of evaluation rules E-Ascribe and E-Ascribe1, we had given an

“eager” rule

t1 as T -→ t1 (E-AscribeEager)

that throws away an ascription as soon as it is reached. Can ascription still

be considered as a derived form? �

124 11 Simple Extensions

→ let Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

let x=t in t let binding

New evaluation rules t -→ t′

let x=v1 in t2 -→ [x, v1]t2 (E-LetV)

t1 -→ t′1

let x=t1 in t2 -→ let x=t′1 in t2

(E-Let)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T-Let)

Figure 11-4: Let binding

11.5 Let Bindings

When writing a complex expression, it is often useful—both for avoiding rep-

etition and for increasing readability—to give names to some of its subex-

pressions. Most languages provide one or more ways of doing this. In ML, for

example, we write let x=t1 in t2 to mean “evaluate the expression t1 and

bind the name x to the resulting value while evaluating t2.”

Our let-binder (summarized in Figure 11-4) follows ML’s in choosing a call-

by-value evaluation order, where the let-bound term must be fully evaluated

before evaluation of the let-body can begin. The typing rule T-Let tells us

that the type of a let can be calculated by calculating the type of the let-

bound term, extending the context with a binding with this type, and in this

enriched context calculating the type of the body, which is then the type of

the whole let expression.

11.5.1 Exercise [Recommended, «««]: The letexercise typechecker (available at

the book’s web site) is an incomplete implementation of let expressions: ba-

sic parsing and printing functions are provided, but the clauses for TmLet

are missing from the eval1 and typeof functions (in their place, you’ll find

dummy clauses that match everything and crash the program with an asser-

tion failure). Finish it. �

Can let also be defined as a derived form? Yes, as Landin showed; but

the details are slightly more subtle than what we did for sequencing and

ascription. Naively, it is clear that we can use a combination of abstraction

and application to achieve the effect of a let-binding:

let x=t1 in t2

def
= (λx:T1.t2) t1

11.6 Pairs 125

But notice that the right-hand side of this abbreviation includes the type

annotation T1, which does not appear on the left-hand side. That is, if we

imagine derived forms as being desugared during the parsing phase of some

compiler, then we need to ask how the parser is supposed to know that it

should generate T1 as the type annotation on the λ in the desugared internal-

language term.

The answer, of course, is that this information comes from the typechecker!

We discover the needed type annotation simply by calculating the type of t1.

More formally, what this tells us is that the let constructor is a slightly dif-

ferent sort of derived form than the ones we have seen up till now: we should

regard it not as a desugaring transformation on terms, but as a transfor-

mation on typing derivations (or, if you prefer, on terms decorated by the

typechecker with the results of its analysis) that maps a derivation involving

let

...

Γ ` t1 : T1

...

Γ , x:T1 ` t2 : T2

T-Let
Γ ` let x=t1 in t2 : T2

to one using abstraction and application:

...

Γ , x:T1 ` t2 : T2

T-Abs
Γ ` λx:T1.t2 : T1→T2

...

Γ ` t1 : T1

T-App
Γ ` (λx:T1.t2) t1 : T2

Thus, let is “a little less derived” than the other derived forms we have seen:

we can derive its evaluation behavior by desugaring it, but its typing behavior

must be built into the internal language.

In Chapter 22 we will see another reason not to treat let as a derived form:

in languages with Hindley-Milner (i.e., unification-based) polymorphism, the

let construct is treated specially by the typechecker, which uses it for gen-

eralizing polymorphic definitions to obtain typings that cannot be emulated

using ordinary λ-abstraction and application.

11.5.2 Exercise [««]: Another way of defining let as a derived form might be to

desugar it by “executing” it immediately—i.e., to regard let x=t1 in t2 as an

abbreviation for the substituted body [x, t1]t2. Is this a good idea? �

126 11 Simple Extensions

→ × Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

{t,t} pair

t.1 first projection

t.2 second projection

v ::= ... values:

{v,v} pair value

T ::= ... types:

T1×T2 product type

New evaluation rules t -→ t′

{v1,v2}.1 -→ v1 (E-PairBeta1)

{v1,v2}.2 -→ v2 (E-PairBeta2)

t1 -→ t′1

t1.1 -→ t′1.1
(E-Proj1)

t1 -→ t′1

t1.2 -→ t′1.2
(E-Proj2)

t1 -→ t′1

{t1,t2} -→ {t′1,t2}
(E-Pair1)

t2 -→ t′2

{v1,t2} -→ {v1,t
′
2}

(E-Pair2)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1×T2

(T-Pair)

Γ ` t1 : T11×T12

Γ ` t1.1 : T11

(T-Proj1)

Γ ` t1 : T11×T12

Γ ` t1.2 : T12

(T-Proj2)

Figure 11-5: Pairs

11.6 Pairs

Most programming languages provide a variety of ways of building com-

pound data structures. The simplest of these is pairs, or more generally tu-

ples, of values. We treat pairs in this section, then do the more general cases

of tuples and labeled records in §11.7 and §11.8.3

The formalization of pairs is almost too simple to be worth discussing—

by this point in the book, it should be about as easy to read the rules in

Figure 11-5 as to wade through a description in English conveying the same

information. However, let’s look briefly at the various parts of the definition

to emphasize the common pattern.

Adding pairs to the simply typed lambda-calculus involves adding two new

forms of term—pairing, written {t1,t2}, and projection, written t.1 for the

3. The fullsimple implementation does not actually provide the pairing syntax described

here, since tuples are more general anyway.

11.6 Pairs 127

first projection from t and t.2 for the second projection—plus one new type

constructor, T1×T2, called the product (or sometimes the cartesian product)

of T1 and T2. Pairs are written with curly braces4 to emphasize the connection

to records in the §11.8.

For evaluation, we need several new rules specifying how pairs and pro-

jection behave. E-PairBeta1 and E-PairBeta2 specify that, when a fully eval-

uated pair meets a first or second projection, the result is the appropriate

component. E-Proj1 and E-Proj2 allow reduction to proceed under projec-

tions, when the term being projected from has not yet been fully evaluated.

E-Pair1 and E-Pair2 evaluate the parts of pairs: first the left part, and then—

when a value appears on the left—the right part.

The ordering arising from the use of the metavariables v and t in these

rules enforces a left-to-right evaluation strategy for pairs. For example, the

compound term

{pred 4, if true then false else false}.1

evaluates (only) as follows:

{pred 4, if true then false else false}.1

-→ {3, if true then false else false}.1

-→ {3, false}.1

-→ 3

We also need to add a new clause to the definition of values, specifying that

{v1,v2} is a value. The fact that the components of a pair value must them-

selves be values ensures that a pair passed as an argument to a function will

be fully evaluated before the function body starts executing. For example:

(λx:Nat×Nat. x.2) {pred 4, pred 5}

-→ (λx:Nat×Nat. x.2) {3, pred 5}

-→ (λx:Nat×Nat. x.2) {3,4}

-→ {3,4}.2

-→ 4

The typing rules for pairs and projections are straightforward. The intro-

duction rule, T-Pair, says that {t1,t2} has type T1×T2 if t1 has type T1 and

t2 has type T2. Conversely, the elimination rules T-Proj1 and T-Proj2 tell us

that, if t1 has a product type T11×T12 (i.e., if it will evaluate to a pair), then

the types of the projections from this pair are T11 and T12.

4. The curly brace notation is a little unfortunate for pairs and tuples, since it suggests the

standard mathematical notation for sets. It is more common, both in popular languages like

ML and in the research literature, to enclose pairs and tuples in parentheses. Other notations

such as square or angle brackets are also used.

128 11 Simple Extensions

→ {} Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

{ti
i∈1..n} tuple

t.i projection

v ::= ... values:

{vi
i∈1..n} tuple value

T ::= ... types:

{Ti
i∈1..n} tuple type

New evaluation rules t -→ t′

{vi
i∈1..n}.j -→ vj (E-ProjTuple)

t1 -→ t′1

t1.i -→ t′1.i
(E-Proj)

tj -→ t′j

{vi
i∈1..j−1,tj,tk

k∈j+1..n}

-→ {vi
i∈1..j−1,t′j,tk

k∈j+1..n}

(E-Tuple)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {ti
i∈1..n} : {Ti

i∈1..n}
(T-Tuple)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj
(T-Proj)

Figure 11-6: Tuples

11.7 Tuples

It is easy to generalize the binary products of the previous section to n-ary

products, often called tuples. For example, {1,2,true} is a 3-tuple contain-

ing two numbers and a boolean. Its type is written {Nat,Nat,Bool}.

The only cost of this generalization is that, to formalize the system, we

need to invent notations for uniformly describing structures of arbitrary ar-

ity; such notations are always a bit problematic, as there is some inevitable

tension between rigor and readability. We write {ti
i∈1..n} for a tuple of n

terms, t1 through tn, and {Ti
i∈1..n} for its type. Note that n here is allowed to

be 0; in this case, the range 1..n is empty and {ti
i∈1..n} is {}, the empty tuple.

Also, note the difference between a bare value like 5 and a one-element tuple

like {5}: the only operation we may legally perform on the latter is projecting

its first component.

Figure 11-6 formalizes tuples. The definition is similar to the definition of

products (Figure 11-5), except that each rule for pairing has been generalized

to the n-ary case, and each pair of rules for first and second projections has

become a single rule for an arbitrary projection from a tuple. The only rule

that deserves special comment is E-Tuple, which combines and generalizes

the rules E-Pair1 and E-Pair2 from Figure 11-5. In English, it says that, if we

11.8 Records 129

→ {} Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

{li=ti
i∈1..n} record

t.l projection

v ::= ... values:

{li=vi
i∈1..n} record value

T ::= ... types:

{li:Ti
i∈1..n} type of records

New evaluation rules t -→ t′

{li=vi
i∈1..n}.lj -→ vj (E-ProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(E-Proj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Figure 11-7: Records

have a tuple in which all the fields to the left of field j have already been

reduced to values, then that field can be evaluated one step, from tj to t′j .

Again, the use of metavariables enforces a left-to-right evaluation strategy.

11.8 Records

The generalization from n-ary tuples to labeled records is equally straightfor-

ward. We simply annotate each field ti with a label li drawn from some pre-

determined set L. For example, {x=5} and {partno=5524,cost=30.27} are

both record values; their types are {x:Nat} and {partno:Nat,cost:Float}.

We require that all the labels in a given record term or type be distinct.

The rules for records are given in Figure 11-7. The only one worth noting

is E-ProjRcd, where we rely on a slightly informal convention. The rule is

meant to be understood as follows: If {li=vi
i∈1..n} is a record and lj is the

label of its j th field, then {li=vi
i∈1..n}.lj evaluates in one step to the j th value,

vj . This convention (and the similar one that we used in E-ProjTuple) could

be eliminated by rephrasing the rule in a more explicit form; however, the

cost in terms of readability would be fairly high.

11.8.1 Exercise [« 3]: Write E-ProjRcd more explicitly, for comparison. �

130 11 Simple Extensions

Note that the same “feature symbol,” {}, appears in the list of features on

the upper-left corner of the definitions of both tuples and products. Indeed,

we can obtain tuples as a special case of records, simply by allowing the set of

labels to include both alphabetic identifiers and natural numbers. Then when

the i
th

field of a record has the label i, we omit the label. For example, we

regard {Bool,Nat,Bool} as an abbreviation for {1:Bool,2:Nat,3:Bool}.

(This convention actually allows us to mix named and positional fields, writ-

ing {a:Bool,Nat,c:Bool} as an abbreviation for {a:Bool,2:Nat,c:Bool},

though this is probably not very useful in practice.) In fact, many languages

keep tuples and records notationally distinct for a more pragmatic reason:

they are implemented differently by the compiler.

Programming languages differ in their treatment of the order of record

fields. In many languages, the order of fields in both record values and record

types has no affect on meaning—i.e., the terms {partno=5524,cost=30.27}

and {cost=30.27,partno=5524} have the same meaning and the same type,

which may be written either {partno:Nat,cost:Float} or {cost:Float,

partno:Nat}. Our presentation chooses the other alternative: {partno=5524,

cost=30.27} and {cost=30.27,partno=5524} are different record values,

with types {partno:Nat,cost:Float} and {cost:Float, partno:Nat}, re-

spectively. In Chapter 15, we will adopt a more liberal view of ordering, intro-

ducing a subtype relation in which the types {partno:Nat,cost:Float} and

{cost:Float,partno:Nat} are equivalent—each is a subtype of the other—

so that terms of one type can be used in any context where the other type is

expected. (In the presence of subtyping, the choice between ordered and un-

ordered records has important effects on performance; these are discussed

further in §15.6. Once we have decided on unordered records, though, the

choice of whether to consider records as unordered from the beginning or to

take the fields primitively as ordered and then give rules that allow the order-

ing to be ignored is purely a question of taste. We adopt the latter approach

here because it allows us to discuss both variants.)

11.8.2 Exercise [«««]: In our presentation of records, the projection operation is

used to extract the fields of a record one at a time. Many high-level program-

ming languages provide an alternative pattern matching syntax that extracts

all the fields at the same time, allowing some programs to be expressed much

more concisely. Patterns can also typically be nested, allowing parts to be ex-

tracted easily from complex nested data structures.

We can add a simple form of pattern matching to an untyped lambda cal-

culus with records by adding a new syntactic category of patterns, plus one

new case (for the pattern matching construct itself) to the syntax of terms.

(See Figure 11-8.)

11.8 Records 131

→ {} let p (untyped) Extends 11-7 and 11-4

New syntactic forms

p ::= x variable pattern

{li=pi
i∈1..n} record pattern

t ::= ... terms:

let p =t in t pattern binding

Matching rules:

match(x, v) = [x, v] (M-Var)

for each i match(pi , vi) = σi

match({li=pi
i∈1..n}, {li=vi

i∈1..n})

= σ1 ◦ · · · ◦ σn

(M-Rcd)

New evaluation rules t -→ t′

let p =v1 in t2 -→ match(p, v1) t2 (E-LetV)

t1 -→ t′1

let p =t1 in t2 -→ let p =t′1 in t2

(E-Let)

Figure 11-8: (Untyped) record patterns

The computation rule for pattern matching generalizes the let-binding rule

from Figure 11-4. It relies on an auxiliary “matching” function that, given a

pattern p and a value v, either fails (indicating that v does not match p) or else

yields a substitution that maps variables appearing in p to the correspond-

ing parts of v. For example, match({x,y}, {5,true}) yields the substitution

[x , 5, y , true] and match(x, {5,true}) yields [x , {5,true}], while

match({x}, {5,true}) fails. E-LetV uses match to calculate an appropriate

substitution for the variables in p.

The match function itself is defined by a separate set of inference rules.

The rule M-Var says that a variable pattern always succeeds, returning a sub-

stitution mapping the variable to the whole value being matched against. The

rule M-Rcd says that, to match a record pattern {li=pi
i∈1..n} against a record

value {li=vi
i∈1..n} (of the same length, with the same labels), we individually

match each sub-pattern pi against the corresponding value vi to obtain a sub-

stitution σi , and build the final result substitution by composing all these

substitutions. (We require that no variable should appear more than once in

a pattern, so this composition of substitutions is just their union.)

Show how to add types to this system.

1. Give typing rules for the new constructs (making any changes to the syntax

you feel are necessary in the process).

2. Sketch a proof of type preservation and progress for the whole calculus.

(You do not need to show full proofs—just the statements of the required

lemmas in the correct order.) �

132 11 Simple Extensions

→ + Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

inl t tagging (left)

inr t tagging (right)

case t of inl x⇒t | inr x⇒t case

v ::= ... values:

inl v tagged value (left)

inr v tagged value (right)

T ::= ... types:

T+T sum type

New evaluation rules t -→ t′

case (inl v0)

of inl x1⇒t1 | inr x2⇒t2

-→ [x1 , v0]t1

(E-CaseInl)

case (inr v0)

of inl x1⇒t1 | inr x2⇒t2

-→ [x2 , v0]t2

(E-CaseInr)

t0 -→ t′0

case t0 of inl x1⇒t1 | inr x2⇒t2

-→ case t′0 of inl x1⇒t1 | inr x2⇒t2

(E-Case)

t1 -→ t′1

inl t1 -→ inl t′1
(E-Inl)

t1 -→ t′1

inr t1 -→ inr t′1
(E-Inr)

New typing rules Γ ` t : T

Γ ` t1 : T1

Γ ` inl t1 : T1+T2

(T-Inl)

Γ ` t1 : T2

Γ ` inr t1 : T1+T2

(T-Inr)

Γ ` t0 : T1+T2

Γ , x1:T1 ` t1 : T Γ , x2:T2 ` t2 : T

Γ ` case t0 of inl x1⇒t1 | inr x2⇒t2 : T

(T-Case)

Figure 11-9: Sums

11.9 Sums

Many programs need to deal with heterogeneous collections of values. For

example, a node in a binary tree can be either a leaf or an interior node with

two children; similarly, a list cell can be either nil or a cons cell carrying a

head and a tail,5 a node of an abstract syntax tree in a compiler can represent

a variable, an abstraction, an application, etc. The type-theoretic mechanism

that supports this kind of programming is variant types.

Before introducing variants in full generality (in §11.10), let us consider the

5. These examples, like most real-world uses of variant types, also involve recursive types—the

tail of a list is itself a list, etc. We will return to recursive types in Chapter 20.

11.9 Sums 133

simpler case of binary sum types. A sum type describes a set of values drawn

from exactly two given types. For example, suppose we are using the types

PhysicalAddr = {firstlast:String, addr:String};

VirtualAddr = {name:String, email:String};

to represent different sorts of address-book records. If we want to manipulate

both sorts of records uniformly (e.g., if we want to make a list containing

records of both kinds), we can introduce the sum type6

Addr = PhysicalAddr + VirtualAddr;

each of whose elements is either a PhysicalAddr or a VirtualAddr.

We create elements of this type by tagging elements of the component

types PhysicalAddr and VirtualAddr. For example, if pa is a PhysicalAddr,

then inl pa is an Addr. (The names of the tags inl and inr arise from think-

ing of them as functions

inl : PhysicalAddr → PhysicalAddr+VirtualAddr

inr : VirtualAddr → PhysicalAddr+VirtualAddr

that “inject” elements of PhysicalAddr or VirtualAddr into the left and

right components of the sum type Addr. Note, though, that they are not

treated as functions in our presentation.)

In general, the elements of a type T1+T2 consist of the elements of T1,

tagged with the token inl, plus the elements of T2, tagged with inr.

To use elements of sum types, we introduce a case construct that allows

us to distinguish whether a given value comes from the left or right branch

of a sum. For example, we can extract a name from an Addr like this:

getName = λa:Addr.

case a of

inl x ⇒ x.firstlast

| inr y ⇒ y.name;

When the parameter a is a PhysicalAddr tagged with inl, the case expres-

sion will take the first branch, binding the variable x to the PhysicalAddr;

the body of the first branch then extracts the firstlast field from x and

returns it. Similarly, if a is a VirtualAddr value tagged with inr, the second

branch will be chosen and the name field of the VirtualAddr returned. Thus,

the type of the whole getName function is Addr→String.

The foregoing intuitions are formalized in Figure 11-9. To the syntax of

terms, we add the left and right injections and the case construct; to types,

6. The fullsimple implementation does not actually support the constructs for binary sums

that we are describing here—just the more general case of variants described below.

134 11 Simple Extensions

we add the sum constructor. For evaluation, we add two “beta-reduction”

rules for the case construct—one for the case where its first subterm has

been reduced to a value v0 tagged with inl, the other for a value v0 tagged

with inr; in each case, we select the appropriate body and substitute v0 for

the bound variable. The other evaluation rules perform evaluation in the first

subterm of case and under the inl and inr tags.

The typing rules for tagging are straightforward: to show that inl t1 has

a sum type T1+T2, it suffices to show that t1 belongs to the left summand,

T1, and similarly for inr. For the case construct, we first check that the first

subterm has a sum type T1+T2, then check that the bodies t1 and t2 of the two

branches have the same result type T, assuming that their bound variables x1

and x2 have types T1 and T2, respectively; the result of the whole case is then

T. Following our conventions from previous definitions, Figure 11-9 does not

state explicitly that the scopes of the variables x1 and x2 are the bodies t1

and t2 of the branches, but this fact can be read off from the way the contexts

are extended in the typing rule T-Case.

11.9.1 Exercise [««]: Note the similarity between the typing rule for case and the

rule for if in Figure 8-1: if can be regarded as a sort of degenerate form of

case where no information is passed to the branches. Formalize this intuition

by defining true, false, and if as derived forms using sums and Unit. �

Sums and Uniqueness of Types

Most of the properties of the typing relation of pure λ→ (cf. §9.3) extend to

the system with sums, but one important one fails: the Uniqueness of Types

theorem (9.3.3). The difficulty arises from the tagging constructs inl and inr.

The typing rule T-Inl, for example, says that, once we have shown that t1 is an

element of T1, we can derive that inl t1 is an element of T1+T2 for any type

T2. For example, we can derive both inl 5 : Nat+Nat and inl 5 : Nat+Bool

(and infinitely many other types). The failure of uniqueness of types means

that we cannot build a typechecking algorithm simply by “reading the rules

from bottom to top,” as we have done for all the features we have seen so far.

At this point, we have various options:

1. We can complicate the typechecking algorithm so that it somehow “guesses”

a value for T2. Concretely, we hold T2 indeterminate at this point and try

to discover later what its value should have been. Such techniques will be

explored in detail when we consider type reconstruction (Chapter 22).

2. We can refine the language of types to allow all possible values for T2 to

somehow be represented uniformly. This option will be explored when we

discuss subtyping (Chapter 15).

11.9 Sums 135

→ + Extends λ→ (11-9)

New syntactic forms

t ::= ... terms:

inl t as T tagging (left)

inr t as T tagging (right)

v ::= ... values:

inl v as T tagged value (left)

inr v as T tagged value (right)

New evaluation rules t -→ t′

case (inl v0 as T0)

of inl x1⇒t1 | inr x2⇒t2

-→ [x1 , v0]t1

(E-CaseInl)

case (inr v0 as T0)

of inl x1⇒t1 | inr x2⇒t2

-→ [x2 , v0]t2

(E-CaseInr)

t1 -→ t′1

inl t1 as T2 -→ inl t′1 as T2

(E-Inl)

t1 -→ t′1

inr t1 as T2 -→ inr t′1 as T2

(E-Inr)

New typing rules Γ ` t : T

Γ ` t1 : T1

Γ ` inl t1 as T1+T2 : T1+T2

(T-Inl)

Γ ` t1 : T2

Γ ` inr t1 as T1+T2 : T1+T2

(T-Inr)

Figure 11-10: Sums (with unique typing)

3. We can demand that the programmer provide an explicit annotation to

indicate which type T2 is intended. This alternative is the simplest—and it

is not actually as impractical as it might at first appear, since, in full-scale

language designs, these explicit annotations can often be “piggybacked”

on other language constructs and so made essentially invisible (we’ll come

back to this point in the following section). We take this option for now.

Figure 11-10 shows the needed extensions, relative to Figure 11-9. Instead of

writing just inl t or inr t, we write inl t as T or inr t as T, where T spec-

ifies the whole sum type to which we want the injected element to belong.

The typing rules T-Inl and T-Inr use the declared sum type as the type of

the injection, after checking that the injected term really belongs to the ap-

propriate branch of the sum. (To avoid writing T1+T2 repeatedly in the rules,

the syntax rules allow any type T to appear as an annotation on an injection.

The typing rules ensure that the annotation will always be a sum type, if the

injection is well typed.) The syntax for type annotations is meant to suggest

the ascription construct from §11.4: in effect these annotations can be viewed

as syntactically required ascriptions.

136 11 Simple Extensions

→ <> Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

<l=t> as T tagging

case t of <li=xi>⇒ti
i∈1..n case

T ::= ... types:

<li:Ti
i∈1..n> type of variants

New evaluation rules t -→ t′

case (<lj=vj> as T) of <li=xi>⇒ti
i∈1..n

-→ [xj , vj]tj

(E-CaseVariant)

t0 -→ t′0

case t0 of <li=xi>⇒ti
i∈1..n

-→ case t′0 of <li=xi>⇒ti
i∈1..n

(E-Case)

ti -→ t′i

<li=ti> as T -→ <li=t
′
i> as T

(E-Variant)

New typing rules Γ ` t : T

Γ ` tj : Tj

Γ ` <lj=tj> as <li:Ti
i∈1..n> : <li:Ti

i∈1..n>

(T-Variant)

Γ ` t0 : <li:Ti
i∈1..n>

for each i Γ , xi:Ti ` ti : T

Γ ` case t0 of <li=xi>⇒ti
i∈1..n

: T
(T-Case)

Figure 11-11: Variants

11.10 Variants

Binary sums generalize to labeled variants just as products generalize to la-

beled records. Instead of T1+T2, we write <l1:T1,l2:T2>, where l1 and l2 are

field labels. Instead of inl t as T1+T2, we write <l1=t> as <l1:T1,l2:T2>.

And instead of labeling the branches of the case with inl and inr, we use

the same labels as the corresponding sum type. With these generalizations,

the getAddr example from the previous section becomes:

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;

a = <physical=pa> as Addr;

ñ a : Addr

getName = λa:Addr.

case a of

<physical=x> ⇒ x.firstlast

| <virtual=y> ⇒ y.name;

ñ getName : Addr → String

The formal definition of variants is given in Figure 11-11. Note that, as with

records in §11.8, the order of labels in a variant type is significant here.

11.10 Variants 137

Options

One very useful idiom involving variants is optional values. For example, an

element of the type

OptionalNat = <none:Unit, some:Nat>;

is either the trivial unit value with the tag none or else a number with the tag

some—in other words, the type OptionalNat is isomorphic to Nat extended

with an additional distinguished value none. For example, the type

Table = Nat→OptionalNat;

represents finite mappings from numbers to numbers: the domain of such a

mapping is the set of inputs for which the result is <some=n> for some n. The

empty table

emptyTable = λn:Nat. <none=unit> as OptionalNat;

ñ emptyTable : Table

is a constant function that returns none for every input. The constructor

extendTable =

λt:Table. λm:Nat. λv:Nat.

λn:Nat.

if equal n m then <some=v> as OptionalNat

else t n;

ñ extendTable : Table → Nat → Nat → Table

takes a table and adds (or overwrites) an entry mapping the input m to the

output <some=v>. (The equal function is defined in the solution to Exer-

cise 11.11.1 on page 510.)

We can use the result that we get back from a Table lookup by wrapping a

case around it. For example, if t is our table and we want to look up its entry

for 5, we might write

x = case t(5) of

<none=u> ⇒ 999

| <some=v> ⇒ v;

providing 999 as the default value of x in case t is undefined on 5.

Many languages provide built-in support for options. OCaml, for exam-

ple, predefines a type constructor option, and many functions in typical

OCaml programs yield options. Also, the null value in languages like C, C++,

and Java is actually an option in disguise. A variable of type T in these lan-

guages (where T is a “reference type”—i.e., something allocated in the heap)

138 11 Simple Extensions

can actually contain either the special value null or else a pointer to a T

value. That is, the type of such a variable is really Ref(Option(T)), where

Option(T) = <none:Unit,some:T>. Chapter 13 discusses the Ref construc-

tor in detail.

Enumerations

Two “degenerate cases” of variant types are useful enough to deserve special

mention: enumerated types and single-field variants.

An enumerated type (or enumeration) is a variant type in which the field

type associated with each label is Unit. For example, a type representing the

days of the working week might be defined as:

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,

thursday:Unit, friday:Unit>;

The elements of this type are terms like <monday=unit> as Weekday. Indeed,

since the type Unit has only unit as a member, the type Weekday is inhabited

by precisely five values, corresponding one-for-one with the days of the week.

The case construct can be used to define computations on enumerations.

nextBusinessDay = λw:Weekday.

case w of <monday=x> ⇒ <tuesday=unit> as Weekday

| <tuesday=x> ⇒ <wednesday=unit> as Weekday

| <wednesday=x> ⇒ <thursday=unit> as Weekday

| <thursday=x> ⇒ <friday=unit> as Weekday

| <friday=x> ⇒ <monday=unit> as Weekday;

Obviously, the concrete syntax we are using here is not well tuned for making

such programs easy to write or read. Some languages (beginning with Pascal)

provide special syntax for declaring and using enumerations. Others—such

as ML, cf. page 141—make enumerations a special case of the variants.

Single-Field Variants

The other interesting special case is variant types with just a single label l:

V = <l:T>;

Such a type might not seem very useful at first glance: after all, the elements

of V will be in one-to-one correspondence with the elements of the field type

T, since every member of V has precisely the form <l=t> for some t : T.

What’s important, though, is that the usual operations on T cannot be applied

to elements of V without first unpackaging them: a V cannot be accidentally

mistaken for a T.

11.10 Variants 139

For example, suppose we are writing a program to do financial calculations

in multiple currencies. Such a program might include functions for converting

between dollars and euros. If both are represented as Floats, then these

functions might look like this:

dollars2euros = λd:Float. timesfloat d 1.1325;

ñ dollars2euros : Float → Float

euros2dollars = λe:Float. timesfloat e 0.883;

ñ euros2dollars : Float → Float

(where timesfloat : Float→Float→Float multiplies floating-point num-

bers). If we then start with a dollar amount

mybankbalance = 39.50;

we can convert it to euros and then back to dollars like this:

euros2dollars (dollars2euros mybankbalance);

ñ 39.49990125 : Float

All this makes perfect sense. But we can just as easily perform manipulations

that make no sense at all. For example, we can convert my bank balance to

euros twice:

dollars2euros (dollars2euros mybankbalance);

ñ 50.660971875 : Float

Since all our amounts are represented simply as floats, there is no way that

the type system can help prevent this sort of nonsense. However, if we define

dollars and euros as different variant types (whose underlying representa-

tions are floats)

DollarAmount = <dollars:Float>;

EuroAmount = <euros:Float>;

then we can define safe versions of the conversion functions that will only

accept amounts in the correct currency:

dollars2euros =

λd:DollarAmount.

case d of <dollars=x> ⇒

<euros = timesfloat x 1.1325> as EuroAmount;

ñ dollars2euros : DollarAmount → EuroAmount

140 11 Simple Extensions

euros2dollars =

λe:EuroAmount.

case e of <euros=x> ⇒

<dollars = timesfloat x 0.883> as DollarAmount;

ñ euros2dollars : EuroAmount → DollarAmount

Now the typechecker can track the currencies used in our calculations and

remind us how to interpret the final results:

mybankbalance = <dollars=39.50> as DollarAmount;

euros2dollars (dollars2euros mybankbalance);

ñ <dollars=39.49990125> as DollarAmount : DollarAmount

Moreover, if we write a nonsensical double-conversion, the types will fail to

match and our program will (correctly) be rejected:

dollars2euros (dollars2euros mybankbalance);

ñ Error: parameter type mismatch

Variants vs. Datatypes

A variant type T of the form <li:Ti
i∈1..n> is roughly analogous to the ML

datatype defined by:7

type T = l1 of T1

| l2 of T2

| ...

| ln of Tn

But there are several differences worth noticing.

1. One trivial but potentially confusing point is that the capitalization con-

ventions for identifiers that we are assuming here are different from those

of OCaml. In OCaml, types must begin with lowercase letters and datatype

constructors (labels, in our terminology) with capital letters, so, strictly

speaking, the datatype declaration above should be written like this:

type t = L1 of t1 | ... | Ln of tn

7. This section uses OCaml’s concrete syntax for datatypes, for consistency with implemen-

tation chapters elsewhere in the book, but they originated in early dialects of ML and can be

found, in essentially the same form, in Standard ML as well as in ML relatives such as Haskell.

Datatypes and pattern matching are arguably one of the most useful advantages of these lan-

guages for day to day programming.

11.10 Variants 141

To avoid confusion between terms t and types T, we’ll ignore OCaml’s

conventions for the rest of this discussion and use ours instead.

2. The most interesting difference is that OCaml does not require a type an-

notation when a constructor li is used to inject an element of Ti into the

datatype T: we simply write li(t). The way OCaml gets away with this (and

retains unique typing) is that the datatype T must be declared before it can

be used. Moreover, the labels in T cannot be used by any other datatype

declared in the same scope. So, when the typechecker sees li(t), it knows

that the annotation can only be T. In effect, the annotation is “hidden” in

the label itself.

This trick eliminates a lot of silly annotations, but it does lead to a certain

amount of grumbling among users, since it means that labels cannot be

shared between different datatypes—at least, not within the same module.

In Chapter 15 we will see another way of omitting annotations that avoids

this drawback.

3. Another convenient trick used by OCaml is that, when the type associ-

ated with a label in a datatype definition is just Unit, it can be omitted

altogether. This permits enumerations to be defined by writing

type Weekday = monday | tuesday | wednesday | thursday | friday

for example, rather than:

type Weekday = monday of Unit

| tuesday of Unit

| wednesday of Unit

| thursday of Unit

| friday of Unit

Similarly, the label monday all by itself (rather than monday applied to the

trivial value unit) is considered to be a value of type Weekday.

4. Finally, OCaml datatypes actually bundle variant types together with sev-

eral additional features that we will be examining, individually, in later

chapters.

• A datatype definition may be recursive—i.e., the type being defined is

allowed to appear in the body of the definition. For example, in the

standard definition of lists of Nats, the value tagged with cons is a pair

whose second element is a NatList.

type NatList = nil

| cons of Nat * NatList

142 11 Simple Extensions

• An OCaml datatype can be [parametric data type]parameterizedparametric!data

type on a type variable, as in the general definition of the List datatype:

type ’a List = nil

| cons of ’a * ’a List

Type-theoretically, List can be viewed as a kind of function—called a

type operator—that maps each choice of ′a to a concrete datatype. . .

Nat to NatList, etc. Type operators are the subject of Chapter 29.

Variants as Disjoint Unions

Sum and variant types are sometimes called disjoint unions. The type T1+T2 is

a “union” of T1 and T2 in the sense that its elements include all the elements

from T1 and T2. This union is disjoint because the sets of elements of T1 or

T2 are tagged with inl or inr, respectively, before they are combined, so that

it is always clear whether a given element of the union comes from T1 or T2.

The phrase union type is also used to refer to untagged (non-disjoint) union

types, described in §15.7.

Type Dynamic

Even in statically typed languages, there is often the need to deal with data

whose type cannot be determined at compile time. This occurs in particular

when the lifetime of the data spans multiple machines or many runs of the

compiler—when, for example, the data is stored in an external file system

or database, or communicated across a network. To handle such situations

safely, many languages offer facilities for inspecting the types of values at

run time.

One attractive way of accomplishing this is to add a type Dynamic whose

values are pairs of a value v and a type tag T where v has type T. Instances

of Dynamic are built with an explicit tagging construct and inspected with a

type safe typecase construct. In effect, Dynamic can be thought of as an in-

finite disjoint union, whose labels are types. See Gordon (circa 1980), Mycroft

(1983), Abadi, Cardelli, Pierce, and Plotkin (1991b), Leroy and Mauny (1991),

Abadi, Cardelli, Pierce, and Rémy (1995), and Henglein (1994).

11.11 General Recursion

Another facility found in most programming languages is the ability to de-

fine recursive functions. We have seen (Chapter 5, p. 65) that, in the untyped

11.11 General Recursion 143

lambda-calculus, such functions can be defined with the aid of the fix com-

binator.

Recursive functions can be defined in a typed setting in a similar way. For

example, here is a function iseven that returns true when called with an

even argument and false otherwise:

ff = λie:Nat→Bool.

λx:Nat.

if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

ñ ff : (Nat→Bool) → Nat → Bool

iseven = fix ff;

ñ iseven : Nat → Bool

iseven 7;

ñ false : Bool

The intuition is that the higher-order function ff passed to fix is a generator

for the iseven function: if ff is applied to a function ie that approximates

the desired behavior of iseven up to some number n (that is, a function that

returns correct results on inputs less than or equal to n), then it returns a

better approximation to iseven—a function that returns correct results for

inputs up to n + 2. Applying fix to this generator returns its fixed point—a

function that gives the desired behavior for all inputs n.

However, there is one important difference from the untyped setting: fix

itself cannot be defined in the simply typed lambda-calculus. Indeed, we will

see in Chapter 12 that no expression that can lead to non-terminating compu-

tations can be typed using only simple types.8 So, instead of defining fix as

a term in the language, we simply add it as a new primitive, with evaluation

rules mimicking the behavior of the untyped fix combinator and a typing

rule that captures its intended uses. These rules are written out in Figure

11-12. (The letrec abbreviation will be discussed below.)

The simply typed lambda-calculus with numbers and fix has long been a

favorite experimental subject for programming language researchers, since

it is the simplest language in which a range of subtle semantic phenomena

such as full abstraction (Plotkin, 1977, Hyland and Ong, 2000, Abramsky, Ja-

gadeesan, and Malacaria, 2000) arise. It is often called PCF .

8. In later chapters—Chapter 13 and Chapter 20—we will see some extensions of simple types

that recover the power to define fix within the system.

144 11 Simple Extensions

→ fix Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

fix t fixed point of t

New evaluation rules t -→ t′

fix (λx:T1.t2)

-→ [x, (fix (λx:T1.t2))]t2

(E-FixBeta)

t1 -→ t′1

fix t1 -→ fix t′1
(E-Fix)

New typing rules Γ ` t : T

Γ ` t1 : T1→T1

Γ ` fix t1 : T1

(T-Fix)

New derived forms

letrec x :T1 =t1 in t2

def
= let x = fix (λx :T1 .t1) in t2

Figure 11-12: General recursion

11.11.1 Exercise [««]: Define equal, plus, times, and factorial using fix. �

The fix construct is typically used to build functions (as fixed points of

functions from functions to functions), but it is worth noticing that the type

T in rule T-Fix is not restricted to function types. This extra power is some-

times handy. For example, it allows us to define a record of mutually recursive

functions as the fixed point of a function on records (of functions). The fol-

lowing implementation of iseven uses an auxiliary function isodd; the two

functions are defined as fields of a record, where the definition of this record

is abstracted on a record ieio whose components are used to make recursive

calls from the bodies of the iseven and isodd fields.

ff = λieio:{iseven:Nat→Bool, isodd:Nat→Bool}.

{iseven = λx:Nat.

if iszero x then true

else ieio.isodd (pred x),

isodd = λx:Nat.

if iszero x then false

else ieio.iseven (pred x)};

ñ ff : {iseven:Nat→Bool,isodd:Nat→Bool} →

{iseven:Nat→Bool, isodd:Nat→Bool}

Forming the fixed point of the function ff gives us a record of two functions

r = fix ff;

ñ r : {iseven:Nat→Bool, isodd:Nat→Bool}

11.11 General Recursion 145

and projecting the first of these gives us the iseven function itself:

iseven = r.iseven;

ñ iseven : Nat → Bool

iseven 7;

ñ false : Bool

The ability to form the fixed point of a function of type T→T for any T

has some surprising consequences. In particular, it implies that every type is

inhabited by some term. To see this, observe that, for every type T, we can

define a function divergeT as follows:

divergeT = λ_:Unit. fix (λx:T.x);

ñ divergeT : Unit → T

Whenever divergeT is applied to a unit argument, we get a non-terminating

evaluation sequence in which E-FixBeta is applied over and over, always

yielding the same term. That is, for every type T, the term divergeT unit

is an undefined element of T.

One final refinement that we may consider is introducing more convenient

concrete syntax for the common case where what we want to do is to bind a

variable to the result of a recursive definition. In most high-level languages,

the first definition of iseven above would be written something like this:

letrec iseven : Nat→Bool =

λx:Nat.

if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in

iseven 7;

ñ false : Bool

The recursive binding construct letrec is easily defined as a derived form:

letrec x:T1=t1 in t2

def
= let x = fix (λx:T1.t1) in t2

11.11.2 Exercise [«]: Rewrite your definitions of plus, times, and factorial from

Exercise 11.11.1 using letrec instead of fix. �

Further information on fixed point operators can be found in Klop (1980)

and Winskel (1993).

146 11 Simple Extensions

11.12 Lists

The typing features we have seen can be classified into base types like Bool

and Unit, and type constructors like → and × that build new types from

old ones. Another useful type constructor is List. For every type T, the type

List T describes finite-length lists whose elements are drawn from T.

Figure 11-13 summarizes the syntax, semantics, and typing rules for lists.

Except for syntactic differences (List T instead of T list, etc.) and the ex-

plicit type annotations on all the syntactic forms in our presentation,9 these

lists are essentially identical to those found in ML and other functional lan-

guages. The empty list (with elements of type T) is written nil[T]. The list

formed by adding a new element t1 (of type T) to the front of a list t2 is writ-

ten cons[T] t1 t2. The head and tail of a list t are written head[T] t and

tail[T] t. The boolean predicate isnil[T] t yields true iff t is empty.10

11.12.1 Exercise [«««]: Verify that the progress and preservation theorems hold for

the simply typed lambda-calculus with booleans and lists. �

11.12.2 Exercise [««]: The presentation of lists here includes many type annotations

that are not really needed, in the sense that the typing rules can easily derive

the annotations from context. Can all the type annotations be deleted? �

9. Most of these explicit annotations could actually be omitted (Exercise [«,3]: which cannot);

they are retained here to ease comparison with the encoding of lists in §23.4.

10. We adopt the “head/tail/isnil presentation” of lists here for simplicity. From the per-

spective of language design, it is arguably better to treat lists as a datatype and use case

expressions for destructing them, since more programming errors can be caught as type errors

this way.

11.12 Lists 147

→ B List Extends λ→ (9-1) with booleans (8-1)

New syntactic forms

t ::= ... terms:

nil[T] empty list

cons[T] t t list constructor

isnil[T] t test for empty list

head[T] t head of a list

tail[T] t tail of a list

v ::= ... values:

nil[T] empty list

cons[T] v v list constructor

T ::= ... types:

List T type of lists

New evaluation rules t -→ t′

t1 -→ t′1

cons[T] t1 t2 -→ cons[T] t′1 t2

(E-Cons1)

t2 -→ t′2

cons[T] v1 t2 -→ cons[T] v1 t′2
(E-Cons2)

isnil[S] (nil[T]) -→ true (E-IsnilNil)

isnil[S] (cons[T] v1 v2) -→ false

(E-IsnilCons)

t1 -→ t′1

isnil[T] t1 -→ isnil[T] t′1
(E-Isnil)

head[S] (cons[T] v1 v2) -→ v1

(E-HeadCons)

t1 -→ t′1

head[T] t1 -→ head[T] t′1
(E-Head)

tail[S] (cons[T] v1 v2) -→ v2

(E-TailCons)

t1 -→ t′1

tail[T] t1 -→ tail[T] t′1
(E-Tail)

New typing rules Γ ` t : T

Γ ` nil [T1] : List T1 (T-Nil)

Γ ` t1 : T1 Γ ` t2 : List T1

Γ ` cons[T1] t1 t2 : List T1

(T-Cons)

Γ ` t1 : List T11

Γ ` isnil[T11] t1 : Bool
(T-Isnil)

Γ ` t1 : List T11

Γ ` head[T11] t1 : T11

(T-Head)

Γ ` t1 : List T11

Γ ` tail[T11] t1 : List T11

(T-Tail)

Figure 11-13: Lists

12 Normalization

In this chapter, we consider another fundamental theoretical property of the

pure simply typed lambda-calculus: the fact that the evaluation of a well-

typed program is guaranteed to halt in a finite number of steps—i.e., every

well-typed term is normalizable.

Unlike the type-safety properties we have considered so far, the normaliza-

tion property does not extend to full-blown programming languages, because

these languages nearly always extend the simply typed lambda-calculus with

constructs such as general recursion (§11.11) or recursive types (Chapter 20)

that can be used to write nonterminating programs. However, the issue of

normalization will reappear at the level of types when we discuss the metathe-

ory of System Fω in §30-3: in this system, the language of types effectively

contains a copy of the simply typed lambda-calculus, and the termination

of the typechecking algorithm will hinge on the fact that a “normalization”

operation on type expressions is guaranteed to terminate.

Another reason for studying normalization proofs is that they are some of

the most beautiful—and mind-blowing—mathematics to be found in the type

theory literature, often (as here) involving the fundamental proof technique

of logical relations.

Some readers may prefer to skip this chapter on a first reading; doing so

will not cause any problems in later chapters. (A full table of chapter depen-

dencies appears on page xvi.)

12.1 Normalization for Simple Types

The calculus we shall consider here is the simply typed lambda-calculus over

a single base type A. Normalization for this calculus is not entirely trivial to

prove, since each reduction of a term can duplicate redexes in subterms.

The language studied in this chapter is the simply typed lambda-calculus (Figure 9-1) with a

single base type A (11-1).

150 12 Normalization

12.1.1 Exercise [«]: Where do we fail if we attempt to prove normalization by a

straightforward induction on the size of a well-typed term? �

The key issue here (as in many proofs by induction) is finding a strong

enough induction hypothesis. To this end, we begin by defining, for each

type T, a set RT of closed terms of type T. We regard these sets as predicates

and write RT(t) for t ∈ RT.1

12.1.2 Definition:

• RA(t) iff t halts.

• RT1→T2
(t) iff t halts and, whenever RT1

(s), we have RT2
(t s). �

This definition gives us the strengthened induction hypothesis that we

need. Our primary goal is to show that all programs—i.e., all closed terms of

base type—halt. But closed terms of base type can contain subterms of func-

tional type, so we need to know something about these as well. Moreover, it

is not enough to know that these subterms halt, because the application of a

normalized function to a normalized argument involves a substitution, which

may enable more evaluation steps. So we need a stronger condition for terms

of functional type: not only should they halt themselves, but, when applied

to halting arguments, they should yield halting results.

The form of Definition 12.1.2 is characteristic of the logical relations proof

technique. (Since we are just dealing with unary relations here, we should

more properly say logical predicates.) If we want to prove some property P of

all closed terms of type A, we proceed by proving, by induction on types, that

all terms of type A possess property P , all terms of type A→A preserve prop-

erty P , all terms of type (A→A)→(A→A) preserve the property of preserving

property P , and so on. We do this by defining a family of predicates, indexed

by types. For the base type A, the predicate is just P . For functional types, it

says that the function should map values satisfying the predicate at the input

type to values satisfying the predicate at the output type.

We use this definition to carry out the proof of normalization in two steps.

First, we observe that every element of every set RT is normalizable. Then we

show that every well-typed term of type T is an element of RT.

The first step is immediate from the definition of RT:

12.1.3 Lemma: If RT(t), then t halts. �

The second step is broken into two lemmas. First, we remark that member-

ship in RT is invariant under evaluation.

1. The sets RT are sometimes called saturated sets or reducibility candidates.

12.1 Normalization for Simple Types 151

12.1.4 Lemma: If t : T and t -→ t′, then RT(t) iff RT(t
′). �

Proof: By induction on the structure of the type T. Note, first, that it is clear

that t halts iff t′ does. If T = A, there is nothing more to show. Suppose,

on the other hand, that T = T1→T2 for some T1 and T2. For the “only if”

direction (=⇒) suppose that RT(t) and that RT1
(s) for some arbitrary s : T1.

By definition we have RT2
(t s). But t s -→ t′ s, from which the induction

hypothesis for type T2 gives us RT2
(t′ s). Since this holds for an arbitrary s,

the definition of RT gives us RT(t′). The argument for the “if” direction (⇐=)

is analogous. �

Next, we want to show that every term of type T belongs to RT. Here, the

induction will be on typing derivations (it would be surprising to see a proof

about well-typed terms that did not somewhere involve induction on typ-

ing derivations!). The only technical difficulty here is in dealing with the λ-

abstraction case. Since we are arguing by induction, the demonstration that

a term λx:T1.t2 belongs to RT1→T2
should involve applying the induction hy-

pothesis to show that t2 belongs to RT2
. But RT2

is defined to be a set of closed

terms, while t2 may contain x free, so this does not make sense.

This problem is resolved by using a standard trick to suitably generalize

the induction hypothesis: instead of proving a statement involving a closed

term, we generalize it to cover all closed instances of an open term t.

12.1.5 Lemma: If x1:T1, . . . , xn:Tn ` t : T and v1 . . . ,vn are closed values of types

T1...Tn with RTi (vi) for each i, then RT([x1 , v1] · · · [xn , vn]t). �

Proof: By induction on a derivation of x1:T1, . . . , xn:Tn ` t : T. (The most

interesting case is the one for abstraction.)

Case T-Var: t = xi T = Ti

Immediate.

Case T-Abs: t = λx:S1.s2 x1:T1, . . . , xn:Tn, x:S1 ` s2 : S2

T = S1→S2

Obviously, [x1 , v1] · · · [xn , vn]t evaluates to a value, since it is a value

already. What remains to show is that RS2
(([x1 , v1] · · · [xn , vn]t) s) for

any s : S1 such that RS1
(s). So suppose s is such a term. By Lemma 12.1.3,

we have s -→∗ v for some v. By Lemma 12.1.4, RS1
(v). Now, by the induction

hypothesis, RS2
([x1 , v1] · · · [xn , vn][x, v]s2). But

(λx:S1. [x1 , v1] · · · [xn , vn]s2) s

-→∗ [x1 , v1] · · · [xn , vn][x, v]s2,

from which Lemma 12.1.4 gives us

RS2
((λx:S1. [x1 , v1] · · · [xn , vn]s2) s),

152 12 Normalization

that is, RS2
((([x1 , v1] · · · [xn , vn](λx:S1. s2)) s). Since s was chosen

arbitrarily, the definition of RS1→S2
gives us

RS1→S2
([x1 , v1] · · · [xn , vn](λx:S1. s2)).

Case T-App: t = t1 t2

x1:T1, . . . , xn:Tn ` t1 : T11→T12

x1:T1, . . . , xn:Tn ` t2 : T11

T = T12

The induction hypothesis gives us RT11→T12
([x1 , v1] · · · [xn , vn]t1) and

RT11
([x1 , v1] · · · [xn , vn]t2). By the definition of RT11→T12

,

RT12
(([x1 , v1] · · · [xn , vn]t1) ([x1 , v1] · · · [xn , vn]t2)),

i.e., RT12
([x1 , v1] · · · [xn , vn](t1 t2)),. �

We now obtain the normalization property as a corollary, simply by tak-

ing the term t to be closed in Lemma 12.1.5 and then recalling that all the

elements of RT are normalizing, for every T.

12.1.6 Theorem [Normalization]: If ` t : T, then t is normalizable. �

Proof: RT(t) by Lemma 12.1.5; t is therefore normalizable by Lemma 12.1.3. �

12.1.7 Exercise [Recommended, «««]: Extend the proof technique from this chap-

ter to show that the simply typed lambda-calculus remains normalizing when

extended with booleans (Figure 3-1) and products (Figure 11-5). �

12.2 Notes

Normalization properties are most commonly formulated in the theoreti-

cal literature as strong normalization for calculi with full (non-deterministic)

beta-reduction. The standard proof method was invented by Tait (1967), gen-

eralized to System F (cf. Chapter 23) by Girard (1972, 1989), and later sim-

plified by Tait (1975). The presentation used here is an adaptation of Tait’s

method to the call-by-value setting, due to Martin Hofmann (private commu-

nication). The classical references on the logical relations proof technique are

Howard (1973), Tait (1967), Friedman (1975), Plotkin (1973, 1980), and Stat-

man (1982, 1985a, 1985b). It is also discussed in many texts on semantics,

for example those by Mitchell (1996) and Gunter (1992).

Tait’s strong normalization proof corresponds exactly to an algorithm for

evaluating simply typed terms, known as normalization by evaluation or type-

directed partial evaluation (Berger, 1993; Danvy, 1998); also see Berger and

Schwichtenberg (1991), Filinski (1999), Filinski (2001), Reynolds (1998a).

13 References

So far, we have considered a variety of pure language features, including func-

tional abstraction, basic types such as numbers and booleans, and structured

types such as records and variants. These features form the backbone of

most programming languages—including purely functional languages such

as Haskell, “mostly functional” languages such as ML, imperative languages

such as C, and object-oriented languages such as Java.

Most practical programming languages also include various impure fea-

tures that cannot be described in the simple semantic framework we have

used so far. In particular, besides just yielding results, evaluation of terms

in these languages may assign to mutable variables (reference cells, arrays,

mutable record fields, etc.), perform input and output to files, displays, or net-

work connections, make non-local transfers of control via exceptions, jumps,

or continuations, engage in inter-process synchronization and communica-

tion, and so on. In the literature on programming languages, such “side ef-

fects” of computation are more generally referred to as computational effects.

In this chapter, we’ll see how one sort of computational effect—mutable

references—can be added to the calculi we have studied. The main extension

will be dealing explicitly with a store (or heap). This extension is straightfor-

ward to define; the most interesting part is the refinement we need to make to

the statement of the type preservation theorem (13.5.3). We consider another

kind of effect—exceptions and non-local transfer of control—in Chapter 14.

13.1 Introduction

Nearly every programming language1 provides some form of assignment op-

eration that changes the contents of a previously allocated piece of storage.

The system studied in this chapter is the simply typed lambda-calculus with Unit and refer-

ences (Figure 13-1). The associated OCaml implementation is fullref.

1. Even “purely functional” languages such as Haskell, via extensions such as monads.

154 13 References

In some languages—notably ML and its relatives—the mechanisms for name-

binding and those for assignment are kept separate. We can have a variable

x whose value is the number 5, or a variable y whose value is a reference (or

pointer) to a mutable cell whose current contents is 5, and the difference is

visible to the programmer. We can add x to another number, but not assign to

it. We can use y directly to assign a new value to the cell that it points to (by

writing y:=84), but we cannot use it directly as an argument to plus. Instead,

we must explicitly dereference it, writing !y to obtain its current contents. In

most other languages—in particular, in all members of the C family, includ-

ing Java—every variable name refers to a mutable cell, and the operation of

dereferencing a variable to obtain its current contents is implicit.2

For purposes of formal study, it is useful to keep these mechanisms sepa-

rate;3 our development in this chapter will closely follow ML’s model. Apply-

ing the lessons learned here to C-like languages is a straightforward matter of

collapsing some distinctions and rendering certain operations such as deref-

erencing implicit instead of explicit.

Basics

The basic operations on references are allocation, dereferencing, and assign-

ment. To allocate a reference, we use the ref operator, providing an initial

value for the new cell.

r = ref 5;

ñ r : Ref Nat

The response from the typechecker indicates that the value of r is a reference

to a cell that will always contain a number. To read the current value of this

cell, we use the dereferencing operator !.

!r;

ñ 5 : Nat

To change the value stored in the cell, we use the assignment operator.

2. Strictly speaking, most variables of type T in C or Java should actually be thought of as

pointers to cells holding values of type Option(T), reflecting the fact that the contents of a

variable can be either a proper value or the special value null.

3. There are also good arguments that this separation is desirable from the perspective of

language design. Making the use of mutable cells an explicit choice rather than the default

encourages a mostly functional programming style where references are used sparingly; this

practice tends to make programs significantly easier to write, maintain, and reason about,

especially in the presence of features like concurrency.

13.1 Introduction 155

r := 7;

ñ unit : Unit

(The result the assignment is the trivial unit value; see §11.2.) If we derefer-

ence r again, we see the updated value.

!r;

ñ 7 : Nat

Side Effects and Sequencing

The fact that the result of an assignment expression is the trivial value unit

fits nicely with the sequencing notation defined in §11.3, allowing us to write

(r:=succ(!r); !r);

ñ 8 : Nat

instead of the equivalent, but more cumbersome,

(λ_:Unit. !r) (r := succ(!r));

ñ 9 : Nat

to evaluate two expressions in order and return the value of the second. Re-

stricting the type of the first expression to Unit helps the typechecker to

catch some silly errors by permitting us to throw away the first value only if

it is really guaranteed to be trivial.

Notice that, if the second expression is also an assignment, then the type

of the whole sequence will be Unit, so we can validly place it to the left of

another ; to build longer sequences of assignments:

(r:=succ(!r); r:=succ(!r); r:=succ(!r); r:=succ(!r); !r);

ñ 13 : Nat

References and Aliasing

It is important to bear in mind the difference between the reference that is

bound to r and the cell in the store that is pointed to by this reference.

13

r =

156 13 References

If we make a copy of r, for example by binding its value to another variable

s,

s = r;

ñ s : Ref Nat

what gets copied is only the reference (the arrow in the diagram), not the cell:

13

s =r =

We can verify this by assigning a new value into s

s := 82;

ñ unit : Unit

and reading it out via r:

!r;

ñ 82 : Nat

The references r and s are said to be aliases for the same cell.

13.1.1 Exercise [«]: Draw a similar diagram showing the effects of evaluating the

expressions a = {ref 0, ref 0} and b = (λx:Ref Nat. {x,x}) (ref 0). �

Shared State

The possibility of aliasing can make programs with references quite tricky

to reason about. For example, the expression (r:=1; r:=!s), which assigns

1 to r and then immediately overwrites it with s’s current value, has exactly

the same effect as the single assignment r:=!s, unless we write it in a context

where r and s are aliases for the same cell.

Of course, aliasing is also a large part of what makes references useful. In

particular, it allows us to set up “implicit communication channels”—shared

state—between different parts of a program. For example, suppose we define

a reference cell and two functions that manipulate its contents:

c = ref 0;

ñ c : Ref Nat

13.1 Introduction 157

incc = λx:Unit. (c := succ (!c); !c);

ñ incc : Unit → Nat

decc = λx:Unit. (c := pred (!c); !c);

ñ decc : Unit → Nat

Calling incc

incc unit;

ñ 1 : Nat

results in changes to c that can be observed by calling decc:

decc unit;

ñ 0 : Nat

If we package incc and decc together into a record

o = {i = incc, d = decc};

ñ o : {i:Unit→Nat, d:Unit→Nat}

then we can pass this whole structure around as a unit and use its compo-

nents to perform incrementing and decrementing operations on the shared

piece of state in c. In effect, we have constructed a simple kind of object . This

idea is developed in detail in Chapter 18.

References to Compound Types

A reference cell need not contain just a number: the primitives above al-

low us to create references to values of any type, including functions. For

example, we can use references to functions to give a (not very efficient) im-

plementation of arrays of numbers, as follows. Write NatArray for the type

Ref (Nat→Nat).

NatArray = Ref (Nat→Nat);

To build a new array, we allocate a reference cell and fill it with a function

that, when given an index, always returns 0.

newarray = λ_:Unit. ref (λn:Nat.0);

ñ newarray : Unit → NatArray

158 13 References

To look up an element of an array, we simply apply the function to the desired

index.

lookup = λa:NatArray. λn:Nat. (!a) n;
ñ lookup : NatArray → Nat → Nat

The interesting part of the encoding is the update function. It takes an array,

an index, and a new value to be stored at that index, and does its job by

creating (and storing in the reference) a new function that, when it is asked for

the value at this very index, returns the new value that was given to update,

and on all other indices passes the lookup to the function that was previously

stored in the reference.

update = λa:NatArray. λm:Nat. λv:Nat.

let oldf = !a in

a := (λn:Nat. if equal m n then v else oldf n);
ñ update : NatArray → Nat → Nat → Unit

13.1.2 Exercise [««]: If we defined update more compactly like this

update = λa:NatArray. λm:Nat. λv:Nat.

a := (λn:Nat. if equal m n then v else (!a) n);

would it behave the same? �

References to values containing other references can also be very useful,

allowing us to define data structures such as mutable lists and trees. (Such

structures generally also involve recursive types, which we introduce in Chap-

ter 20.)

Garbage Collection

A last issue that we should mention before we move on formalizing refer-

ences is storage deallocation. We have not provided any primitives for freeing

reference cells when they are no longer needed. Instead, like many modern

languages (including ML and Java) we rely on the run-time system to perform

garbage collection, collecting and reusing cells that can no longer be reached

by the program. This is not just a question of taste in language design: it

is extremely difficult to achieve type safety in the presence of an explicit

deallocation operation. The reason for this is the familiar dangling reference

problem: we allocate a cell holding a number, save a reference to it in some

data structure, use it for a while, then deallocate it and allocate a new cell

holding a boolean, possibly reusing the same storage. Now we can have two

names for the same storage cell—one with type Ref Nat and the other with

type Ref Bool.

13.1.3 Exercise [««]: Show how this can lead to a violation of type safety. �

13.2 Typing 159

13.2 Typing

The typing rules for ref, :=, and ! follow straightforwardly from the behav-

iors we have given them.

Γ ` t1 : T1

Γ ` ref t1 : Ref T1

(T-Ref)

Γ ` t1 : Ref T1

Γ ` !t1 : T1

(T-Deref)

Γ ` t1 : Ref T1 Γ ` t2 : T1

Γ ` t1:=t2 : Unit
(T-Assign)

13.3 Evaluation

A more subtle aspect of the treatment of references appears when we con-

sider how to formalize their operational behavior. One way to see why is to

ask, “What should be the values of type Ref T?” The crucial observation that

we need to take into account is that evaluating a ref operator should do

something—namely, allocate some storage—and the result of the operation

should be a reference to this storage.

What, then, is a reference?

The run-time store in most programming language implementations is es-

sentially just a big array of bytes. The run-time system keeps track of which

parts of this array are currently in use; when we need to allocate a new ref-

erence cell, we allocate a large enough segment from the free region of the

store (4 bytes for integer cells, 8 bytes for cells storing Floats, etc.), mark it

as being used, and return the index (typically, a 32- or 64-bit integer) of the

start of the newly allocated region. These indices are references.

For present purposes, there is no need to be quite so concrete. We can think

of the store as an array of values, rather than an array of bytes, abstracting

away from the different sizes of the run-time representations of different

values. Furthermore, we can abstract away from the fact that references (i.e.,

indexes into this array) are numbers. We take references to be elements of

some uninterpreted set L of store locations, and take the store to be simply

a partial function from locations l to values. We use the metavariable µ to

range over stores. A reference, then, is a location—an abstract index into the

store. We’ll use the word location instead of reference or pointer from now on

to emphasize this abstract quality.4

4. Treating locations abstractly in this way will prevent us from modeling the pointer arith-

160 13 References

Next, we need to extend our operational semantics to take stores into ac-

count. Since the result of evaluating an expression will in general depend on

the contents of the store in which it is evaluated, the evaluation rules should

take not just a term but also a store as argument. Furthermore, since the

evaluation of a term may cause side effects on the store that may affect the

evaluation of other terms in the future, the evaluation rules need to return

a new store. Thus, the shape of the single-step evaluation relation changes

from t -→ t′ to t | µ -→ t′ | µ′, where µ and µ′ are the starting and ending

states of the store. In effect, we have enriched our notion of abstract ma-

chines, so that a machine state is not just a program counter (represented as

a term), but a program counter plus the current contents of the store.

To carry through this change, we first need to augment all of our existing

evaluation rules with stores:

(λx:T11.t12) v2| µ -→ [x, v2]t12| µ (E-AppAbs)

t1| µ -→ t′1| µ
′

t1 t2| µ -→ t′1 t2| µ
′

(E-App1)

t2| µ -→ t′2| µ
′

v1 t2| µ -→ v1 t
′
2| µ

′
(E-App2)

Note that the first rule here returns the store µ unchanged: function applica-

tion, in itself, has no side effects. The other two rules simply propagate side

effects from premise to conclusion.

Next, we make a small addition to the syntax of our terms. The result of

evaluating a ref expression will be a fresh location, so we need to include

locations in the set of things that can be results of evaluation—i.e., in the set

of values:

v ::= values:

λx:T.t abstraction value

unit unit value

l store location

Since all values are also terms, this means that the set of terms should include

locations.

metic found in low-level languages such as C. This limitation is intentional. While pointer

arithmetic is occasionally very useful (especially for implementing low-level components of

run-time systems, such as garbage collectors), it cannot be tracked by most type systems:

knowing that location n in the store contains a Float doesn’t tell us anything useful about the

type of location n + 4. In C, pointer arithmetic is a notorious source of type safety violations.

13.3 Evaluation 161

t ::= terms:

x variable

λx:T.t abstraction

t t application

unit constant unit

ref t reference creation

!t dereference

t:=t assignment

l store location

Of course, making this extension to the syntax of terms does not mean that

we intend programmers to write terms involving explicit, concrete locations:

such terms will arise only as intermediate results of evaluation. In effect,

the term language in this chapter should be thought of as formalizing an

intermediate language, some of whose features are not made available to

programmers directly.

In terms of this expanded syntax, we can state evaluation rules for the

new constructs that manipulate locations and the store. First, to evaluate

a dereferencing expression !t1, we must first reduce t1 until it becomes a

value:

t1 | µ -→ t′1 | µ
′

!t1 | µ -→ !t′1 | µ
′

(E-Deref)

Once t1 has finished reducing, we should have an expression of the form

!l, where l is some location. A term that attempts to dereference any other

sort of value, such as a function or unit, is erroneous. The evaluation rules

simply get stuck in this case. The type safety properties in §13.5 assure us

that well-typed terms will never misbehave in this way.

µ(l) = v

!l | µ -→ v | µ
(E-DerefLoc)

Next, to evaluate an assignment expression t1:=t2, we must first evaluate

t1 until it becomes a value (i.e., a location),

t1 | µ -→ t′1 | µ
′

t1:=t2 | µ -→ t′1:=t2 | µ
′

(E-Assign1)

and then evaluate t2 until it becomes a value (of any sort):

t2 | µ -→ t′2 | µ
′

v1:=t2 | µ -→ v1:=t
′
2 | µ

′
(E-Assign2)

Once we have finished with t1 and t2, we have an expression of the form

l:=v2, which we execute by updating the store to make location l contain v2:

l:=v2 | µ -→ unit | [l , v2]µ (E-Assign)

162 13 References

(The notation [l , v2]µ here means “the store that maps l to v2 and maps

all other locations to the same thing as µ.” Note that the term resulting from

this evaluation step is just unit; the interesting result is the updated store.)

Finally, to evaluate an expression of the form ref t1, we first evaluate t1

until it becomes a value:

t1 | µ -→ t′1 | µ
′

ref t1 | µ -→ ref t′1 | µ
′

(E-Ref)

Then, to evaluate the ref itself, we choose a fresh location l (i.e., a location

that is not already part of the domain of µ) and yield a new store that extends

µ with the new binding l , v1.

l ∉ dom(µ)

ref v1 | µ -→ l | (µ, l , v1)
(E-RefV)

The term resulting from this step is the name l of the newly allocated loca-

tion.

Note that these evaluation rules do not perform any kind of garbage collec-

tion: we simply allow the store to keep growing without bound as evaluation

proceeds. This does not affect the correctness of the results of evaluation

(after all, the definition of “garbage” is precisely parts of the store that are

no longer reachable and so cannot play any further role in evaluation), but it

means that a naive implementation of our evaluator will sometimes run out

of memory where a more sophisticated evaluator would be able to continue

by reusing locations whose contents have become garbage.

13.3.1 Exercise [«««]: How might our evaluation rules be refined to model garbage

collection? What theorem would we then need to prove, to argue that this

refinement is correct? �

13.4 Store Typings

Having extended our syntax and evaluation rules to accommodate references,

our last job is to write down typing rules for the new constructs—and, of

course, to check that they are sound. Naturally, the key question is, “What is

the type of a location?”

When we evaluate a term containing concrete locations, the type of the re-

sult depends on the contents of the store that we start with. For example, if

we evaluate the term !l2 in the store (l1 , unit, l2 , unit), the result is

unit; if we evaluate the same term in the store (l1 , unit, l2 , λx:Unit.x),

the result is λx:Unit.x. With respect to the former store, the location l2 has

type Unit, and with respect to the latter it has type Unit→Unit. This obser-

vation leads us immediately to a first attempt at a typing rule for locations:

13.4 Store Typings 163

Γ ` µ(l) : T1

Γ ` l : Ref T1

That is, to find the type of a location l, we look up the current contents of l in

the store and calculate the type T1 of the contents. The type of the location

is then Ref T1.

Having begun in this way, we need to go a little further to reach a consistent

state. In effect, by making the type of a term depend on the store, we have

changed the typing relation from a three-place relation (between contexts,

terms, and types) to a four-place relation (between contexts, stores, terms,

and types). Since the store is, intuitively, part of the context in which we

calculate the type of a term, let’s write this four-place relation with the store

to the left of the turnstile: Γ | µ ` t : T. Our rule for typing references now

has the form

Γ | µ ` µ(l) : T1

Γ | µ ` l : Ref T1

and all the rest of the typing rules in the system are extended similarly with

stores. The other rules do not need to do anything interesting with their

stores—just pass them from premise to conclusion.

However, there are two problems with this rule. First, typechecking is rather

inefficient, since calculating the type of a location l involves calculating the

type of the current contents v of l. If l appears many times in a term t, we

will re-calculate the type of v many times in the course of constructing a typ-

ing derivation for t. Worse, if v itself contains locations, then we will have

to recalculate their types each time they appear. For example, if the store

contains

(l1 , λx:Nat. 999,

l2 , λx:Nat. (!l1) x,

l3 , λx:Nat. (!l2) x,

l4 , λx:Nat. (!l3) x,

l5 , λx:Nat. (!l4) x),

then calculating the type of l5 involves calculating those of l4, l3, l2, and l1.

Second, the proposed typing rule for locations may not allow us to derive

anything at all, if the store contains a cycle. For example, there is no finite

typing derivation for the location l2 with respect to the store

(l1 , λx:Nat. (!l2) x,

l2 , λx:Nat. (!l1) x),

since calculating a type for l2 requires finding the type of l1, which in turn

involves l1, etc. Cyclic reference structures do arise in practice (e.g., they can

164 13 References

be used for building doubly linked lists), and we would like our type system

to be able to deal with them.

13.4.1 Exercise [«]: Can you find a term whose evaluation will create this particular

cyclic store? �

Both of these problems arise from the fact that our proposed typing rule

for locations requires us to recalculate the type of a location every time we

mention it in a term. But this, intuitively, should not be necessary. After all,

when a location is first created, we know the type of the initial value that

we are storing into it. Moreover, although we may later store other values

into this location, those other values will always have the same type as the

initial one. In other words, we always have in mind a single, definite type for

every location in the store, which is fixed when the location is allocated. These

intended types can be collected together as a store typing—a finite function

mapping locations to types. We’ll use the metavariable Σ to range over such

functions.

Suppose we are given a store typing Σ describing the store µ in which some

term t will be evaluated. Then we can use Σ to calculate the type of the result

of t without ever looking directly at µ. For example, if Σ is (l1 , Unit, l2 ,

Unit→Unit), then we may immediately infer that !l2 has type Unit→Unit.

More generally, the typing rule for locations can be reformulated in terms of

store typings like this:

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T-Loc)

Typing is again a four-place relation, but it is parameterized on a store typing

rather than a concrete store. The rest of the typing rules are analogously

augmented with store typings.

Of course, these typing rules will accurately predict the results of evalua-

tion only if the concrete store used during evaluation actually conforms to the

store typing that we assume for purposes of typechecking. This proviso ex-

actly parallels the situation with free variables in all the calculi we have seen

up to this point: the substitution lemma (9.3.8) promises us that, if Γ ` t : T,

then we can replace the free variables in t with values of the types listed in

Γ to obtain a closed term of type T, which, by the type preservation theorem

(9.3.9) will evaluate to a final result of type T if it yields any result at all. We

will see in §13.5 how to formalize an analogous intuition for stores and store

typings.

Finally, note that, for purposes of typechecking the terms that program-

mers actually write, we do not need to do anything tricky to guess what store

typing we should use. As we remarked above, concrete location constants

13.5 Safety 165

arise only in terms that are the intermediate results of evaluation; they are

not in the language that programmers write. Thus, we can simply typecheck

the programmer’s terms with respect to the empty store typing. As evaluation

proceeds and new locations are created, we will always be able to see how to

extend the store typing by looking at the type of the initial values being placed

in newly allocated cells; this intuition is formalized in the statement of the

type preservation theorem below (13.5.3).

Now that we have dealt with locations, the typing rules for the other new

syntactic forms are quite straightforward. When we create a reference to a

value of type T1, the reference itself has type Ref T1.

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T-Ref)

Notice that we do not need to extend the store typing here, since the name of

the new location will not be determined until run time, while Σ records only

the association between already-allocated storage cells and their types.

Conversely, if t1 evaluates to a location of type Ref T11, then dereferencing

t1 is guaranteed to yield a value of type T11.

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T-Deref)

Finally, if t1 denotes a cell of type Ref T11, then we can store t2 into this

cell as long as the type of t2 is also T11:

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)

Figure 13-1 summarizes the typing rules (and the syntax and evaluation

rules, for easy reference) for the simply typed lambda-calculus with refer-

ences.

13.5 Safety

Our final job in this chapter is to check that standard type safety proper-

ties continue to hold for the calculus with references. The progress theorem

(“well-typed terms are not stuck”) can be stated and proved almost as before

(cf. 13.5.7); we just need to add a few straightforward cases to the proof,

dealing with the new constructs. The preservation theorem is a bit more in-

teresting, so let’s look at it first.

Since we have extended both the evaluation relation (with initial and final

stores) and the typing relation (with a store typing), we need to change the

statement of preservation to include these parameters. Clearly, though, we

166 13 References

→ Unit Ref Extends λ→ with Unit (9-1 and 11-2)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

unit constant unit

ref t reference creation

!t dereference

t:=t assignment

l store location

v ::= values:

λx:T.t abstraction value

unit constant unit

l store location

T ::= types:

T→T type of functions

Unit unit type

Ref T type of reference cells

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

µ ::= stores:

∅ empty store

µ, l = v location binding

Σ ::= store typings:

∅ empty store typing

Σ, l:T location typing

Evaluation t | µ -→ t′ | µ′

t1 | µ -→ t′1 | µ
′

t1 t2 | µ -→ t′1 t2 | µ
′

(E-App1)

t2 | µ -→ t′2 | µ
′

v1 t2 | µ -→ v1 t
′
2 | µ

′
(E-App2)

(λx:T11.t12) v2 | µ -→ [x, v2]t12 | µ

(E-AppAbs)

l ∉ dom(µ)

ref v1 | µ -→ l | (µ, l , v1)
(E-RefV)

t1 | µ -→ t′1 | µ
′

ref t1 | µ -→ ref t′1 | µ
′

(E-Ref)

µ(l) = v

!l | µ -→ v | µ
(E-DerefLoc)

t1 | µ -→ t′1 | µ
′

!t1 | µ -→ !t′1 | µ
′

(E-Deref)

l:=v2 | µ -→ unit | [l , v2]µ (E-Assign)

t1 | µ -→ t′1 | µ
′

t1:=t2 | µ -→ t′1:=t2 | µ
′

(E-Assign1)

t2 | µ -→ t′2 | µ
′

v1:=t2 | µ -→ v1:=t
′
2 | µ

′
(E-Assign2)

continued . . .

Figure 13-1: References

13.5 Safety 167

Typing Γ | Σ ` t : T

x:T ∈ Γ

Γ | Σ ` x : T
(T-Var)

Γ , x:T1 | Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T-App)

Γ | Σ ` unit : Unit (T-Unit)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T-Loc)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T-Ref)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T-Deref)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit

(T-Assign)

Figure 13-1: References (continued)

cannot just add stores and store typings without saying anything about how

they are related.

If Γ | Σ ` t : T and t | µ -→ t′ | µ′, then Γ | Σ ` t′ : T. (Wrong!)

If we typecheck with respect to some set of assumptions about the types of

the values in the store and then evaluate with respect to a store that violates

these assumptions, the result will be disaster. The following requirement ex-

presses the constraint we need.

13.5.1 Definition: A store µ is said to be well typed with respect to a typing context

Γ and a store typing Σ, written Γ | Σ ` µ, if dom(µ) = dom(Σ) and Γ | Σ `

µ(l) : Σ(l) for every l ∈ dom(µ). �

Intuitively, a store µ is consistent with a store typing Σ if every value in the

store has the type predicted by the store typing.

13.5.2 Exercise [««]: Can you find a context Γ , a store µ, and two different store

typings Σ1 and Σ2 such that both Γ | Σ1 ` µ and Γ | Σ2 ` µ? �

We can now state something closer to the desired preservation property:

If

Γ | Σ ` t : T

t | µ -→ t′ | µ′

Γ | Σ ` µ

168 13 References

then Γ | Σ ` t′ : T. (Less wrong.)

This statement is fine for all of the evaluation rules except the allocation rule

E-RefV. The problem is that this rule yields a store with a larger domain than

the initial store, which falsifies the conclusion of the above statement: if µ′

includes a binding for a fresh location l, then l cannot be in the domain of

Σ, and it will not be the case that t′ (which definitely mentions l) is typable

under Σ.

Evidently, since the store can increase in size during evaluation, we need

to allow the store typing to grow as well. This leads us to the final (correct)

statement of the type preservation property:

13.5.3 Theorem [Preservation]: If

Γ | Σ ` t : T

Γ | Σ ` µ

t | µ -→ t′ | µ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ` t′ : T

Γ | Σ′ ` µ′. �

Note that the preservation theorem merely asserts that there is some store

typing Σ′ ⊇ Σ (i.e., agreeing with Σ on the values of all the old locations)

such that the new term t′ is well typed with respect to Σ′; it does not tell

us exactly what Σ′ is. It is intuitively clear, of course, that Σ′ is either Σ or

else it is exactly (µ, l , T1), where l is a newly allocated location (the new

element of the domain of µ′) and T1 is the type of the initial value bound to l

in the extended store (µ, l , v1), but stating this explicitly would complicate

the statement of the theorem without actually making it any more useful:

the weaker version above is already in the right form (because its conclusion

implies its hypothesis) to “turn the crank” repeatedly and conclude that ev-

ery sequence of evaluation steps preserves well-typedness. Combining this

with the progress property, we obtain the usual guarantee that “well-typed

programs never go wrong.”

To prove preservation, we need a few technical lemmas. The first is an easy

extension of the standard substitution lemma (9.3.8).

13.5.4 Lemma [Substitution]: If Γ , x:S | Σ ` t : T and Γ | Σ ` s : S, then Γ | Σ `

[x, s]t : T. �

Proof: Just like Lemma 9.3.8. �

13.5 Safety 169

The next states that replacing the contents of a cell in the store with a new

value of appropriate type does not change the overall type of the store.

13.5.5 Lemma: If

Γ | Σ ` µ

Σ(l) = T

Γ | Σ ` v : T

then Γ | Σ ` [l , v]µ. �

Proof: Immediate from the definition of Γ | Σ ` µ. �

Finally, we need a kind of weakening lemma for stores, stating that, if a

store is extended with a new location, the extended store still allows us to

assign types to all the same terms as the original.

13.5.6 Lemma: If Γ | Σ ` t : T and Σ′ ⊇ Σ, then Γ | Σ′ ` t : T. �

Proof: Easy induction. �

Now we can prove the main preservation theorem.

Proof of 13.5.3: Straightforward induction on evaluation derivations, using

the lemmas above and the inversion property of the typing rules (a straight-

forward extension of 9.3.1). �

The statement of the progress theorem (9.3.5) must also be extended to

take stores and store typings into account:

13.5.7 Theorem [Progress]: Suppose t is a closed, well-typed term (that is,∅ | Σ `

t : T for some T and Σ). Then either t is a value or else, for any store µ such

that ∅ | Σ ` µ, there is some term t′ and store µ′ with t | µ -→ t′ | µ′. �

Proof: Straightforward induction on typing derivations, following the pat-

tern of 9.3.5. (The canonical forms lemma, 9.3.4, needs two additional cases

stating that all values of type Ref T are locations and similarly for Unit.) �

13.5.8 Exercise [Recommended, «««]: Is the evaluation relation in this chapter nor-

malizing on well-typed terms? If so, prove it. If not, write a well-typed factorial

function in the present calculus (extended with numbers and booleans). �

170 13 References

13.6 Notes

The presentation in this chapter is adapted from a treatment by Harper (1994,

1996). An account in a similar style is given by Wright and Felleisen (1994).

The combination of references (or other computational effects) with ML-

style polymorphic type inference raises some quite subtle problems (cf. §22.7)

and has received a good deal of attention in the research literature. See Tofte

(1990), Hoang et al. (1993), Jouvelot and Gifford (1991), Talpin and Jouvelot

(1992), Leroy and Weis (1991), Wright (1992), Harper (1994, 1996), and the

references cited there.

Static prediction of possible aliasing is a long-standing problem both in

compiler implementation (where it is called alias analysis) and in program-

ming language theory. An influential early attempt by Reynolds (1978, 1989)

coined the term syntactic control of interference. These ideas have recently

seen a burst of new activity—see O’Hearn et al. (1995) and Smith et al. (2000).

More general reasoning techniques for aliasing are discussed in Reynolds

(1981) and Ishtiaq and O’Hearn (2001) and other references cited there.

A comprehensive discussion of garbage collection can be found in Jones

and Lins (1996). A more semantic treatment is given by Morrisett et al. (1995).

Find out the cause of this effect,

Or rather say, the cause of this defect,

For this effect defective comes by cause. —Hamlet II, ii, 101

The finger pointing at the moon is not the moon. —Buddhist saying

14 Exceptions

In Chapter 13 we saw how to extend the simple operational semantics of the

pure simply typed lambda-calculus with mutable references and considered

the effect of this extension on the typing rules and type safety proofs. In

this chapter, we treat another extension to our original computational model:

raising and handling exceptions.

Real-world programming is full of situations where a function needs to sig-

nal to its caller that it is unable to perform its task for some reason—because

some calculation would involve a division by zero or an arithmetic overflow,

a lookup key is missing from a dictionary, an array index went out of bounds,

a file could not be found or opened, some disastrous event occurred such as

the system running out of memory or the user killing the process, etc.

Some of these exceptional conditions can be signaled by making the func-

tion return a variant (or option), as we saw in §11.10. But in situations where

the exceptional conditions are truly exceptional, we may not want to force

every caller of our function to deal with the possibility that they may occur.

Instead, we may prefer that an exceptional condition causes a direct trans-

fer of control to an exception handler defined at some higher-level in the

program—or indeed (if the exceptional condition is rare enough or if there

is nothing that the caller can do anyway to recover from it) simply aborts

the program. We first consider the latter case (§14.1), where an exception is

a whole-program abort, then add a mechanism for trapping and recovering

from exceptions (§14.2), and finally refine both of these mechanisms to allow

extra programmer-specified data to be passed between exception sites and

handlers (§14.3).

The systems studied in this chapter are the simply typed lambda-calculus (Figure 9-1) ex-

tended with various primitives for exceptions and exception handling (Figures 14-1 and 14-2).

The OCaml implementation of the first extension is fullerror. The language with exceptions

carrying values (Figure 14-3) is not implemented.

172 14 Exceptions

→ error Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

error run-time error

New evaluation rules t -→ t′

error t2 -→ error (E-AppErr1)

v1 error -→ error (E-AppErr2)

New typing rules Γ ` t : T

Γ ` error : T (T-Error)

Figure 14-1: Errors

14.1 Raising Exceptions

Let us start by enriching the simply typed lambda-calculus with the simplest

possible mechanism for signaling exceptions: a term error that, when evalu-

ated, completely aborts evaluation of the term in which it appears. Figure 14-1

details the needed extensions.

The main design decision in writing the rules for error is how to formalize

“abnormal termination” in our operational semantics. We adopt the simple

expedient of letting error itself be the result of a program that aborts. The

rules E-AppErr1 and E-AppErr2 capture this behavior. E-AppErr1 says that,

if we encounter the term error while trying to reduce the left-hand side of

an application to a value, we should immediately yield error as the result

of the application. Similarly, E-AppErr2 says that, if we encounter an error

while we are working on reducing the argument of an application to a value,

we should abandon work on the application and immediately yield error.

Observe that we have not included error in the syntax of values—only the

syntax of terms. This guarantees that there will never be an overlap between

the left-hand sides of the E-AppAbs and E-AppErr2 rules—i.e., there is no

ambiguity as to whether we should evaluate the term

(λx:Nat.0) error

by performing the application (yielding 0 as result) or aborting: only the latter

is possible. Similarly, the fact that we used the metavariable v1 (rather than

t1, ranging over arbitrary terms) in E-AppErr2 forces the evaluator to wait

until the left-hand side of an application is reduced to a value before aborting

14.2 Handling Exceptions 173

it, even if the right-hand side is error. Thus, a term like

(fix (λx:Nat.x)) error

will diverge instead of aborting. These conditions ensure that the evaluation

relation remains deterministic.

The typing rule T-Error is also interesting. Since we may want to raise an

exception in any context, the term error form is allowed to have any type

whatsoever. In

(λx:Bool.x) error;

it has type Bool. In

(λx:Bool.x) (error true);

it has type Bool→Bool.

This flexibility in error’s type raises some difficulties in implementing a

typechecking algorithm, since it breaks the property that every typable term

in the language has a unique type (Theorem 9.3.3). This can be dealt with in

various ways. In a language with subtyping, we can assign error the minimal

type Bot (see §15.4), which can be promoted to any other type as necessary.

In a language with parametric polymorphism (see Chapter 23), we can give

error the polymorphic type ∀X.X, which can be instantiated to any other

type. Both of these tricks allow infinitely many possible types for error to be

represented compactly by a single type.

14.1.1 Exercise [«]: Wouldn’t it be simpler just to require the programmer to an-

notate error with its intended type in each context where it is used? �

The type preservation property for the language with exceptions is the

same as always: if a term has type T and we let it evaluate one step, the

result still has type T. The progress property, however, needs to be refined a

little. In its original form, it said that a well-typed program must evaluate to

a value (or diverge). But now we have introduced a non-value normal form,

error, which can certainly be the result of evaluating a well-typed program.

We need to restate progress to allow for this.

14.1.2 Theorem [Progress]: Suppose t is a closed, well-typed normal form. Then

either t is a value or t = error. �

14.2 Handling Exceptions

The evaluation rules for error can be thought of as “unwinding the call

stack,” discarding pending function calls until the error has propagated all

174 14 Exceptions

→ error try Extends λ→ with errors (14-1)

New syntactic forms

t ::= ... terms:

try t with t trap errors

New evaluation rules t -→ t′

try v1 with t2 -→ v1 (E-TryV)

try error with t2

-→ t2

(E-TryError)

t1 -→ t′1

try t1 with t2

-→ try t′1 with t2

(E-Try)

New typing rules Γ ` t : T

Γ ` t1 : T Γ ` t2 : T

Γ ` try t1 with t2 : T
(T-Try)

Figure 14-2: Error handling

the way to the top level. In real implementations of languages with excep-

tions, this is exactly what happens: the call stack consists of a set of acti-

vation records, one for each active function call; raising an exception causes

activation records to be popped off the call stack until it becomes empty.

In most languages with exceptions, it is also possible to install exception

handlers in the call stack. When an exception is raised, activation records

are popped off the call stack until an exception handler is encountered, and

evaluation then proceeds with this handler. In other words, the exception

functions as a non-local transfer of control, whose target is the most recently

installed exception handler (i.e., the nearest one on the call stack).

Our formulation of exception handlers, summarized in Figure 14-2, is sim-

ilar to both ML and Java. The expression try t1 with t2 means “return the

result of evaluating t1, unless it aborts, in which case evaluate the handler t2

instead.” The evaluation rule E-TryV says that, when t1 has been reduced to

a value v1, we may throw away the try, since we know now that it will not

be needed. E-TryError, on the other hand, says that, if evaluating t1 results

in error, then we should replace the try with t2 and continue evaluating

from there. E-Try tells us that, until t1 has been reduced to either a value or

error, we should just keep working on it and leave t2 alone.

The typing rule for try follows directly from its operational semantics. The

result of the whole try can be either the result of the main body t1 or else

the result of the handler t2; we simply need to require that these have the

same type T, which is also the type of the try.

The type safety property and its proof remain essentially unchanged from

the previous section.

14.3 Exceptions Carrying Values 175

→ exceptions Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

raise t raise exception

try t with t handle exceptions

New evaluation rules t -→ t′

(raise v11) t2 -→ raise v11 (E-AppRaise1)

v1 (raise v21) -→ raise v21 (E-AppRaise2)

t1 -→ t′1

raise t1 -→ raise t′1
(E-Raise)

raise (raise v11)

-→ raise v11

(E-RaiseRaise)

try v1 with t2 -→ v1 (E-TryV)

try raise v11 with t2

-→ t2 v11

(E-TryRaise)

t1 -→ t′1

try t1 with t2 -→ try t′1 with t2

(E-Try)

New typing rules Γ ` t : T

Γ ` t1 : Texn

Γ ` raise t1 : T
(T-Exn)

Γ ` t1 : T Γ ` t2 : Texn→T

Γ ` try t1 with t2 : T
(T-Try)

Figure 14-3: Exceptions carrying values

14.3 Exceptions Carrying Values

The mechanisms introduced in §14.1 and §14.2 allow a function to signal to

its caller that “something unusual happened.” It is generally useful to send

back some extra information about which unusual thing has happened, since

the action that the handler needs to take—either to recover and try again or

to present a comprehensible error message to the user—may depend on this

information.

Figure 14-3 shows how our basic exception handling constructs can be en-

riched so that each exception carries a value. The type of this value is written

Texn. For the moment, we leave the precise nature of this type open; below,

we discuss several alternatives.

The atomic term error is replaced by a term constructor raise t, where

t is the extra information that we want to pass to the exception handler. The

syntax of try remains the same, but the handler t2 in try t1 with t2 is now

interpreted as a function that takes the extra information as an argument.

The evaluation rule E-TryRaise implements this behavior, taking the extra

information carried by a raise from the body t1 and passing it to the handler

t2. E-AppRaise1 and E-AppRaise2 propagate exceptions through applications,

just like E-AppErr1 and E-AppErr2 in Figure 14-1. Note, however, that these

176 14 Exceptions

rules are allowed to propagate only exceptions whose extra information is

a value; if we attempt to evaluate a raise with extra information that itself

requires some evaluation, these rules will block, forcing us to use E-Raise to

evaluate the extra information first. E-RaiseRaise propagates exceptions that

may occur while we are evaluating the extra information that is to be sent

along in some other exception. E-TryV tells us that we can throw away a try

once its main body has reduced to a value, just as we did in §14.2. E-Try

directs the evaluator to work on the body of a try until it becomes either a

value or a raise.

The typing rules reflect these changes in behavior. In T-Raise we demand

that the extra information has type Texn; the whole raise can then be given

any type T that may be required by the context. In T-Try, we check that the

handler t2 is a function that, given the extra information of type Texn, yields

a result of the same type as t1.

Finally, let us consider some alternatives for the type Texn.

1. We can take Texn to be just Nat. This corresponds to the errno convention

used, for example, by Unix operating system functions: each system call

returns a numeric “error code,” with 0 signaling success and other values

reporting various exceptional conditions.

2. We can take Texn to be String, which avoids looking up error numbers

in tables and allows exception-raising sites to construct more descriptive

messages if they wish. The cost of this extra flexibility is that error han-

dlers may now have to parse these strings to find out what happened.

3. We can keep the ability to pass more informative exceptions while avoiding

string parsing if we define Texn to be a variant type:

Texn = <divideByZero: Unit,

overflow: Unit,

fileNotFound: String,

fileNotReadable: String,

... >

This scheme allows a handler to distinguish between kinds of exceptions

using a simple case expression. Also, different exceptions can carry differ-

ent types of additional information: exceptions like divideByZero need

no extra baggage, fileNotFound can carry a string indicating which file

was being opened when the error occurred, etc.

The problem with this alternative is that it is rather inflexible, demanding

that we fix in advance the complete set of exceptions that can be raised by

14.3 Exceptions Carrying Values 177

any program (i.e., the set of tags of the variant type Texn). This leaves no

room for programmers to declare application-specific exceptions.

4. The same idea can be refined to leave room for user-defined exceptions

by taking Texn to be an extensible variant type. ML adopts this idea, pro-

viding a single extensible variant type called exn.1 The ML declaration

exception l of T can be understood, in the present setting, as “make sure

that l is different from any tag already present in the variant type Texn,2

and from now on let Texn be <l1:T1...ln:tn,l:T>, where l1:T1 through

ln:tn were the possible variants before this declaration.”

The ML syntax for raising exceptions is raise l(t), where l is an excep-

tion tag defined in the current scope. This can be understood as a combi-

nation of the tagging operator and our simple raise:

raise l(t)
def
= raise (<l=t> as Texn)

Similarly, the ML try construct can be desugared using our simple try

plus a case.

try t with l(x) → h
def
= try t with

λe:Texn. case e of

<l=x> ⇒ h

| _ ⇒ raise e

The case checks whether the exception that has been raised is tagged with

l. If so, it binds the value carried by the exception to the variable x and

evaluates the handler h. If not, it falls through to the else clause, which

re-raises the exception. The exception will keep propagating (and perhaps

being caught and re-raised) until it either reaches a handler that wants to

deal with it, or else reaches the top level and aborts the whole program.

5. Java uses classes instead of extensible variants to support user-defined

exceptions. The language provides a built-in class Throwable; an instance

of Throwable or any of its subclasses can be used in a throw (same as our

raise) or try...catch (same as our try...with) statement. New excep-

tions can be declared simply by defining new subclasses of Throwable.

There is actually a close correspondence between this exception-handling

mechanism and that of ML. Roughly speaking, an exception object in Java

1. One can go further and provide extensible variant types as a general language feature, but

the designers of ML have chosen to simply treat exn as a special case.

2. Since the exception form is a binder, we can always ensure that l is different from the tags

already used in Texn by alpha-converting it if necessary.

178 14 Exceptions

is represented at run time by a tag indicating its class (which corresponds

directly to the extensible variant tag in ML) plus a record of instance vari-

ables (corresponding to the extra information labeled by this tag).

Java exceptions go a little further than ML in a couple of respects. One

is that there is a natural partial order on exception tags, generated by

the subclass ordering. A handler for the exception l will actually trap all

exceptions carrying an object of class l or any subclass of l. Another

is that Java distinguishes between exceptions (subclasses of the built-in

class Exception—a subclass of Throwable), which application programs

might want to catch and try to recover from, and errors (subclasses of

Error—also a subclass of Throwable), which indicate serious conditions

that should normally just terminate execution. The key difference between

the two lies in the typechecking rules, which demand that methods explic-

itly declare which exceptions (but not which errors) they might raise.

14.3.1 Exercise [«««]: The explanation of extensible variant types in alternative 4

above is rather informal. Show how to make it precise. �

14.3.2 Exercise [««««]: We noted above that Java exceptions (those that are sub-

classes of Exception) are a bit more strictly controlled than exceptions in

ML (or the ones we have defined here): every exception that might be raised

by a method must be declared in the method’s type. Extend your solution to

Exercise 14.3.1 so that the type of a function indicates not only its argument

and result types, but also the set of exceptions that it may raise. Prove that

your system is typesafe. �

14.3.3 Exercise [«««]: Many other control constructs can be formalized using tech-

niques similar to the ones we have seen in this chapter. Readers familiar

with the “call with current continuation” (call/cc) operator of Scheme (see

Clinger, Friedman, and Wand, 1985; Kelsey, Clinger, and Rees, 1998; Dybvig,

1996; Friedman, Wand, and Haynes, 2001) may enjoy trying to formulate typ-

ing rules based on a type Cont T of T-continuations—i.e., continuations that

expect an argument of type T. �

P a r t I I I

Subtyping

15 Subtyping

We have spent the last several chapters studying the typing behavior of a va-

riety of language features within the framework of the simply typed lambda-

calculus. This chapter addresses a more fundamental extension: subtyping

(sometimes called subtype polymorphism). Unlike the features we have stud-

ied up to now, which could be formulated more or less orthogonally to each

other, subtyping is a cross-cutting extension, interacting with most other lan-

guage features in non-trivial ways.

Subtyping is characteristically found in object-oriented languages and is

often considered an essential feature of the object-oriented style. We will ex-

plore this connection in detail in Chapter 18; for now, though, we present sub-

typing in a more economical setting with just functions and records, where

most of the interesting issues already appear. §15.5 discusses the combina-

tion of subtyping with some of the other features we have seen in previous

chapters. In the final section (15.6) we consider a more refined semantics

for subtyping, in which the use of suptyping corresponds to the insertion of

run-time coercions.

15.1 Subsumption

Without subtyping, the rules of the simply typed lambda-calculus can be

annoyingly rigid. The type system’s insistence that argument types exactly

match the domain types of functions will lead the typechecker to reject many

programs that, to the programmer, seem obviously well-behaved. For exam-

ple, recall the typing rule for function application:

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

The calculus studied in this chapter is λ<:, the simply typed lambda-calculus with subtyping

(Figure 15-1) and records (15-3); the corresponding OCaml implementation is rcdsub. (Some

of the examples also use numbers; fullsub is needed to check these.)

182 15 Subtyping

According to this rule, the well-behaved term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable, since the type of the argument is {x:Nat,y:Nat}, whereas

the function accepts {x:Nat}. But, clearly, the function just requires that

its argument is a record with a field x; it doesn’t care what other fields the

argument may or may not have. Moreover, we can see this from the type of the

function—we don’t need to look at its body to verify that it doesn’t use any

fields besides x. It is always safe to pass an argument of type {x:Nat,y:Nat}

to a function that expects type {x:Nat}.

The goal of subtyping is to refine the typing rules so that they can accept

terms like the one above. We accomplish this by formalizing the intuition that

some types are more informative than others: we say that S is a subtype of T,

written S <: T, to mean that any term of type S can safely be used in a context

where a term of type T is expected. This view of subtyping is often called the

principle of safe substitution.

A simpler intuition is to read S <: T as “every value described by S is also

described by T,” that is, “the elements of S are a subset of the elements of T.”

We shall see in §15.6 that other, more refined, interpretations of subtyping

are sometimes useful, but this subset semantics suffices for most purposes.

The bridge between the typing relation and this subtype relation is pro-

vided by adding a new typing rule—the so-called rule of subsumption:

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

This rule tells us that, if S <: T, then every element t of S is also an element of

T. For example, if we define the subtype relation so that {x:Nat,y:Nat} <:

{x:Nat}, then we can use rule T-Sub to derive ` {x=0,y=1} : {x:Nat},

which is what we need to make our motivating example typecheck.

15.2 The Subtype Relation

The subtype relation is formalized as a collection of inference rules for de-

riving statements of the form S <: T, pronounced “S is a subtype of T” (or “T

is a supertype of S”). We consider each form of type (function types, record

types, etc.) separately; for each one, we introduce one or more rules formal-

izing situations when it is safe to allow elements of one type of this form to

be used where another is expected.

Before we get to the rules for particular type constructors, we make two

general stipulations: first, that subtyping should be reflexive,

S <: S (S-Refl)

15.2 The Subtype Relation 183

and second, that it should be transitive:

S <: U U <: T

S <: T
(S-Trans)

These rules follow directly from the intuition of safe substitution.

Now, for record types, we have already seen that we want to consider the

type S = {k1:S1...km:Sm} to be a subtype of T = {l1:T1...ln:Tn} if T has

fewer fields than S. In particular, it is safe to “forget” some fields at the end

of a record type. The so-called width subtyping rule captures this intuition:

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

It may seem surprising that the “smaller” type—the subtype—is the one with

more fields. The easiest way to understand this is to adopt a more liberal

view of record types than we did in §11.8, regarding a record type {x:Nat}

as describing “the set of all records with at least a field x of type Nat.” Val-

ues like {x=3} and {x=5} are elements of this type, and so are values like

{x=3,y=100} and {x=3,a=true,b=true}. Similarly, the record type {x:Nat,

y:Nat} describes records with at least the fields x and y, both of type Nat.

Values like {x=3,y=100} and {x=3,y=100,z=true} are members of this

type, but {x=3} is not, and neither is {x=3,a=true,b=true}. Thus, the set

of values belonging to the second type is a proper subset of the set belonging

to the first type. A longer record constitutes a more demanding—i.e., more

informative—specification, and so describes a smaller set of values.

The width subtyping rule applies only to record types where the common

fields are identical. It is also safe to allow the types of individual fields to

vary, as long as the types of each corresponding field in the two records are

in the subtype relation. The depth subtyping rule expresses this intuition:

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

The following subtyping derivation uses S-RcdWidth and S-RcdDepth to-

gether to show that the nested record type {x:{a:Nat,b:Nat},y:{m:Nat}}

is a subtype of {x:{a:Nat},y:{}}:

S-RcdWidth
{a:Nat,b:Nat} <: {a:Nat}

S-RcdWidth
{m:Nat} <: {}

S-RcdDepth
{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

If we want to use S-RcdDepth to refine the type of just a single record field

(instead of refining every field, as we did in the example above), we can use

S-Refl to obtain trivial subtyping derivations for the other fields.

S-RcdWidth
{a:Nat,b:Nat} <: {a:Nat}

S-Refl
{m:Nat} <: {m:Nat}

S-RcdDepth
{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{m:Nat}}

184 15 Subtyping

We can also use the transitivity rule, S-Trans, to combine width and depth

subtyping. For example, we can obtain a supertype by promoting the type of

one field while dropping another:

S-RcdWidth
{x:{a:Nat,b:Nat},y:{m:Nat}}

<: {x:{a:Nat,b:Nat}}

S-RcdWidth
{a:Nat,b:Nat}

<: {a:Nat}
S-RcdDepth

{x:{a:Nat,b:Nat}}

<: {x:{a:Nat}}
S-Trans

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat}}

Our final record subtyping rule arises from the observation that the order

of fields in a record does not make any difference to how we can safely use it,

since the only thing that we can do with records once we’ve built them—i.e.,

projecting their fields—is insensitive to the order of fields.

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

For example, S-RcdPerm tells us that {c:Top,b:Bool,a:Nat} is a subtype

of {a:Nat,b:Bool,c:Top}, and vice versa. (This implies that the subtype

relation will not be anti-symmetric.)

S-RcdPerm can be used in combination with S-RcdWidth and S-Trans to

drop fields from anywhere in a record type, not just at the end.

15.2.1 Exercise [«]: Draw a derivation showing that {x:Nat,y:Nat,z:Nat} is a

subtype of {y:Nat}. �

S-RcdWidth, S-RcdDepth, and S-RcdPerm each embody a different sort

of flexibility in the use of records. For purposes of discussion, it is useful to

present them as three separate rules. In particular, there are languages that

allow some of them but not others; for example, most variants of Abadi and

Cardelli’s object calculus (1996) omit width subtyping. However, for purposes

of implementation it is more convenient to combine them into a single macro-

rule that does all three things at once. This rule is discussed in the next

chapter (cf. page 211).

Since we are working in a higher-order language, where not only numbers

and records but also functions can be passed as arguments to other func-

tions, we must also give a subtyping rule for function types—i.e., we must

specify under what circumstances it is safe to use a function of one type in a

context where a different function type is expected.

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

15.2 The Subtype Relation 185

Notice that the sense of the subtype relation is reversed (contravariant) for

the argument types in the left-hand premise, while it runs in the same di-

rection (covariant) for the result types as for the function types themselves.

The intuition is that, if we have a function f of type S1→S2, then we know

that f accepts elements of type S1; clearly, f will also accept elements of any

subtype T1 of S1. The type of f also tells us that it returns elements of type

S2; we can also view these results belonging to any supertype T2 of S2. That

is, any function f of type S1→S2 can also be viewed as having type T1→T2.

An alternative view is that it is safe to allow a function of one type S1→S2 to

be used in a context where another type T1→T2 is expected as long as none of

the arguments that may be passed to the function in this context will surprise

it (T1 <: S1) and none of the results that it returns will surprise the context

(S2 <: T2).

Finally, it is convenient to have a type that is a supertype of every type. We

introduce a new type constant Top, plus a rule that makes Top a maximum

element of the subtype relation.

S <: Top (S-Top)

§15.4 discusses the Top type further.

Formally, the subtype relation is the least relation closed under the rules we

have given. For easy reference, Figures 15-1, 15-2, and 15-3 recapitulate the

full definition of the simply typed lambda-calculus with records and subtyp-

ing, highlighting the syntactic forms and rules we have added in this chapter.

Note that the presence of the reflexivity and transitivity rules means that the

subtype relation is clearly a preorder ; however, because of the record per-

mutation rule, it is not a partial order: there are many pairs of distinct types

where each is a subtype of the other.

To finish the discussion of the subtype relation, let us verify that the ex-

ample at the beginning of the chapter now typechecks. Using the following

abbreviations to avoid running off the edge of the page,

f
def
= λr:{x:Nat}. r.x Rx

def
= {x:Nat}

xy
def
= {x=0,y=1} Rxy

def
= {x:Nat,y:Nat}

and assuming the usual typing rules for numeric constants, we can construct

a derivation for the typing statement ` f xy : Nat as follows:

...

` f : Rx→Nat

` 0 : Nat ` 1 : Nat
T-Rcd

` xy : Rxy
S-RcdWidth

Rxy <: Rx
T-Sub

` xy : Rx
T-App

` f xy : Nat

186 15 Subtyping

→ <: Top Based on λ→ (9-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

v ::= values:

λx:T.t abstraction value

T ::= types:

Top maximum type

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

Subtyping S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Figure 15-1: Simply typed lambda-calculus with subtyping (λ
<:

)

15.2.2 Exercise [«]: Is this the only derivation of the statement ` f xy : Nat? �

15.2.3 Exercise [«]: (1) How many different supertypes does {a:Top,b:Top} have?

(2) Can you find an infinite descending chain in the subtype relation—that is,

an infinite sequence of types S0, S1, etc. such that each Si+1 is a subtype of

Si? (3) What about an infinite ascending chain? �

15.2.4 Exercise [«]: Is there a type that is a subtype of every other type? Is there an

arrow type that is a supertype of every other arrow type? �

15.2 The Subtype Relation 187

→ {} Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

{li=ti
i∈1..n} record

t.l projection

v ::= ... values:

{li=vi
i∈1..n} record value

T ::= ... types:

{li:Ti
i∈1..n} type of records

New evaluation rules t -→ t′

{li=vi
i∈1..n}.lj -→ vj (E-ProjRcd)

t1 -→ t′1

t1.l -→ t′1.l
(E-Proj)

tj -→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

-→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Figure 15-2: Records (same as Figure 11-7)

→ {} <: Extends λ
<:

(15-1) and simple record rules (15-2)

New subtyping rules S <: T

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}

(S-RcdPerm)

Figure 15-3: Records and subtyping

15.2.5 Exercise [««]: Suppose we extend the calculus with the product type con-

structor T1×T2 described in §11.6. It is natural to add a subtyping rule

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

(S-ProdDepth)

corresponding to S-RcdDepth for records. Would it be a good idea to add a

width subtyping rule for products

T1×T2 <: T1 (S-ProdWidth)

as well? �

188 15 Subtyping

15.3 Properties of Subtyping and Typing

Having decided on the definition of the lambda-calculus with subtyping, we

now have some work to do to verify that it makes sense—in particular, that

the preservation and progress theorems of the simply typed lambda-calculus

continue to hold in the presence of subtyping.

15.3.1 Exercise [Recommended, ««]: Before reading on, try to predict where diffi-

culties might arise. In particular, suppose we had made a mistake in defining

the subtype relation and included a bogus subtyping rule in addition to those

above. Which properties of the system can fail? On the other hand, suppose

we omit one of the subtyping rules—can any properties then break? �

We begin by recording one key property of the subtype relation—an analog

of the inversion lemma for the typing relation in the simply typed lambda-

calculus (Lemma 9.3.1). If we know that some type S is a subtype of an arrow

type, then the subtyping inversion lemma tells us that S itself must be an ar-

row type; moreover, it tells us that the left-hand sides of the arrows must be

(contravariantly) related, and so (covariantly) must the right-hand sides. Simi-

lar considerations apply when S is known to be a subtype of a record type: we

know that S has more fields (S-RcdWidth) in some order (S-RcdPerm), and

that the types of common fields are in the subtype relation (S-RcdDepth).

15.3.2 Lemma [Inversion of the subtype relation]:

1. If S <: T1→T2, then S has the form S1→S2, with T1 <: S1 and S2 <: T2.

2. If S <: {li:Ti
i∈1..n}, then S has the form {kj:Sj

j∈1..m}, with at least the

labels {li
i∈1..n}—i.e., {li

i∈1..n} ⊆ {kj
j∈1..m}—and with Sj <: Ti for each com-

mon label li = kj . �

Proof: Exercise [Recommended, ««]. �

To prove that types are preserved during evaluation, we begin with an in-

version lemma for the typing relation (cf. Lemma 9.3.1 for the simply typed

lambda-calculus). Rather than stating the lemma in its most general form, we

give here just the cases that are actually needed in the proof of the preserva-

tion theorem below. (The general form can be read off from the algorithmic

subtype relation in the next chapter, Definition 16.2.2.)

15.3.3 Lemma:

1. If Γ ` λx:S1. s2 : T1→T2, then T1 <: S1 and Γ , x:S1 ` s2 : T2.

15.3 Properties of Subtyping and Typing 189

2. If Γ ` {ka=sa
a∈1..m} : {li:Ti

i∈1..n}, then {li
i∈1..n} ⊆ {ka

a∈1..m} and Γ ` sa :

Ti for each common label ka = li . �

Proof: Straightforward induction on typing derivations, using Lemma 15.3.2

for the T-Sub case. �

Next, we need a substitution lemma for the typing relation. The statement

of this lemma is unchanged from the simply typed lambda-calculus (Lemma

9.3.8), and its proof is nearly identical.

15.3.4 Lemma [Substitution]: If Γ , x:S ` t : T and Γ ` s : S, then Γ ` [x , s]t :

T. �

Proof: By induction on typing derivations. We need new cases for T-Sub and

for the record typing rules T-Rcd and T-Proj, making straightforward use of

the induction hypothesis. The rest is just like the proof of 9.3.8. �

Now, the preservation theorem has the same statement as before. Its proof,

though, is somewhat complicated by subtyping at several points.

15.3.5 Theorem [Preservation]: If Γ ` t : T and t -→ t′, then Γ ` t′ : T. �

Proof: Straightforward induction on typing derivations. Most of the cases

are similar to the proof of preservation for the simply typed lambda-calculus

(9.3.9). We need new cases for the record typing rules and for subsumption.

Case T-Var: t = x

Can’t happen (there are no evaluation rules for variables).

Case T-Abs: t = λx:T1.t2

Can’t happen (t is already a value).

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

From the evaluation rules in Figures 15-1 and 15-2, we see that there are three

rules by which t -→ t′ can be derived: E-App1, E-App2, and E-AppAbs. Proceed

by cases.

Subcase E-App1: t1 -→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Subcase E-App2: t1 = v1 t2 -→ t′2 t′ = v1 t
′
2

Similar.

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t′ = [x, v2]t12

By Lemma 15.3.3(1), T11 <: S11 and Γ , x:S11 ` t12 : T12. By T-Sub, Γ ` t2 :

S11. From this and the substitution lemma (15.3.4), we obtain Γ ` t′ : T12.

190 15 Subtyping

Case T-Rcd: t = {li=ti
i∈1..n} Γ ` ti : Ti for each i

T = {li:Ti
i∈1..n}

The only evaluation rule whose left-hand side is a record is E-Rcd. From the

premise of this rule, we see that tj -→ t′j for some field tj . The result follows

from the induction hypothesis (applied to the corresponding assumption Γ `

tj : Tj) and T-Rcd.

Case T-Proj: t = t1.lj Γ ` t1 : {li:Ti
i∈1..n} T = Tj

From the evaluation rules in Figures 15-1 and 15-2, we see that there are two

rules by which t -→ t′ can be derived: E-Proj, E-ProjRcd.

Subcase E-Proj: t1 -→ t′1 t′ = t′1.lj

The result follows from the induction hypothesis and T-Proj.

Subcase E-ProjRcd: t1 = {ka=va
a∈1..m} lj = kb t′ = vb

By Lemma 15.3.3(2), we have {li
i∈1..n} ⊆ {ka

a∈1..m} and Γ ` va : Ti for each

ka = li . In particular, Γ ` vb : Tj , as desired.

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ` t′ : S. By T-Sub, Γ ` t : T. �

To prove that well-typed terms cannot get stuck, we begin (as in Chapter 9)

with a canonical forms lemma, which tells us the possible shapes of values

belonging to arrow and record types.

15.3.6 Lemma [Canonical Forms]:

1. If v is a closed value of type T1→T2, then v has the form λx:S1.t2.

2. If v is a closed value of type {li:Ti
i∈1..n}, then v has the form {kj=vj

a∈1..m},

with {li
i∈1..n} ⊆ {ka

a∈1..m}. �

Proof: Exercise [Recommended, «««]. �

The progress theorem and its proof are now quite close to what we saw in

the simply typed lambda-calculus. Most of the burden of dealing with subtyp-

ing has been pushed into the canonical forms lemma, and only a few small

changes are needed here.

15.3.7 Theorem [Progress]: If t is a closed, well-typed term, then either t is a value

or else there is some t′ with t -→ t′. �

Proof: By straightforward induction on typing derivations. The variable case

cannot occur (because t is closed). The case for lambda-abstractions is imme-

diate, since abstractions are values. The remaining cases are more interesting.

15.4 The Top and Bottom Types 191

Case T-App: t = t1 t2 ` t1 : T11→T12 ` t2 : T11 T = T12

By the induction hypothesis, either t1 is a value or else it can make a step of

evaluation; likewise t2. If t1 can take a step, then rule E-App1 applies to t. If

t1 is a value and t2 can take a step, then rule E-App2 applies. Finally, if both

t1 and t2 are values, then the canonical forms lemma (15.3.6) tells us that t1

has the form λx:S11.t12, so rule E-AppAbs applies to t.

Case T-Rcd: t = {li=ti
i∈1..n} for each i ∈ 1..n, ` ti : Ti

T = {li:Ti
i∈1..n}

By the induction hypothesis, each ti either is already a value or can make a

step of evaluation. If all of them are values, then t is a value. On the other

hand, if at least one can make a step, then rule E-Rcd applies to t.

Case T-Proj: t = t1.lj ` t1 : {li:Ti
i∈1..n} T = Tj

By the induction hypothesis, either t1 is a value or it can make an evaluation

step. If t1 can make a step, then (by E-Proj) so can t. If t1 is a value, then

by the canonical forms lemma (15.3.6) t1 has the form {ka=vj
a∈1..m}, with

{li
i∈1..n} ⊆ {ka

a∈1..m} and with ` vj : Ti for each li = kj . In particular, lj is

among the labels {ka
a∈1..m} of t1, from which rule E-ProjRcd tells us that t

itself can take an evaluation step.

Case T-Sub: Γ ` t : S S <: T

The result follows directly from the induction hypothesis. �

15.4 The Top and Bottom Types

The maximal type Top is not a necessary part of the simply typed lambda-

calculus with subtyping; it can be removed without damaging the properties

of the system. However, it is included in most presentations, for several rea-

sons. First, it corresponds to the type Object found in most object-oriented

languages. Second, Top is a convenient technical device in more sophisticated

systems combining subtyping and parametric polymorphism. For example, in

System F<: (Chapters 26 and 28), the presence of Top allows us to recover or-

dinary unbounded quantification from bounded quantification, streamlining

the system. Indeed, even records can be encoded in F<:, further streamlining

the presentation (at least for purposes of formal study); this encoding criti-

cally depends on Top. Finally, since Top’s behavior is straightforward and it

is often useful in examples, there is little reason not to keep it.

It is natural to ask whether we can also complete the subtype relation with

a minimal element—a type Bot that is a subtype of every type. The answer is

that we can: this extension is formalized in Figure 15-4.

The first thing to notice is that Bot is empty—there are no closed values

192 15 Subtyping

→ <: Bot Extends λ
<:

(15-1)

New syntactic forms

T ::= ... types:

Bot minimum type

New subtyping rules S <: T

Bot <: T (S-Bot)

Figure 15-4: Bottom type

of type Bot. If there were one, say v, then the subsumption rule plus S-Bot

would allow us to derive ` v : Top→Top, from which the canonical forms

lemma (15.3.6, which still holds under the extension) tells us that v must have

the form λx:S1.t2 for some S1 and t2. On the other hand, by subsumption,

we also have ` v : {}, from which the canonical forms lemma tells us that v

must be a record. The syntax makes it clear that v cannot be both a function

and a record, and so assuming that ` v : Bot has led us to a contradiction.

The emptiness of Bot does not make it useless. On the contrary: Bot pro-

vides a very convenient way of expressing the fact that some operations (in

particular, throwing an exception or invoking a continuation) are not intended

to return. Giving such expressions the type Bot has two good effects: first, it

signals to the programmer that no result is expected (since if the expression

did return a result, it would be a value of type Bot); second, it signals to the

typechecker that such an expression can safely be used in a context expect-

ing any type of value. For example, if the exception-raising term error from

Chapter 14 is given type Bot, then a term like

λx:T.

if <check that x is reasonable> then

<compute result>

else

error

will be well typed because, no matter what the type of the normal result is,

the term error can always be given the same type by subsumption, so the

two branches of the if are compatible, as required by T-If.1

Unfortunately, the presence of Bot significantly complicates the problem

of building a typechecker for the system. A simple typechecking algorithm for

1. In languages with polymorphism, such as ML, we can also use ∀X.X as a result type for

error and similar constructs. This achieves the same effect as Bot by different means: instead

of giving error a type that can be promoted to any type, we give it a type scheme that can be

instantiated to any type. Though they rest on different foundations, the two solutions are quite

similar: in particular, the type ∀X.X is also empty.

15.5 Subtyping and Other Features 193

a language with subtyping needs to rely on inferences like “if an application

t1 t2 is well typed, then t1 must have an arrow type.” In the presence of Bot,

we must refine this to “if t1 t2 is well typed, then t1 must have either an

arrow type or type Bot”; this point is expanded in §16.4. The complications

are magnified further in systems with bounded quantification; see §28.8.

These complications show that adding Bot is a more serious step than

adding Top. We shall omit it from the systems we consider in the remainder

of the book.

15.5 Subtyping and Other Features

As we extend our simple calculus with subtyping toward a full-blown pro-

gramming language, each new feature must be examined carefully to see how

it interacts with subtyping. In this section we consider some of the features

we have seen at this point.2 Later chapters will take up the (significantly

more complex) interactions between subtyping and features such as paramet-

ric polymorphism (Chapters 26 and 28), recursive types (Chapters 20 and 21),

and type operators (Chapter 31).

Ascription and Casting

The ascription operator t as T was introduced in §11.4 as a form of checked

documentation, allowing the programmer to record in the text of the program

the assertion that some subterm of a complex expression has some particular

type. In the examples in this book, ascription is also used to control the way

in which types are printed, forcing the typechecker to use a more readable

abbreviated form instead of the type that it has actually calculated for a term.

In languages with subtyping such as Java and C++, ascription becomes

quite a bit more interesting. It is often called casting in these languages, and

is written (T)t. There are actually two quite different forms of casting—so-

called up-casts and down-casts. The former are straightforward; the latter,

which involve dynamic type-testing, require a significant extension.

Up-casts, in which a term is ascribed a supertype of the type that the type-

checker would naturally assign it, are instances of the standard ascription

operator. We give a term t and a type T at which we intend to “view” t. The

typechecker verifies that T is indeed one of the types of t by attempting to

build a derivation

2. Most of the extensions discussed in this section are not implemented in the fullsub

checker.

194 15 Subtyping

...

Γ ` t : S

...

S <: T
T-Sub

Γ ` t : T
T-Ascribe

Γ ` t as T : T

using the “natural” typing of t, the subsumption rule T-Sub, and the ascrip-

tion rule from §11.4:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

Up-casts can be viewed as a form of abstraction—a way of hiding the existence

of some parts of a value so that they cannot be used in some surrounding

context. For example, if t is a record (or, more generally, an object), then we

can use an up-cast to hide some of its fields (methods).

A down-cast, on the other hand, allows us to assign types to terms that the

typechecker cannot derive statically. To allow down-casts, we make a some-

what surprising change to the typing rule for as:

Γ ` t1 : S

Γ ` t1 as T : T
(T-Downcast)

That is, we check that t1 is well typed (i.e., that it has some type S) and then

assign it type T, without making any demand about the relation between S

and T. For example, using down-casting we can write a function f that takes

any argument whatsoever, casts it down to a record with an a field containing

a number, and returns this number:

f = λ(x:Top) (x as {a:Nat}).a;

In effect, the programmer is saying to the typechecker, “I know (for reasons

that are too complex to explain in terms of the typing rules) that f will always

be applied to record arguments with numeric a fields; I want you to trust me

on this one.”

Of course, blindly trusting such assertions will have a disastrous effect on

the safety of our language: if the programmer somehow makes a mistake

and applies f to a record that does not contain an a field, the results might

(depending on the details of the compiler) be completely arbitrary! Instead,

our motto should be “trust, but verify.” At compile time, the typechecker

simply accepts the type given in the down-cast. However, it inserts a check

that, at run time, will verify that the actual value does indeed have the type

claimed. In other words, the evaluation rule for ascriptions should not just

discard the annotation, as our original evaluation rule for ascriptions did,

v1 as T -→ v1 (E-Ascribe)

15.5 Subtyping and Other Features 195

but should first compare the actual (run-time) type of the value with the de-

clared type:

` v1 : T

v1 as T -→ v1

(E-Downcast)

For example, if we apply the function f above to the argument {a=5,b=true},

then this rule will check (successfully) that ` {a=5,b=true} : {a:Nat}. On

the other hand, if we apply f to {b=true}, then the E-Downcast rule will not

apply and evaluation will get stuck at this point. This run-time check recovers

the type preservation property.

15.5.1 Exercise [«« 3]: Prove this. �

Of course, we lose progress, since a well-typed program can certainly get

stuck by attempting to evaluate a bad down-cast. Languages that provide

down-casts normally address this in one of two ways: either by making a

failed down-cast raise a dynamic exception that can be caught and handled

by the program (cf. Chapter 14) or else by replacing the down-cast operator

by a form of dynamic type test:

Γ ` t1 : S Γ , x:T ` t2 : U Γ ` t3 : U

Γ ` if t1 in T then x→t2 else t3 : U
(T-Typetest)

` v1 : T

if v1 in T then x→t2 else t3 -→ [x, v1]t2

(E-Typetest1)

6` v1 : T

if v1 in T then x→t2 else t3 -→ t3

(E-Typetest2)

Uses of down-casts are actually quite common in languages like Java. In

particular, down-casts support a kind of “poor-man’s polymorphism.” For

example, “collection classes” such as Set and List are monomorphic in Java:

instead of providing a type List T (lists containing elements of type T) for

every type T, Java provides just List, the type of lists whose elements belong

to the maximal type Object. Since Object is a supertype of every other type

of objects in Java, this means that lists may actually contain anything at all:

when we want to add an element to a list, we simply use subsumption to

promote its type to Object. However, when we take an element out of a list,

all the typechecker knows about it is that it has type Object. This type does

not warrant calling most of the methods of the object, since the type Object

mentions only a few very generic methods for printing and such, which are

shared by all Java objects. In order to do anything useful with it, we must first

downcast it to some expected type T.

It has been argued—for example, by the designers of Pizza (Odersky and

Wadler, 1997), GJ (Bracha, Odersky, Stoutamire, and Wadler, 1998), PolyJ (My-

196 15 Subtyping

ers, Bank, and Liskov, 1997), and NextGen (Cartwright and Steele, 1998)—that

it is better to extend the Java type system with real polymorphism (cf. Chap-

ter 23), which is both safer and more efficient than the down-cast idiom,

requiring no run-time tests. On the other hand, such extensions add signif-

icant complexity to an already-large language, interacting with many other

features of the language and type system (see Igarashi, Pierce, and Wadler,

1999, Igarashi, Pierce, and Wadler, 2001, for example); this fact supports a

view that the down-cast idiom offers a reasonable pragmatic compromise

between safety and complexity.

Down-casts also play a critical role in Java’s facilities for reflection. Using

reflection, the programmer can tell the Java run-time system to dynamically

load a bytecode file and create an instance of some class that it contains.

Clearly, there is no way that the typechecker can statically predict the shape

of the class that will be loaded at this point (the bytecode file can be obtained

on demand from across the net, for example), so the best it can do is to assign

the maximal type Object to the newly created instance. Again, in order to do

anything useful, we must downcast the new object to some expected type T,

handle the run-time exception that may result if the class provided by the

bytecode file does not actually match this type, and then go ahead and use it

with type T.

To close the discussion of down-casts, a note about implementation is in

order. It seems, from the rules we have given, that including down-casts to

a language involves adding all the machinery for typechecking to the run-

time system. Worse, since values are typically represented differently at run

time than inside the compiler (in particular, functions are compiled into byte-

codes or native machine instructions), it appears that we will need to write a

different typechecker for calculating the types needed in dynamic checks. To

avoid this, real languages combine down-casts with type tags—single-word

tags (similar in some ways to ML’s datatype constructors and the variant tags

in §11.10) that capture a run-time “residue” of compile-time types and that

are sufficient to perform dynamic subtype tests. Chapter 19 develops one

instance of this mechanism in detail.

Variants

The subtyping rules for variants (cf. §11.10) are nearly identical to the ones

for records; the only difference is that the width rule S-VariantWidth al-

lows new variants to be added, not dropped, when moving from a subtype

to a supertype. The intuition is that a tagged expression <l=t> belongs to a

variant type <li:Ti
i∈1..n> if its label l is one of the possible labels {li} listed in

the type; adding more labels to this set decreases the information it gives us

15.5 Subtyping and Other Features 197

→ <> <: Extends λ
<:

(15-1) and simple variant rules (11-11)

New syntactic forms

t ::= ... terms:

<l=t> (no as) tagging

New typing rules Γ ` t : T

Γ ` t
1
: T

1

Γ ` <l
1
=t

1
> : <l1:T1>

(T-Variant)

New subtyping rules S <: T

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k>

(S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>

(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>

(S-VariantPerm)

Figure 15-5: Variants and subtyping

about its elements. A singleton variant type <l1:T1> tells us precisely what

label its elements are tagged with; a two-variant type <l1:T1,l2:T2> tells

us that its elements have either label l1 or label l2, etc. Conversely, when we

use variant values, it is always in the context of a case statement, which must

have one branch for each variant listed by the type—listing more variants just

means forcing case statements to include some unnecessary extra branches.

Another consequence of combining subtyping and variants is that we can

drop the annotation from the tagging construct, writing just <l=t> instead

of <l=t> as <li:Ti
i∈1..n>, as we did in §11.10, and changing the typing rule

for tagging so that it assigns <l1=t1> the precise type <l1:T1>. We can then

use subsumption plus S-VariantWidth to obtain any larger variant type.

Lists

We have seen a number of examples of covariant type constructors (records

and variants, as well as function types, on their right-hand sides) and one

contravariant constructor (arrow, on the left-hand side). The List constructor

is also covariant: if we have a list whose elements have type S1, and S1 <: T1,

then we can safely regard our list as having elements of type T1.

S1 <: T1

List S1 <: List T1

(S-List)

198 15 Subtyping

References

Not all type constructors are covariant or contravariant. The Ref constructor,

for example, must be taken to be invariant in order to preserve type safety.

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-Ref)

For Ref S1 to be a subtype of Ref T1, we demand that S1 and T1 be equiva-

lent under the subtype relation—each a subtype of the other. This gives us

the flexibility to reorder the fields of records under a Ref constructor—for

example, Ref {a:Bool,b:Nat} <: Ref {b:Nat,a:Bool}—but nothing more.

The reason for this very restrictive subtyping rule is that a value of type

Ref T1 can be used in a given context in two different ways: for both reading

(!) and writing (:=). When it is used for reading, the context expects to obtain

a value of type T1, so if the reference actually yields a value of type S1 then we

need S1 <: T1 to avoid violating the context’s expectations. On the other hand,

if the same reference cell is used for writing, then the new value provided by

the context will have type T1. If the actual type of the reference is Ref S1,

then someone else may later read this value and use it as an S1; this will be

safe only if T1 <: S1.

15.5.2 Exercise [« 3]: (1) Write a short program that will fail with a run-time type

error (i.e., its evaluation will get stuck) if the first premise of S-Ref is dropped.

(2) Write another program that will fail if the second premise is dropped. �

Arrays

Clearly, the motivations behind the invariant subtyping rule for references

also apply to arrays, since the operations on arrays include forms of both

dereferencing and assignment.

S1 <: T1 T1 <: S1

Array S1 <: Array T1

(S-Array)

Interestingly, Java actually permits covariant subtyping of arrays:

S1 <: T1

Array S1 <: Array T1

(S-ArrayJava)

(in Java syntax, S1[] <: T1[]). This feature was originally introduced to com-

pensate for the lack of parametric polymorphism in the typing of some basic

operations such as copying parts of arrays, but is now generally considered a

flaw in the language design, since it seriously affects the performance of pro-

grams involving arrays. The reason is that the unsound subtyping rule must

be compensated with a run-time check on every assignment to any array, to

15.5 Subtyping and Other Features 199

make sure the value being written belongs to (a subtype of) the actual type of

the elements of the array.

15.5.3 Exercise [««« 3]: Write a short Java program involving arrays that type-

checks but fails (by raising an ArrayStoreException) at run time. �

References Again

A more refined analysis of references, first explored by Reynolds in the lan-

guage Forsythe (1988), can be obtained by introducing two new type construc-

tors, Source and Sink. Intuitively, Source T is thought of as a capability to

read values of type T from a cell (but which does not permit assignment),

while Sink T is a capability to write to a cell. Ref T is a combination of these

two capabilities, giving permission both to read and to write.

The typing rules for dereferencing and assignment (Figure 13-1) are modi-

fied so that they demand only the appropriate capability.

Γ | Σ ` t1 : Source T11

Γ | Σ ` !t1 : T11

(T-Deref)

Γ | Σ ` t1 : Sink T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-Assign)

Now, if we have only the capability to read values from a cell and if these

values are guaranteed to have type S1, then it is safe to “downgrade” this to

a capability to read values of type T1, as long as S1 is a subtype of T1. That is,

the Source constructor is covariant.

S1 <: T1

Source S1 <: Source T1

(S-Source)

Conversely, a capability to write values of type S1 to a given cell can be down-

graded to a capability to write values of some smaller type T1: the Sink con-

structor is contravariant.

T1 <: S1

Sink S1 <: Sink T1

(S-Sink)

Finally, we express the intuition that Ref T1 is a combination of read and

write capabilities by two subtyping rules that permit a Ref to be downgraded

to either a Source or a Sink.

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)

200 15 Subtyping

Channels

The same intuitions (and identical subtyping rules) form the basis for the

treatment of channel types in recent concurrent programming languages such

as Pict (Pierce and Turner, 2000; Pierce and Sangiorgi, 1993). The key obser-

vation is that, from the point of view of typing, a communication channel

behaves exactly like a reference cell: it can be used for both reading and writ-

ing, and, since it is difficult to determine statically which reads correspond

to which writes, the only simple way to ensure type safety is to require that

all the values passed along the channel must belong to the same type. Now,

if we pass someone only the capability to write to a given channel, then it is

safe for them to pass this capability to someone else who promises to write

values of a smaller type—the “output channel” type constructor is contravari-

ant. Similarly, if we pass just the capability to read from a channel, then this

capability can safely be downgraded to a capability for reading values of any

larger type—the “input channel” constructor is covariant.

Base Types

In a full-blown language with a rich set of base types, it is often convenient

to introduce primitive subtype relations among these types. For example, in

many languages the boolean values true and false are actually represented

by the numbers 1 and 0. We can, if we like, expose this fact to the programmer

by introducing a subtyping axiom Bool <: Nat. Now we can write compact

expressions like 5*b instead of if b then 5 else 0.

15.6 Coercion Semantics for Subtyping

Throughout this chapter, our intuition has been that subtyping is “semanti-

cally insignificant.” The presence of subtyping does not change the way pro-

grams are evaluated; rather, subtyping is just a way of obtaining additional

flexibility in typing terms. This interpretation is simple and natural, but it car-

ries some performance penalties—particularly for numerical calculations and

for accessing record fields—that may not be acceptable in high-performance

implementations. We sketch here an alternative coercion semantics and dis-

cuss some new issues that it, in its turn, raises. This section can be skipped

if desired.

15.6 Coercion Semantics for Subtyping 201

Problems with the Subset Semantics

As we saw in §15.5, it can be convenient to allow subtyping between dif-

ferent base types. But some “intuitively reasonable” inclusions between base

types may have a detrimental effect on performance. For example, suppose

we introduce the axiom Int <: Float, so that integers can be used in floating-

point calculations without writing explicit coercions—allowing us to write, for

example, 4.5 + 6 instead of 4.5 + intToFloat(6). Under the subset seman-

tics, this implies that the set of integer values must literally be a subset of

the set of floats. But, on most real machines, the concrete representations of

integers and floats are entirely different: integers are usually represented in

twos-complement form, while floats are divided up into mantissa, exponent,

and sign, plus some special cases such as NaN (not-a-number).

To reconcile these representational differences with the subset semantics

of subtyping, we can adopt a common tagged (or boxed) representation for

numbers: an integer is represented as a machine integer plus a tag (either in a

separate header word or in the high-order bits of the same word as the actual

integer), and a float is represented as a machine float plus a different tag. The

type Float then refers to the entire set of tagged numbers (floats and ints),

while Int refers just to the tagged ints.

This scheme is not unreasonable: it corresponds to the representation strat-

egy actually used in many modern language implementations, where the tag

bits (or words) are also needed to support garbage collection. The downside is

that every primitive operation on numbers must actually be implemented as

a tag check on the arguments, a few instructions to unbox the primitive num-

bers, one instruction for the actual operation, and a couple of instructions

for re-boxing the result. Clever compiler optimizations can eliminate some of

this overhead, but, even with the best currently available techniques, it sig-

nificantly degrades performance, especially in heavily numeric code such as

graphical and scientific calculations.

A different performance problem arises when records are combined with

subtyping—in particular, with the permutation rule. Our simple evaluation

rule for field projection

{li=vi
i∈1..n}.lj -→ vj (E-ProjRcd)

can be read as “search for lj among the labels of the record, and yield the

associated value vj .” But, in a real implementation, we certainly do not want

to perform a linear search at run time through the fields of the record to

find the desired label. In a language without subtyping (or with subtyping

but without the permutation rule), we can do much better: if the label lj

appears third in the type of the record, then we know statically that all run-

time values with this type will have lj as their third field, so at run time we

202 15 Subtyping

do not need to look at the labels at all (in fact, we can omit them completely

from the run-time representation, effectively compiling records into tuples).

To obtain the value of the lj field, we generate an indirect load through a

register pointing to the start of the record, with a constant offset of 3 words.

The presence of the permutation rule foils this technique, since knowing that

some record value belongs to a type where lj appears as the third field tells

us nothing at all, now, about where the lj field is actually stored in the record.

Again, clever optimizations and run-time tricks can palliate this problem, but

in general field projection can require some form of search at run time.3

Coercion Semantics

We can address both of these problems by adopting a different semantics, in

which we “compile away” subtyping by replacing it with run-time coercions.

If an Int is promoted to a Float during typechecking, for example, then at

run time we physically change this number’s representation from a machine

integer to a machine float. Similarly, a use of the record permutation sub-

typing rule will be compiled into a piece of code that literally rearranges the

order of the fields. Primitive numeric operations and field accesses can now

proceed without the overhead of unboxing or search.

Intuitively, the coercion semantics for a language with subtyping is ex-

pressed as a function that transforms terms from this language into a lower-

level language without subtyping. Ultimately, the low-level language might

be machine code for some concrete processor. For purposes of illustration,

however, we can keep the discussion on a more abstract level. For the source

language, we choose the one we have been using for most of the chapter—

the simply typed lambda-calculus with subtyping and records. For the low-

level target language, we choose the pure simply typed lambda-calculus with

records and a Unit type (which we use to interpret Top).

Formally, the compilation consists of three translation functions—one for

types, one for subtyping, and one for typing. For types, the translation just

replaces Top with Unit. We write this function as [[—]].

[[Top]] = Unit

[[T1→T2]] = [[T1]]→[[T2]]

[[{li:Ti
i∈1..n}]] = {li:[[Ti]]

i∈1..n}

3. Similar observations apply to accessing fields and methods of objects, in languages where

object subtyping allows permutation. This is the reason that Java, for example, restricts sub-

typing between classes so that new fields can only be added at the end. Subtyping between

interfaces (and between classes and interfaces) does allow permutation—if it did not, inter-

faces would be of hardly any use—and the manual explicitly warns that looking up a method

from an interface will in general be slower than from a class.

15.6 Coercion Semantics for Subtyping 203

For example, [[Top→{a:Top,b:Top}]] = Unit→{a:Unit,b:Unit}. (The other

translations will also be written [[—]]; the context will always make it clear

which one we are talking about.)

To translate a term, we need to know where subsumption is used in type-

checking it, since these are the places where run-time coercions will be in-

serted. One convenient way of formalizing this observation is to give the

translation as a function on derivations of typing statements. Similarly, to

generate a coercion function transforming values of type S to type T, we need

to know not just that S is a subtype of T, but also why. We accomplish this by

generating coercions from subtyping derivations.

A little notation for naming derivations is needed to formalize the trans-

lations. Write C :: S <: T to mean “C is a subtyping derivation tree whose

conclusion is S <: T.” Similarly, write D :: Γ ` t : T to mean “D is a typing

derivation whose conclusion is Γ ` t : T.”

Let us look first at the function that, given a derivation C for the subtyping

statement S <: T, generates a coercion [[C]]. This coercion is nothing but a

function (in the target language of the translation, λ→) from type [[S]] to type

[[T]]. The definition goes by cases on the final rule used in C.
[[

T <: T
(S-Refl)

]]

= λx:[[T]]. x

[[

S <: Top
(S-Top)

]]

= λx:[[S]]. unit

[[

C1 :: S <: U C2 :: U <: T

S <: T
(S-Trans)

]]

= λx:[[S]]. [[C2]]([[C1]] x)

[[

C1 :: T1 <: S1 C2 :: S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

]]

= λf:[[S1→S2]]. λx:[[T1]].

[[C2]](f([[C1]] x))
[[

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n}
(S-RcdWidth)

]]

= λr:{li:[[Ti]]
i∈1..n+k}.

{li=r.li
i∈1..n}

[[

for each i Ci :: Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

]]

= λr:{li:[[Si]]
i∈1..n}.

{li=[[Ci]](r.li)
i∈1..n}

[[

{kj:Sj
j∈1..n} perm. of {li:Ti i∈1..n}

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

]]

= λr:{kj:[[Si]]
j∈1..n}.

{li=r.li
i∈1..n}

15.6.1 Lemma: If C :: S <: T, then ` [[C]] : [[S]]→[[T]]. �

Proof: Straightforward induction on C. �

Typing derivations are translated in a similar way. IfD is a derivation of the

statement Γ ` t : T, then its translation [[D]] is a target-language term of type

204 15 Subtyping

[[T]]. This translation function is often called the Penn translation, after the

group at the University of Pennsylvania that first studied it (Breazu-Tannen,

Coquand, Gunter, and Scedrov, 1991).
[[

x:T ∈ Γ

Γ ` x : T
(T-Var)

]]

= x

[[

D2 :: Γ , x:T1 ` t2 : T2

Γ ` λx:T1 : T1→T2

(T-Abs)

]]

= λx:[[T1]]. [[D2]]

[[

D1 :: Γ ` t1 : T11→T12 D2 :: Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

]]

= [[D1]] [[D2]]

[[

for each i Di :: Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

]]

= {li=[[Di]]
i∈1..n}

[[

D1 :: Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

]]

= [[D1]].lj

[[

D :: Γ ` t : S C :: S <: T

Γ ` t : T
(T-Sub)

]]

= [[C]] [[D]]

15.6.2 Theorem: If D :: Γ ` t : T, then [[Γ]] ` [[D]] : [[T]], where [[Γ]] is the point-

wise extension of the type translation to contexts: [[∅]] = ∅ and [[Γ , x:T]] =

[[Γ]], x:[[T]]. �

Proof: Straightforward induction on D, using Lemma 15.6.1 for the T-Sub

case. �

Having defined these translations, we can drop the evaluation rules for the

high-level language with subtyping, and instead evaluate terms by typecheck-

ing them (using the high-level typing and subtyping rules), translating their

typing derivations to the low-level target language, and then using the evalua-

tion relation of this language to obtain their operational behavior. This strat-

egy is actually used in some high-performance implementations of languages

with subtyping, such as the Yale compiler group’s experimental Java compiler

(League, Shao, and Trifonov, 1999; League, Trifonov, and Shao, 2001).

15.6.3 Exercise [««« 3]: Modify the translations above to use simply typed lambda-

calculus with tuples (instead of records) as a target language. Check that The-

orem 15.6.2 still holds. �

Coherence

When we give a coercion semantics for a language with subtyping, there is

a potential pitfall that we need to be careful to avoid. Suppose, for example,

15.6 Coercion Semantics for Subtyping 205

that we extend the present language with the base types Int, Bool, Float,

and String. The following primitive coercions might all be useful:

[[Bool <: Int]] = λb:Bool. if b then 1 else 0

[[Int <: String]] = intToString

[[Bool <: Float]] = λb:Bool. if b then 1.0 else 0.0

[[Float <: String]] = floatToString

The functions intToString and floatToString are primitives that con-

struct string representations of numbers. For the sake of the example, sup-

pose that intToString(1) = "1", while floatToString(1.0) = "1.000".

Now, suppose we are asked to evaluate the term

(λx:String.x) true;

using the coercion semantics. This term is typable, given the axioms above

for the primitive types. In fact, it is typable in two distinct ways: we can

either use subsumption to promote Bool to Int and then to String, to show

that true is an appropriate argument to a function of type String→String,

or we can promote Bool to Float and then to String. But if we translate

these derivations into λ→, we get different behaviors. If we coerce true to

type Int, we get 1, from which intToString yields the string "1". But if we

instead coerce true to a float and then, using floatToString, to a String

(following the structure of a typing derivation in which true : String is

proved by going via Float), we obtain "1.000". But "1" and "1.000" are

very different strings: they do not even have the same length. In other words,

the choice of how to prove ` (λx:String. x) true : String affects the way

the translated program behaves! But this choice is completely internal to the

compiler—the programmer writes only terms, not derivations—so we have

designed a language in which programmers cannot control or even predict

the behavior of the programs they write.

The appropriate response to such problems is to impose an additional re-

quirement, called coherence, on the definition of the translation functions.

15.6.4 Definition: A translation [[—]] from typing derivations in one language to

terms in another is coherent if, for every pair of derivations D1 and D2 with

the same conclusion Γ ` t : T, the translations [[D1]] and [[D2]] are behav-

iorally equivalent terms of the target language. �

In particular, the translations given above (with no base types) are coherent.

To recover coherence when we consider base types (with the axioms above),

it suffices to change the definition of the floatToString primitive so that

floatToString(0.0) = "0" and floatToString(1.0) = "1".

206 15 Subtyping

Proving coherence, especially for more complex languages, can be a tricky

business. See Reynolds (1980), Breazu-Tannen et al. (1991), Curien and Ghelli

(1992), and Reynolds (1991).

15.7 Intersection and Union Types

A powerful refinement of the subtype relation can be obtained by adding

an intersection operator to the language of types. Intersection types were in-

vented by Coppo, Dezani, Sallé, and Pottinger (Coppo and Dezani-Ciancaglini,

1978; Coppo, Dezani-Ciancaglini, and Sallé, 1979; Pottinger, 1980). Accessible

introductions can be found in Reynolds (1988, 1998b), Hindley (1992), and

Pierce (1991b).

The inhabitants of the intersection type T1 ∧ T2 are terms belonging to both

S and T—that is, T1 ∧ T2 is an order-theoretic meet (greatest lower bound) of

T1 and T2. This intuition is captured by three new subtyping rules.

T1 ∧ T2 <: T1 (S-Inter1)

T1 ∧ T2 <: T2 (S-Inter2)

S <: T1 S <: T2

S <: T1 ∧ T2

(S-Inter3)

One additional rule allows a natural interaction between intersection and ar-

row types.

S→T1 ∧ S→T2 <: S→(T1∧T2) (S-Inter4)

The intuition behind this rule is that, if we know a term has the function

types S→T1 and S→T2, then we can certainly pass it an S and expect to get

back both a T1 and a T2.

The power of intersection types is illustrated by the fact that, in a call-

by-name variant of the simply typed lambda-calculus with subtyping and in-

tersections, the set of untyped lambda-terms that can be assigned types is

exactly the set of normalizing terms—i.e., a term is typable iff its evaluation

terminates! This immediately implies that the type reconstruction problem

(see Chapter 22) for calculi with intersections is undecidable.

More pragmatically, the interest of intersection types is that they sup-

port a form of finitary overloading. For example, we might assign the type

(Nat→Nat→Nat) ∧ (Float→Float→Float) to an addition operator that

can be used on both natural numbers and floats (using tag bits in the run-

time representation of its arguments, for example, to select the correct in-

struction).

Unfortunately, the power of intersection types raises some difficult prag-

matic issues for language designers. So far, only one full-scale language,

15.8 Notes 207

Forsythe (Reynolds, 1988), has included intersections in their most general

form. A restricted form known as refinement types may prove more manage-

able (Freeman and Pfenning, 1991; Pfenning, 1993b; Davies, 1997).

The dual notion of union types, T1 ∨ T2, also turns out to be quite useful.

Unlike sum and variant types (which, confusingly, are sometimes also called

“unions”), T1 ∨ T2 denotes the ordinary union of the set of values belonging

to T1 and the set of values belonging to T2, with no added tag to identify the

origin of a given element. Thus, Nat ∨ Nat is actually just another name for

Nat. Non-disjoint union types have long played an important role in program

analysis (Palsberg and Pavlopoulou, 1998), but have featured in few program-

ming languages (notably Algol 68; cf. van Wijngaarden et al., 1975); recently,

though, they are increasingly being applied in the context of type systems for

processing of “semistructured” database formats such as XML (Buneman and

Pierce, 1998; Hosoya, Vouillon, and Pierce, 2001).

The main formal difference between disjoint and non-disjoint union types

is that the latter lack any kind of case construct: if we know only that a value

v has type T1 ∨ T2, then the only operations we can safely perform on v

are ones that make sense for both T1 and T2. (For example, if T1 and T2 are

records, it makes sense to project v on their common fields.) The untagged

union type in C is a source of type safety violations precisely because it

ignores this restriction, allowing any operation on an element of T1 ∨ T2

that makes sense for either T1 or T2.

15.8 Notes

The idea of subtyping in programming languages goes back to the 1960s, in

Simula (Birtwistle, Dahl, Myhrhaug, and Nygaard, 1979) and its relatives. The

first formal treatments are due to Reynolds (1980) and Cardelli (1984).

The typing and—especially—subtyping rules dealing with records are some-

what heavier than most of the other rules we have seen, involving either vari-

able numbers of premises (one for each field) or additional mechanisms like

permutations on the indices of fields. There are many other ways of writing

these rules, but all either suffer from similar complexity or else avoid it by in-

troducing informal conventions (e.g., ellipsis: “l1:T1 . . . ln:Tn”). Frustration

with this state of affairs led Cardelli and Mitchell to develop their calculus

of Operations on Records (1991), in which the macro operation of creating

a multi-field record is broken down into a basic empty record value plus an

operation for adding a single field at a time. Additional operations such as

in-place field update and record concatenation (Harper and Pierce, 1991) can

also be considered in this setting. The typing rules for these operations be-

208 15 Subtyping

come rather subtle, especially in the presence of parametric polymorphism,

so most language designers prefer to stick with ordinary records. Neverthe-

less, Cardelli and Mitchell’s system remains an important conceptual land-

mark. An alternative treatment of records based on row-variable polymor-

phism has been developed by Wand (1987, 1988, 1989b), Rémy (1990, 1989,

1992), and others, and forms the basis for the object-oriented features of

OCaml (Rémy and Vouillon, 1998; Vouillon, 2000).

The fundamental problem addressed by a type theory is to insure that pro-

grams have meaning. The fundamental problem caused by a type theory is

that meaningful programs may not have meanings ascribed to them. The

quest for richer type systems results from this tension. —Mark Mannasse

16 Metatheory of Subtyping

The definition in the previous chapter of the simply typed lambda-calculus

with subtyping is not immediately suitable for implementation. Unlike the

other calculi we have seen, the rules of this system are not syntax directed—

they cannot just be “read from bottom to top” to yield a typechecking algo-

rithm. The main culprits are the rules of subsumption (T-Sub) in the typing

relation and transitivity (S-Trans) in the subtype relation.

The reason T-Sub is problematic is that the term in its conclusion is speci-

fied as a bare metavariable t:

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Every other typing rule specifies a term of some specific form—T-Abs applies

only to lambda-abstractions, T-Var only to variables, etc.—while T-Sub can be

applied to any kind of term. This means that, if we are given a term t whose

type we are trying to calculate, it will always be possible to apply either T-Sub

or the other rule whose conclusion matches the shape of t.

S-Trans is problematic for the same reason—its conclusion overlaps with

the conclusions of all the other rules.

S <: U U <: T

S <: T
(S-Trans)

Since S and T are bare metavariables, we can potentially use S-Trans as the

final rule in a derivation of any subtyping statement. Thus, a naive “bottom to

top” implementation of the subtyping rules would never know whether to try

using this rule or whether to try another rule whose more specific conclusion

also matches the two types whose membership in the subtype relation we are

trying to check.

The calculus studied in this chapter is the simply typed lambda-calculus with subtyping (Figure

15-1) and records (15-3). The corresponding OCaml implementation is rcdsub. §16.3 also deals

with booleans and conditionals (8-1); the OCaml implementation for this section is joinsub.

§16.4 extends the discussions to Bot; the corresponding implementation is bot.

210 16 Metatheory of Subtyping

There is one other problem with S-Trans. Both of its premises mention the

metavariable U, which does not appear in the conclusion. If we read the rule

naively from bottom to top, it says that we should guess a type U and then

attempt to show that S <: U and U <: T. Since there are an infinite number of

Us that we could guess, this strategy has little hope of success.

The S-Refl rule also overlaps the conclusions of the other subtyping rules.

This is less severe than the problems with T-Sub and S-Trans: the reflexivity

rule has no premises, so if it matches a subtyping statement we are trying to

prove, we can succeed immediately. Still, it is another reason why the rules

are not syntax directed.

The solution to all of these problems is to replace the ordinary (or declar-

ative) subtyping and typing relations by two new relations, called the algo-

rithmic subtyping and algorithmic typing relations, whose sets of inference

rules are syntax directed. We then justify this switch by showing that the

original subtyping and typing relations actually coincide with the algorithmic

presentations: the statement S <: T is derivable from the algorithmic subtyp-

ing rules iff it is derivable from the declarative rules, and a term is typable by

the algorithmic typing rules iff it is typable under the declarative rules.

We develop the algorithmic subtype relation in §16.1 and the algorithmic

typing relation in §16.2. §16.3 addresses the special typechecking problems

of multi-branch constructs like if...then...else, which require additional

structure (the existence of least upper bounds, or joins, in the subtype rela-

tion). §16.4 considers the minimal type Bot.

16.1 Algorithmic Subtyping

A crucial element of any implementation of a language with subtyping is an

algorithm for checking whether one type is a subtype of another. This subtype

checker will be called by the typechecker when, for example, it encounters an

application t1 t2 where t1 has type T→U and t2 has type S. Its function is to

decide whether the statement S <: T is derivable from the subtyping rules in

Figures 15-1 and 15-3. It accomplishes this by checking whether (S,T) belongs

to another relation, written ñ̀ S <: T (“S is algorithmically a subtype of T”),

which is defined in such a way that membership can be decided simply by

following the structure of the types, and which contains the same pairs of

types as the ordinary subtype relation. The significant difference between the

declarative and algorithmic relations is that the algorithmic relation drops

the S-Trans and S-Refl rules.

To begin with, we need to reorganize the declarative system a little. As we

saw on page 184, we need to use transitivity to “paste together” subtyping

16.1 Algorithmic Subtyping 211

→ {} <: Extends 15-1 and 15-3

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

{li
i∈1..n} ⊆ {kj

j∈1..m}

kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

Figure 16-1: Subtype relation with records (compact version)

derivations for records involving combinations of depth, width, and permu-

tation subtyping. Before we can drop S-Trans, we must first add a rule that

bundles depth, width, and permutation subtyping into one:

{li
i∈1..n} ⊆ {kj

j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

16.1.1 Lemma: If S <: T is derivable from the subtyping rules including S-RcdDepth,

S-Rcd-Width, and S-Rcd-Perm (but not S-Rcd), then it can also be derived

using S-Rcd (and not S-RcdDepth, S-Rcd-Width, or S-Rcd-Perm), and vice

versa. �

Proof: Straightforward induction on derivations. �

Lemma 16.1.1 justifies eliminating rules S-RcdDepth, S-Rcd-Width, and

S-Rcd-Perm in favor of S-Rcd. Figure 16-1 summarizes the resulting system.

Next, we show that, in the system of Figure 16-1, the reflexivity and transi-

tivity rules are inessential.

16.1.2 Lemma:

1. S <: S can be derived for every type S without using S-Refl.

2. If S <: T is derivable, then it can be derived without using S-Trans. �

Proof: Exercise [Recommended, «««]. �

16.1.3 Exercise [«]: If we add the type Bool, how do these properties change? �

This brings us to the definition of the algorithmic subtype relation.

16.1.4 Definition: The algorithmic subtyping relation is the least relation on types

closed under the rules in Figure 16-2. �

212 16 Metatheory of Subtyping

→ {} <:

Algorithmic subtyping ñ̀ S <: T

ñ̀ S <: Top (SA-Top)

{li
i∈1..n} ⊆ {kj

j∈1..m}

if kj = li , then ñ̀ Sj <: Ti
ñ̀ {kj:Sj

j∈1..m} <: {li:Ti
i∈1..n}

(SA-Rcd)

ñ̀ T1 <: S1
ñ̀ S2 <: T2

ñ̀ S1→S2 <: T1→T2

(SA-Arrow)

Figure 16-2: Algorithmic subtyping

We say that the algorithmic rules are sound because every statement that

can be derived from algorithmic rules can also be derived from the declarative

rules (the algorithmic rules do not prove anything new), and complete because

every statement that can be derived from the declarative rules can also be

derived from the algorithmic rules (the algorithmic rules prove everything

that could be proved before).

16.1.5 Proposition [Soundness and completeness]: S <: T iff ñ̀ S <: T. �

Proof: Each direction proceeds by induction on derivations, using one of the

two previous lemmas. �

Now the algorithmic rules, being syntax directed, can be read directly as an

algorithm for checking the algorithmic subtype relation (and hence also the

declarative subtype relation). In a more conventional pseudocode notation,

the algorithm looks like this:

subtype(S,T) = if T = Top, then true

else if S = S1→S2 and T = T1→T2

then subtype(T1,S1) ∧ subtype(S2,T2)

else if S = {kj:Sj
j∈1..m} and T = {li:Ti

i∈1..n}

then {li
i∈1..n} ⊆ {kj

j∈1..m}

∧ for all i there is some j ∈ 1..m with kj = li

and subtype(Sj ,Ti)

else false.

A concrete realization of this algorithm in ML appears in Chapter 17.

Finally, we need to verify that the algorithmic subtype relation is total—i.e.,

that the recursive function subtype derived from the algorithmic rules returns

either true or false, for every pair of inputs, after a finite amount of time.

16.2 Algorithmic Typing 213

16.1.6 Proposition [Termination]: If ñ̀ S <: T is derivable, then subtype(S,T) will

return true. If not, then subtype(S,T) will return false. �

This theorem, together with the soundness and completeness of the al-

gorithmic rules, essentially asserts that the subtype function is a decision

procedure for the declarative subtype relation.

Proof: The first claim is easy to check (by a straightforward induction on a

derivation of ñ̀ S <: T). Conversely, it is also easy to check that, if subtype(S,T)

returns true, then ñ̀ S <: T. Thus, to establish the second claim, it suffices to

show that subtype(S,T) must always return something—i.e., that it cannot di-

verge. This we can do by observing that the sum of the sizes of the input pair

S and T is always strictly larger than the sum of the sizes of the arguments to

any recursive call that that algorithm makes. Since this sum is always positive,

an infinite sequence of recursive calls is not possible. �

The reader may wonder whether we could have saved ourselves all the work

in this section by simply taking the algorithmic definition of the subtype re-

lation as the official definition and never even mentioning the declarative

version. The answer is a qualified “Yes.” We can certainly take the algorith-

mic definition as the official one when defining the calculus, if we prefer.

However, this does not actually save much work, because, to show that the

typing relation (which depends on the subtype relation) is well-behaved, we

will need to know that subtyping is reflexive and transitive, and these proofs

involve more or less the same work as we have done here. (On the other hand,

language definitions do often adopt an algorithmic presentation of the typing

relation. We will see one example of this in Chapter 19.)

16.2 Algorithmic Typing

Having gotten the subtype relation under control, we need to do the same

with the typing relation. As we saw on page 209, the only non-syntax-directed

typing rule is T-Sub, so this is the one we must deal with. As with S-Trans

in the previous section, we cannot simply delete the subsumption rule: we

must first examine where it plays a critical role in typing and enrich the other

typing rules to achieve the same effects in a more syntax-directed way.

Clearly, one critical use of subsumption is bridging gaps between the types

expected by functions and the actual types of their arguments. A term like

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without subsumption.

214 16 Metatheory of Subtyping

Perhaps surprisingly, this is the only situation where subsumption plays

a crucial role in typing. In every other case where subsumption is used in

a typing proof, the same statement can be proved by a different derivation

in which subsumption is “postponed” by moving it down the tree toward

the root. To see why this works, it is instructive to experiment a little with

typing derivations involving subsumption, taking each typing rule in turn and

thinking about how a derivation ending with this rule can be reorganized if

one of its immediate subderivations ends with T-Sub.

For example, suppose we are given a typing derivation ending with T-Abs,

whose immediate subderivation ends with T-Sub.
...

Γ , x:S1 ` s2 : S2

...

S2 <: T2

(T-Sub)
Γ , x:S1 ` s2 : T2

(T-Abs)
Γ ` λx:S1.s2 : S1→T2

Such a derivation can be rearranged so that subsumption is used after the

abstraction rule to achieve the same conclusion:

...

Γ , x:S1 ` s2 : S2

(T-Abs)
Γ ` λx:S1.s2 : S1→S2

(S-Refl)
S1 <: S1

...

S2 <: T2

(S-Arrow)
S1→S2 <: S1→T2

(T-Sub)
Γ ` λx:S1.s2 : S1→T2

A more interesting case is the application rule T-App. Here there are two

subderivations, either of which might end with T-Sub. Consider first the case

where subsumption appears at the end of the left-hand subderivation.

...

Γ ` s1 : S11→S12

...
(S-Arrow)

S11→S12 <: T11→T12

(T-Sub)
Γ ` s1 : T11→T12

...

Γ ` s2 : T11

(T-App)
Γ ` s1 s2 : T12

From the results in the previous section, we may assume that the final rule

in the derivation of S11→S12 <: T11→T12 is neither S-Refl nor S-Trans. Given

the form of its conclusion, this rule can then only be S-Arrow.

16.2 Algorithmic Typing 215

...

Γ ` s1 : S11→S12

...

T11 <: S11

...

S12 <: T12

(S-Arrow)
S11→S12 <: T11→T12

(T-Sub)
Γ ` s1 : T11→T12

...

Γ ` s2 : T11

(T-App)
Γ ` s1 s2 : T12

Rewriting to eliminate the instance of T-Sub has an interesting effect.

...

Γ ` s1 : S11→S12

...

Γ ` s2 : T11

...

T11 <: S11

(T-Sub)
Γ ` s2 : S11

(T-App)
Γ ` s1 s2 : S12

...

S12 <: T12

(T-Sub)
Γ ` s1 s2 : T12

The right-hand subderivation of the original instance of S-Arrow has been

pushed down to the bottom of the tree, where a new instance of T-Sub raises

the type of the whole application node. On the other hand, the left-hand sub-

derivation has been pushed up into the derivation for the argument s2.

Suppose instead that the instance of T-Sub that we want to relocate occurs

at the end of the right-hand subderivation of an instance of T-App.

...

Γ ` s1 : T11→T12

...

Γ ` s2 : T2

...

T2 <: T11

(T-Sub)
Γ ` s2 : T11

(T-App)
Γ ` s1 s2 : T12

The only thing we can do with this instance of T-Sub is to move it over into

the left-hand subderivation—partly reversing the previous transformation.

...

Γ ` s1 : T11→T12

...

T2 <: T11

(S-Refl)
T12 <: T12

(S-Arrow)
T11→T12 <: T2→T12

(T-Sub)
Γ ` s1 : T2→T12

...

Γ ` s2 : T2

(T-App)
Γ ` s1 s2 : T12

So we see that the use of subsumption for promoting the result type of an

application can be moved down past the T-App rule, but that the use of sub-

sumption for matching the argument type and the domain type of the func-

tion cannot be eliminated. It can be moved from one premise to the other—we

216 16 Metatheory of Subtyping

can promote the type of the argument to match the domain of the function,

or we can promote the type of the function (by demoting its argument type)

so that it expects an argument of the type we actually plan to give it—but we

cannot get rid of the subsumption altogether. This observation corresponds

precisely with our intuition that this gap-bridging use of subsumption is es-

sential to the power of the system.

Another case we have to consider is where the last rule in a derivation is

subsumption and its immediate subderivation also ends with subsumption.

In this case, the two adjacent uses of subsumption can be coalesced into

one—i.e., any derivation of the form

...

Γ ` s : S

...

S <: U
(T-Sub)

Γ ` s : U

...

U <: T
(T-Sub)

Γ ` s : T

can be rewritten:

...

Γ ` s : S

...

S <: U

...

U <: T
(S-Trans)

S <: T
(T-Sub)

Γ ` s : T

16.2.1 Exercise [« 3]: To finish the experiment, show how to perform similar rear-

rangements on derivations in which T-Sub is used before T-Rcd or T-Proj. �

By applying these transformations repeatedly, we can rewrite an arbitrary

typing derivation into a special form where T-Sub appears in only two places:

at the end of right-hand subderivations of applications, and at the very end

of the whole derivation. Moreover, if we simply delete the one at the very end,

no great harm will result: we will still have a derivation assigning a type to

the same term—the only difference is that the type assigned to this term may

be a smaller (i.e., better!) one. This leaves just one place, applications, where

uses of subsumption can still occur. To deal with this case, we can replace

the application rule by a slightly more powerful one

Γ ` t1 : T11→T12 Γ ` t2 : T2 T2 <: T11

Γ ` t1 t2 : T12

incorporating a single instance of subsumption as a premise. Every subderiva-

tion of the form application-preceded-by-subsumption can be replaced by a

use of this rule, which leaves us with no uses of T-Sub at all. Moreover, the

enriched application rule is syntax directed: the shape of the term in the

conclusion prevents it from overlapping with the other rules.

16.2 Algorithmic Typing 217

→ {} <:

Algorithmic typing Γ ñ̀ t : T

x:T ∈ Γ

Γ ñ̀ x : T
(TA-Var)

Γ , x:T1
ñ̀ t2 : T2

Γ ñ̀ λx:T1.t2 : T1→T2

(TA-Abs)

Γ ñ̀ t1 : T1 T1 = T11→T12

Γ ñ̀ t2 : T2
ñ̀ T2 <: T11

Γ ñ̀ t1 t2 : T12

(TA-App)

for each i Γ ñ̀ ti : Ti

Γ ñ̀ {l1=t1 . . .ln=tn} : {l1:T1 . . .ln:Tn}

(TA-Rcd)

Γ ñ̀ t1 : R1 R1 = {l1:T1 . . .ln:Tn}

Γ ñ̀ t1.li : Ti

(TA-Proj)

Figure 16-3: Algorithmic typing

This transformation yields a syntax-directed set of typing rules that assigns

types to the same terms as the original typing rules. These rules are summa-

rized in the following definition. As we did for the algorithmic subtyping

rules, we write the algorithmic relation with a funny turnstile, Γ ñ̀ t : T, to

distinguish it from the declarative relation.

16.2.2 Definition: The algorithmic typing relation is the least relation closed un-

der the rules in Figure 16-3. The premise T1 = T11→T12 in the application rule

is simply an explicit reminder of the sequencing of operations during type-

checking: first we calculate a type T1 for t1; then we check that T1 has the

form T11→T12, etc. The rule would have exactly the same force if we dropped

this premise and instead wrote the first premise as Γ ñ̀ t1 : T11→T12. Simi-

larly for TA-Proj. Also, the subtyping premise in the application rule is writ-

ten with a funny turnstile; since we know that the algorithmic and declarative

presentations of subtyping are equivalent, this choice is a matter of taste. �

16.2.3 Exercise [« 3]: Show that the type assigned to a term by the algorithmic

rules can decrease during evaluation by finding two terms s and t with algo-

rithmic types S and T such that s -→∗ t and T <: S, but S 6<: T. �

We now need to check formally that the algorithmic typing rules corre-

spond to the original declarative rules. (The transformations on typing deriva-

tions that we enumerated above are too informal to be considered a proof.

They could be turned into one, but it would be longer and heavier than nec-

essary: it is simpler just to argue by induction on derivations, as usual.) As

218 16 Metatheory of Subtyping

we did for subtyping, we argue that the algorithmic typing relation is both

sound and complete with respect to the original declarative rules.

The soundness property is unchanged: every typing statement that can be

derived from the algorithmic rules also follows from the declarative rules.

16.2.4 Theorem [Soundness]: If Γ ñ̀ t : T, then Γ ` t : T. �

Proof: Straightforward induction on algorithmic typing derivations. �

Completeness, though, looks a little different. The ordinary typing relation

can be used to assign many types to a term, while the algorithmic typing

relation assigns at most one (as can easily be checked). So a straightforward

converse of Theorem 16.2.4 is clearly not going to hold. Instead, we can show

that if a term t has a type T under the ordinary typing rules, then it has a

better type S under the algorithmic rules, in the sense that S <: T. In other

words, the algorithmic rules assign each typable term its smallest possible

(minimal) type. The completeness theorem is often called the Minimal Typing

theorem, since (when combined with Theorem 16.2.4) it amounts to showing

that each typable term in the declarative system has a minimal type.

16.2.5 Theorem [Completeness, or Minimal Typing]: If Γ ` t : T, then Γ ñ̀ t : S

for some S <: T. �

Proof: Exercise [Recommended, ««]. �

16.2.6 Exercise [««]: If we dropped the arrow subtyping rule S-Arrow but kept the

rest of the declarative subtyping and typing rules the same, would the system

still have the minimal typing property? If so, prove it. If not, give an example

of a typable term with no minimal type. �

16.3 Joins and Meets

Typechecking expressions with multiple result branches, such as conditionals

or case expressions, in a language with subtyping requires some additional

machinery. For example, recall the declarative typing rule for conditionals.

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-If)

The rule requires that the types of the two branches be the same, and assigns

this type to the whole conditional. But in the presence of subsumption, there

may be many ways of giving the two branches the same type. For example,

if true then {x=true,y=false} else {x=false,z=true};

16.3 Joins and Meets 219

has type {x:Bool}, since the then part has minimal type {x:Bool,y:Bool},

which can be promoted to {x:Bool} using T-Sub, and similarly the else

part has minimal type {x:Bool,z:Bool}, which can also be promoted to

{x:Bool}. The same term also has types {x:Top} and {}—in fact, any type

that is a supertype of both {x:Bool,y:Bool} and {x:Bool,z:Bool}. The

minimal type for the whole conditional is therefore the least type that is a

supertype of both {x:Bool,y:Bool} and {x:Bool,z:Bool}—i.e., {x:Bool}.

In general, to calculate the minimal type of an arbitrary conditional expres-

sion, we need to calculate the minimal types of its then and else branches

and then calculate the least common supertype of these. This type is often

called the join of the types of the branches, since it corresponds to the usual

join of two elements of a partial order.

16.3.1 Definition: A type J is called a join of a pair of types S and T, written S ∨

T = J, if S <: J, T <: J, and, for all types U, if S <: U and T <: U, then J <: U.

Similarly, we say that a type M is a meet of S and T, written S ∧ T = M, if M <: S,

M <: T, and, for all types L, if L <: S and L <: T, then L <: M. �

Depending on how the subtype relation in a particular language with sub-

typing is defined, it may or may not be the case that every pair of types has a

join. A given subtype relation is said to have joins if, for every S and T, there

is some J that is a join of S and T. Similarly, a subtype relation is said to have

meets if, for every S and T, there is some M that is a meet of S and T.

The subtype relation that we are considering in this section1 has joins, but

not meets. For example, the types {} and Top→Top do not have any common

subtypes at all, so they certainly have no greatest one. However, a slightly

weaker property does hold. A pair of types S and T is said to be bounded

below if there is some type L such that L <: S and L <: T. A given subtype

relation is said to have bounded meets if, for every S and T such that S and T

are bounded below, there is some M that is a meet of S and T.

Joins and meets need not be unique. For example, {x:Top,y:Top} and

{y:Top,x:Top} are both joins of the pair of types {x:Top,y:Top,z:Top}

and {x:Top,y:Top,w:Top}. However, two different joins (or meets) of the

same pair of types must each be a subtype of the other.

16.3.2 Proposition [Existence of joins and bounded meets]:

1. For every pair of types S and T, there is some type J such that S ∨ T = J.

1. That is, the relation defined in Figures 15-1 and 15-3, extended with the type Bool. The

subtyping behavior of Bool is simple: no rules for it are added to the declarative subtype

relation, so its only supertype is Top.

220 16 Metatheory of Subtyping

2. For every pair of types S and T with a common subtype, there is some type

M such that S ∧ T = M. �

Proof: Exercise [Recommended, «««]. �

Using the join operation we can now give an algorithmic rule for the if

construct in the presence of subtyping.

Γ `t1 : T1 T1 = Bool

Γ `t2 : T2 Γ `t3 : T3 T2 ∨ T3 = T

Γ `if t1 then t2 else t3 : T
(TA-If)

16.3.3 Exercise [««]: What is the minimal type of if true then false else {}? Is

this what we want? �

16.3.4 Exercise [«««]: Is it easy to extend the algorithms for calculating joins and

meets to an imperative language with references, as described in §15-5? What

about the treatment of references in §15.5, where we refine the invariant Ref

with covariant Source and contravariant Sink? �

16.4 Algorithmic Typing and the Bottom Type

If a minimal type Bot (§15.4) is added to the subtype relation, the subtyping

and typing algorithms must be extended a little. We add one rule (the obvious

one) to the algorithmic subtype relation

ñ̀ Bot <: T (SA-Bot)

and two slightly trickier ones to the algorithmic typing relation:

Γ ñ̀ t1 : T1 T1 = Bot Γ ñ̀ t2 : T2

Γ ñ̀ t1 t2 : Bot
(TA-AppBot)

Γ ñ̀ t1 : R1 R1 = Bot

Γ ñ̀ t1.li : Bot
(TA-ProjBot)

The subtyping rule is clear. The intuition behind the typing rules is that, in

the declarative system, we can apply something of type Bot to an argument of

absolutely any type (by using subsumption to promote the Bot to whatever

function type we like), and assume that the result has any other type, and

similarly for projection.

16.4.1 Exercise [«]: Suppose we also have conditionals in the language. Do we need

to add another algorithmic typing rule for if? �

The additions needed to support Bot in this language are not overly com-

plicated. We will see in §28.8, though, that more serious complications arise

when Bot is combined with bounded quantification.

17 An ML Implementation of Subtyping

This chapter extends the OCaml implementation of the simply typed lambda-

calculus developed in Chapter 10 with the extra mechanisms needed to sup-

port subtyping—in particular, a function for checking the subtype relation.

17.1 Syntax

The datatype definitions for types and terms follow the abstract syntax in

Figures 15-1 and 15-3.

type ty =

TyRecord of (string * ty) list

| TyTop

| TyArr of ty * ty

type term =

TmRecord of info * (string * term) list

| TmProj of info * term * string

| TmVar of info * int * int

| TmAbs of info * string * ty * term

| TmApp of info * term * term

The new constructors, compared with the pure simply typed lambda-calculus,

are the type TyTop, the type constructor TyRecord, and the term constructors

TmRecord and TmProj. We represent records and their types in the simplest

possible way, as a list of field names and associated terms or types.

17.2 Subtyping

The pseudocode presentation of the algorithmic subtype relation on page 212

can be translated directly into OCaml as follows.

222 17 An ML Implementation of Subtyping

let rec subtype tyS tyT =

(=) tyS tyT ||

match (tyS,tyT) with

(TyRecord(fS), TyRecord(fT)) →

List.for_all

(fun (li,tyTi) →

try let tySi = List.assoc li fS in

subtype tySi tyTi

with Not_found → false)

fT

| (_,TyTop) →

true

| (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) →

(subtype tyT1 tyS1) && (subtype tyS2 tyT2)

| (_,_) →

false

We have made one slight change to the algorithm from the pseudocode pre-

sentation, adding a reflexivity check at the beginning. (The (=) operator is

ordinary equality; it is written in prefix position here because, in some of

the other subtyping implementations, it is replaced by a call to a different

comparison function. The || operator is a short-circuiting boolean or: if the

first branch yields true, the second is never evaluated.) Strictly speaking,

this check is not needed. However, it is actually an important optimization

in real compilers. In the majority of real-world programs, subtyping is used

quite rarely—that is, most times when the subtype checker is called, the two

types being compared are actually equal. Moreover, if types are represented

so that structurally isomorphic types are guaranteed to have physically iden-

tical representations—for example, using hash consing (Goto, 1974; Appel

and Gonçalves, 1993) when constructing types—then this check is just one

instruction.

The subtyping rule for records naturally involves a certain amount of fuss-

ing around with lists. List.for_all applies a predicate (its first argument)

to every member of a list and returns true iff all these applications return

true. List.assoc li fS looks up the label li in the list of fields fS and re-

turns the associated field type tySi; if li is not among the labels in fS, it

raises Not_found, which we catch and convert into a false response.

17.3 Typing

The typechecking function is a straightforward extension of the typeof func-

tion from earlier implementations. The main change is the application clause,

17.3 Typing 223

where we perform a subtype check between the argument type and the type

expected by the function. We also add two new clauses for record construc-

tion and projection.

let rec typeof ctx t =

match t with

TmRecord(fi, fields) →

let fieldtys =

List.map (fun (li,ti) → (li, typeof ctx ti)) fields in

TyRecord(fieldtys)

| TmProj(fi, t1, l) →

(match (typeof ctx t1) with

TyRecord(fieldtys) →

(try List.assoc l fieldtys

with Not_found → error fi ("label "^l^" not found"))

| _ → error fi "Expected record type")

| TmVar(fi,i,_) → getTypeFromContext fi ctx i

| TmAbs(fi,x,tyT1,t2) →

let ctx’ = addbinding ctx x (VarBind(tyT1)) in

let tyT2 = typeof ctx’ t2 in

TyArr(tyT1, tyT2)

| TmApp(fi,t1,t2) →

let tyT1 = typeof ctx t1 in

let tyT2 = typeof ctx t2 in

(match tyT1 with

TyArr(tyT11,tyT12) →

if subtype tyT2 tyT11 then tyT12

else error fi "parameter type mismatch"

| _ → error fi "arrow type expected")

The record clauses introduce a few features of OCaml that we have not

seen before. In the TmRecord clause, we calculate the list of field names and

types fieldtys from the list of names and terms fields by using List.map

to apply the function

fun (li,ti) → (li, typeof ctx ti)

to each name/term pair in turn. In the TmProj clause, we use List.assoc

again to look up the type of the selected field; if it raises Not_found, we raise

our own error message (^ is string concatenation).

17.3.1 Exercise [«««]: §16.3 showed how adding booleans and conditionals to a

language with subtyping required extra support functions for calculating the

least upper bounds of a given pair of types. The proof of Proposition 16.3.2

(see page 522) gave mathematical descriptions of the necessary algorithms.

224 17 An ML Implementation of Subtyping

The joinexercise typechecker is an incomplete implementation of the

simply typed lambda-calculus with subtyping, records, and conditionals: ba-

sic parsing and printing functions are provided, but the clause for TmIf is

missing from the typeof function, as is the join function on which it de-

pends. Add booleans and conditionals (and joins and meets) to this imple-

mentation. �

17.3.2 Exercise [««]: Add a minimal Bot type to the rcdsub implementation, fol-

lowing the description in §16.4. �

17.3.3 Exercise [««« 3]: If the subtype check in the application rule fails, the error

message that our typechecker prints may not be very helpful to the user.

We can improve it by including the expected parameter type and the actual

argument type in the error message, but even this may be hard to understand.

For example, if the expected type is

{x:{},y:{},z:{},a:{},b:{},c:{},d:{},e:{},f:{},g:{}}

and the actual type is

{y:{},z:{},f:{},a:{},x:{},i:{},b:{},e:{},g:{},c:{},h:{}}

it is not immediately obvious that what’s missing from the second type is

a d field. Error reporting can be greatly improved by changing the subtype

function so that, instead of returning true or false, it either returns a trivial

value (the unit value ()) or else raises an exception. Since the exception is

raised at the point in the types where something actually failed to match,

it can be more precise about what the problem was. Notice that this change

doesn’t affect the “end-to-end” behavior of the checker: if the subtype checker

returns false, the typechecker is always going to raise an exception (by calling

error) anyway at that point.

Reimplement the typeof and subtype functions to make all of the error

messages as informative as possible. �

17.3.4 Exercise [««« 3]: In §15.6 we defined a coercion semantics for a language

with records and subtyping using a translation from typing and subtyping

derivations into terms of the pure simply typed lambda-calculus. Implement

these transformations by modifying the subtype function presented above

so that it constructs and returns a coercion function (represented as a term),

and similarly modifying the typeof function so that it returns both a type

and a translated term. The translated term (rather than the original input

term) should then be evaluated, and the result printed as usual. �

18 Case Study: Imperative Objects

In this chapter we come to our first substantial programming example. We

will use most of the features we have defined—functions, records, general

recursion, mutable references, and subtyping—to build up a collection of

programming idioms supporting objects and classes similar to those found

in object-oriented languages like Smalltalk and Java. We will not introduce

any new concrete syntax for objects or classes in this chapter: what we’re

after here is to try to understand these rather complex language features by

showing how to approximate their behavior using lower-level constructs.

For most of the chapter, the approximation is actually quite accurate: we

can obtain a satisfactory implementation of most features of objects and

classes by regarding them as derived forms that are desugared into sim-

ple combinations of features we have already seen. When we get to virtual

methods and self in §18.9, however, we will encounter some difficulties with

evaluation order that make the desugaring a little unrealistic. A more satisfac-

tory account of these features can be obtained by axiomatizing their syntax,

operational semantics, and typing rules directly, as we do in Chapter 19.

18.1 What Is Object-Oriented Programming?

Most arguments about “What is the essence of. . .?” do more to reveal the

prejudices of the participants than to uncover any objective truth about the

topic of discussion. Attempts to define the term “object-oriented” precisely

are no exception. Nonetheless, we can identify a few fundamental features

that are found in most object-oriented languages and that, in concert, sup-

port a distinctive programming style with well-understood advantages and

disadvantages.

The examples in this chapter are terms of the simply typed lambda-calculus with subtyping

(Figure 15-1), records (15-3), and references (13-1). The associated OCaml implementation is

fullref.

226 18 Case Study: Imperative Objects

1. Multiple representations. Perhaps the most basic characteristic of the

object-oriented style is that, when an operation is invoked on an object, the

object itself determines what code gets executed. Two objects responding

to the same set of operations (i.e., with the same interface) may use entirely

different representations, as long as each carries with it an implementation

of the operations that works with its particular representation. These im-

plementations are called the object’s methods. Invoking an operation on

an object—called method invocation or, more colorfully, sending it a mes-

sage—involves looking up the operation’s name at run time in a method

table associated with the object, a process called dynamic dispatch.

By contrast, a conventional abstract data type (ADT) consists of a set of

values plus a single implementation of the operations on these values.

(This static definition of implementations has both advantages and disad-

vantages over objects; we explore these further in §24.2.)

2. Encapsulation. The internal representation of an object is generally hid-

den from view outside of the object’s definition: only the object’s own

methods can directly inspect or manipulate its fields.1 This means that

changes to the internal representation of an object can affect only a small,

easily identifiable region of the program; this constraint greatly improves

the readability and maintainability of large systems.

Abstract data types offer a similar form of encapsulation, ensuring that

the concrete representation of their values is visible only within a certain

scope (e.g., a module, or an ADT definition), and that code outside of this

1. In some object-oriented languages, such as Smalltalk, this encapsulation is mandatory—the

internal fields of an object simply cannot be named outside of its definition. Other languages,

such as and , allow fields to be marked either public or private. Conversely, all the meth-

ods of an object are publicly accessible in Smalltalk, while Java and C++ allow methods to be

marked private, restricting their call sites to other methods in the same object. We will ig-

nore such refinements here, but they have been considered in detail in the research literature

(Pierce and Turner, 1993; Fisher and Mitchell, 1998; Fisher, 1996a; Fisher and Mitchell, 1996;

Fisher, 1996b; Fisher and Reppy, 1999).

Although most object-oriented languages take encapsulation as an essential notion, there are

several that do not. The multi-methods found in CLOS (Bobrow, DeMichiel, Gabriel, Keene,

Kiczales, and Moon, 1988; Kiczales, des Rivières, and Bobrow, 1991), Cecil (Chambers, 1992,

1993), Dylan (Feinberg, Keene, Mathews, and Withington., 1997; Shalit), and KEA (Mugridge,

Hamer, and Hosking, 1991) and in the lambda-& calculus of Castagna, Ghelli, and Longo (1995;

Castagna, 1997) keep object states separate from methods, using special type-tags to select

appropriate alternatives from overloaded method bodies at method invocation time. The un-

derlying mechanisms for object creation, method invocation, class definition, etc., in these

languages are fundamentally different from the ones we describe in this chapter, although the

high-level programming idioms that they lead to are quite similar.

18.1 What Is Object-Oriented Programming? 227

scope can manipulate these values only by invoking operations defined

within this privileged scope.

3. Subtyping. The type of an object—its interface—is just the set of names

and types of its operations. The object’s internal representation does not

appear in its type, since it does not affect the set of things that we can

directly do with the object.

Object interfaces fit naturally into the subtype relation. If an object satis-

fies an interface I, then it clearly also satisfies any interface J that lists

fewer operations than I, since any context that expects a J-object can in-

voke only J-operations on it and so providing an I-object should always

be safe. (Thus, object subtyping is similar to record subtyping. Indeed,

for the model of objects developed in this chapter, they will be the same

thing.) The ability to ignore parts of an object’s interface allows us to write

a single piece of code that manipulates many different sorts of objects in

a uniform way, demanding only a certain common set of operations.

4. Inheritance. Objects that share parts of their interfaces will also often

share some behaviors, and we would like to implement these common

behaviors just once. Most object-oriented languages achieve this reuse of

behaviors via structures called classes—templates from which objects can

be instantiated—and a mechanism of subclassing that allows new classes

to be derived from old ones by adding implementations for new methods

and, when necessary, selectively overriding implementations of old meth-

ods. (Instead of classes, some object-oriented languages use a mechanism

called delegation, which combines the features of objects and classes.)

5. Open recursion. Another handy feature offered by most languages with

objects and classes is the ability for one method body to invoke another

method of the same object via a special variable called self or, in some

languages, this. The special behavior of self is that it is late-bound, al-

lowing a method defined in one class to invoke another method that is

defined later, in some subclass of the first.

The remaining sections of this chapter develop these features in succession,

beginning with very simple “stand-alone” objects and then considering in-

creasingly powerful forms of classes.

Later chapters examine different accounts of objects and classes. Chap-

ter 19 presents a direct treatment (not an encoding) of objects and classes

in the style of Java. Chapter 27 returns to the encoding developed in the

present chapter, improving the run-time efficiency of class construction us-

ing bounded quantification. Chapter 32 develops a more ambitious version

of the encoding that works in a purely functional setting.

228 18 Case Study: Imperative Objects

18.2 Objects

In its simplest form, an object is just a data structure encapsulating some

internal state and offering access to this state to clients via a collection of

methods. The internal state is typically organized as a number of mutable

instance variables (or fields) that are shared among the methods and inacces-

sible to the rest of the program.

Our running example throughout the chapter will be objects representing

simple counters. Each counter object holds a single number and provides two

methods (i.e., responds to two messages)—get, which causes it to return its

current value; and inc, which increments the value.

A straightforward way of obtaining this behavior using the features we

have discussed in previous chapters is to use a reference cell for the object’s

internal state and a record of functions for the methods. A counter object

whose current state is 1 looks like this:

c = let x = ref 1 in

{get = λ_:Unit. !x,

inc = λ_:Unit. x:=succ(!x)};

ñ c : {get:Unit→Nat, inc:Unit→Unit}

The method bodies are both written as functions with trivial parameters (writ-

ten _ because we don’t need to refer to them in the bodies). The abstractions

block evaluation of the method bodies when the object is created, allowing

the bodies to be evaluated repeatedly, later, by applying them over and over

to the unit argument. Also, note how the state of this object is shared among

the methods and inaccessible to the rest of the program: the encapsulation

of the state arises directly from the lexical scope of the variable x.

To invoke a method of the object c, we just extract a field of the record and

apply it to an appropriate argument. For example:

c.inc unit;

ñ unit : Unit

c.get unit;

ñ 2 : Nat

(c.inc unit; c.inc unit; c.get unit);

ñ 4 : Nat

The fact that the inc method returns unit allows us to use the ;-notation

(§11.3) for sequences of increments. We could equivalently have written the

last line above as:

18.3 Object Generators 229

let _ = c.inc unit in let _ = c.inc unit in c.get unit;

Since we may want to create and manipulate many counters, it is conve-

nient to introduce an abbreviation for their type:

Counter = {get:Unit→Nat, inc:Unit→Unit};

Our attention in this chapter is focused on how objects are built, rather

than on how they are used in organizing larger programs. However, we do

want to see at least one function that uses objects, so that we can verify that

it works on objects with different internal representations. Here is a trivial

one—a function that takes a counter object and invokes its inc method three

times:

inc3 = λc:Counter. (c.inc unit; c.inc unit; c.inc unit);

ñ inc3 : Counter → Unit

(inc3 c; c.get unit);

ñ 7 : Nat

18.3 Object Generators

We have seen how to build individual counter objects, one at a time. It is

equally easy to write a counter generator—a function that creates and returns

a new counter every time it is called.

newCounter =

λ_:Unit. let x = ref 1 in

{get = λ_:Unit. !x,

inc = λ_:Unit. x:=succ(!x)};

ñ newCounter : Unit → Counter

18.4 Subtyping

One of the reasons for the popularity of object-oriented programming styles

is that they permit objects of many shapes to be manipulated by the same

client code. For example, suppose that, in addition to the Counter objects

defined above, we also create some objects with an additional method that

allows them to be reset to their initial state (say, 1) at any time.

ResetCounter = {get:Unit→Nat, inc:Unit→Unit, reset:Unit→Unit};

230 18 Case Study: Imperative Objects

newResetCounter =

λ_:Unit. let x = ref 1 in

{get = λ_:Unit. !x,

inc = λ_:Unit. x:=succ(!x),

reset = λ_:Unit. x:=1};

ñ newResetCounter : Unit → ResetCounter

Since ResetCounter has all the fields of Counter (plus one more), the

record subtyping rule tells us that ResetCounter <: Counter. This means

that client functions like inc3 that take counters as arguments can also safely

be used with reset counters:

rc = newResetCounter unit;

ñ rc : ResetCounter

(inc3 rc; rc.reset unit; inc3 rc; rc.get unit);

ñ 4 : Nat

18.5 Grouping Instance Variables

So far, the states of our objects have consisted of just a single reference cell.

Obviously, more interesting objects will often have several instance variables.

In the sections that follow, it will be useful to be able to manipulate all of

these instance variables as a single unit. To allow for this, let’s change the

internal representation of our counters to be a record of reference cells, and

refer to instance variables in method bodies by projecting fields from this

record.

c = let r = {x=ref 1} in

{get = λ_:Unit. !(r.x),

inc = λ_:Unit. r.x:=succ(!(r.x))};

ñ c : Counter

The type of this record of instance variables is called the representation type

of the object.

CounterRep = {x: Ref Nat};

18.6 Simple Classes 231

18.6 Simple Classes

The definitions of newCounter and newResetCounter are identical except

for the reset method in the latter. Of course, both of these definitions are

so short anyway that this makes little difference, but if we imagine them

stretching over many pages, as can easily happen in practice, it is clear that we

would prefer to have some means for describing the common functionality in

one place. The mechanism by which this is achieved in most object-oriented

languages is called classes.

The class mechanisms in real-world object-oriented languages tend to be

complex and loaded with features—self, super, visibility annotations, static

fields and methods, inner classes, friend classes, annotations such as final

and Serializable, etc., etc.2 We’ll ignore most of these here and focus our

attention on the most basic aspects of classes: code reuse via inheritance, and

the late binding of self. For the moment, let’s consider just the former.

In its most primitive form, a class is simply a data structure holding a

collection of methods that can either be instantiated to yield a fresh object or

extended to yield another class.

Why can’t we just reuse the methods from some counter object to build a

reset counter? Simply because, in any particular counter object, the method

bodies contain references to some particular record of instance variables.

Clearly, if we want to be able to reuse the same code with a different record of

instance variables, what we need to do is to abstract the methods with respect

to the instance variables. This amounts to breaking our newCounter function

above into two pieces, one that defines the method bodies with respect to an

arbitrary record of instance variables,

counterClass =

λr:CounterRep.

{get = λ_:Unit. !(r.x),

inc = λ_:Unit. r.x:=succ(!(r.x))};

ñ counterClass : CounterRep → Counter

and one that allocates a record of instance variables and supplies it to the

method bodies to create an object:

newCounter =

λ_:Unit. let r = {x=ref 1} in

counterClass r;

2. The main reason for all this complexity is that, in most of these languages, classes are

the only large-scale structuring mechanism. Indeed, there is just one widely used language—

OCaml—that provides both classes and a sophisticated module system. So classes in most

languages tend to become the dumping ground for all language features that have anything to

do with large-scale program structure.

232 18 Case Study: Imperative Objects

ñ newCounter : Unit → Counter

The method bodies from counterClass can be reused to define new classes,

called subclasses. For example, we can define a class of reset counters:

resetCounterClass =

λr:CounterRep.

let super = counterClass r in

{get = super.get,

inc = super.inc,

reset = λ_:Unit. r.x:=1};

ñ resetCounterClass : CounterRep → ResetCounter

Like counterClass, this function takes a record of instance variables and

returns an object. Internally, it works by first using counterClass to create

a counter object with the same record of instance variables r; this “parent

object” is bound to the variable super. It then builds a new object by copying

the get and inc fields from super and supplying a new function as the value

for the reset field. Since super was built on r, all three methods share the

same instance variables.

To build a reset counter object, we again just allocate memory for its in-

stance variables and call resetCounterClass, where the real work happens.

newResetCounter =

λ_:Unit. let r = {x=ref 1} in resetCounterClass r;

ñ newResetCounter : Unit → ResetCounter

18.6.1 Exercise [Recommended, ««]: Write a subclass of resetCounterClass with

an additional method dec that subtracts one from the current value stored in

the counter. Use the fullref checker to test your new class. �

18.6.2 Exercise [«« 3]: The explicit copying of most of the superclass fields into

the record of subclass methods is notationally rather clumsy—it avoids ex-

plicitly re-entering the code of superclass methods in subclasses, but it still

involves a lot of typing. If we were going to develop larger object-oriented

programs in this style, we would soon wish for a more compact notation

like “super with {reset = λ_:Unit. r.x:=1},” meaning “a record just like

super but with a field reset containing the function λ_:Unit. r.x:=1.”

Write out syntax, operational semantics, and typing rules for this construct. �

We should emphasize that these classes are values, not types. Also we can,

if we like, create many classes that generate objects of exactly the same type.

In mainstream object-oriented languages like C++ and , classes have a more

complex status—they are used both as compile-time types and as run-time

data structures. This point is discussed further in §19.3.

18.7 Adding Instance Variables 233

18.7 Adding Instance Variables

It happens that our counter and reset counter objects use exactly the same

internal representation. However, in general a subclass may need to extend

not only the methods but also the instance variables of the superclass from

which it is derived. For example, suppose we want to define a class of “backup

counters” whose reset method resets their state to whatever value it has

when we last called the method backup, instead of resetting it to a constant

value:

BackupCounter = {get:Unit→Nat, inc:Unit→Unit,

reset:Unit→Unit, backup: Unit→Unit};

To implement backup counters, we need an extra instance variable to store

the backed-up value of the state.

BackupCounterRep = {x: Ref Nat, b: Ref Nat};

Just as we derived resetCounterClass from counterClass by copying

the get and inc methods and adding reset, we derive backupCounterClass

from resetCounterClass by copying get and inc and providing reset and

backup.

backupCounterClass =

λr:BackupCounterRep.

let super = resetCounterClass r in

{get = super.get,

inc = super.inc,

reset = λ_:Unit. r.x:=!(r.b),

backup = λ_:Unit. r.b:=!(r.x)};

ñ backupCounterClass : BackupCounterRep → BackupCounter

Two things are interesting about this definition. First, although the parent

object super includes a method reset, we chose to write a fresh implemen-

tation because we wanted a different behavior. The new class overrides the

reset method of the superclass. Second, subtyping is used in an essential

way here in typing the expression that builds super: resetCounterClass

expects an argument of type CounterRep, which is a supertype of the actual

type, BackupCounterRep, of the argument r. In other words, we are actually

providing the parent object with a larger record of instance variables than its

methods require.

18.7.1 Exercise [Recommended, ««]: Define a subclass of backupCounterClass

with two new methods, reset2 and backup2, controlling a second “backup

234 18 Case Study: Imperative Objects

register.” This register should be completely separate from the one added by

backupCounterClass: calling reset should restore the counter to its value

at the time of the last call to backup (as it does now) and calling reset2

should restore the counter to its value at the time of the last call to backup2.

Use the fullref checker to test your class. �

18.8 Calling Superclass Methods

The variable super has been used to copy functionality from superclasses

into new subclasses. We can also use super in the bodies of method defi-

nitions to extend the superclass’s behavior with something extra. Suppose,

for instance, that we want a variant of our backupCounter class in which

every call to the inc method is automatically preceded by a call to backup.

(Goodness knows why such a class would be useful—it’s just an example.)

funnyBackupCounterClass =

λr:BackupCounterRep.

let super = backupCounterClass r in

{get = super.get,

inc = λ_:Unit. (super.backup unit; super.inc unit),

reset = super.reset,

backup = super.backup};

ñ funnyBackupCounterClass : BackupCounterRep → BackupCounter

Note how the calls to super.inc and super.backup in the new definition of

inc avoid repeating the superclass’s code for inc or backup here. In larger

examples, the savings of duplicated functionality in such situations can be

substantial.

18.9 Classes with Self

Our final extension is allowing the methods of classes to refer to each other

via self. To motivate this extension, suppose that we want to implement a

class of counters with a set method that can be used from the outside to set

the current count to a particular number.

SetCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit};

Moreover, suppose that we want the inc method in terms of set and get,

rather than directly reading and assigning the instance variable x. (Imagine a

much larger example in which the definitions of set and get each take many

18.10 Open Recursion through Self 235

pages.) Since get, set, and inc are all defined in the same class, what we are

asking for is essentially to make the methods of this class mutually recursive.

We saw how to build mutually recursive records of functions using the fix

operator in §11.11. We simply abstract the record of methods on a parameter

that is itself a record of functions (which we call self), and then use the fix

operator to “tie the knot,” arranging that the very record we are constructing

is the one passed as self.

setCounterClass =

λr:CounterRep.

fix

(λself: SetCounter.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. self.set (succ (self.get unit))});

ñ setCounterClass : CounterRep → SetCounter

This class has no parent class, so there is no need for a super variable.

Instead, the body of the inc method invokes get and then set from the

record of methods passed to it as self. This use of fix is entirely internal

to setCounterClass. We then create set-counters in exactly the same way as

usual.

newSetCounter =

λ_:Unit. let r = {x=ref 1} in

setCounterClass r;

ñ newSetCounter : Unit → SetCounter

18.10 Open Recursion through Self

Most object-oriented languages actually support a more general form of re-

cursive call between methods, known as open recursion, or late-binding of

self. We can achieve this more general behavior by removing the use of fix

from the class definition,

setCounterClass =

λr:CounterRep.

λself: SetCounter.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. self.set (succ(self.get unit))};

ñ setCounterClass : CounterRep → SetCounter → SetCounter

236 18 Case Study: Imperative Objects

and instead placing it in the object creation function.

newSetCounter =

λ_:Unit. let r = {x=ref 1} in

fix (setCounterClass r);

ñ newSetCounter : Unit → SetCounter

Notice that moving the use of fix changes the type of setCounterClass:

instead of being abstracted just on a record of instance variables, it is also

abstracted on a “self-object”; both are supplied at instantiation time.

The reason why open recursion through self is interesting is that it allows

the methods of a superclass to call the methods of a subclass, even though

the subclass does not exist when the superclass is being defined. In effect,

we have changed the interpretation of self so that, instead of “the methods

of this class,” it provides access to “the methods of the class from which the

current object was instantiated [which may be a subclass of this one].”

For example, suppose we want to build a subclass of our set-counters that

keeps track of how many times the set method has been called. The interface

of this class includes one extra operation for extracting the access count,

InstrCounter = {get:Unit→Nat, set:Nat→Unit,

inc:Unit→Unit, accesses:Unit→Nat};

and the representation includes an instance variable for the access count:

InstrCounterRep = {x: Ref Nat, a: Ref Nat};

In the definition of the instrumented counter class, the inc and get methods

are copied from the setCounterClass that we defined above. The accesses

method is written out in the ordinary way. In the set method, we first incre-

ment the access count and then use super to invoke the superclass’s set.

instrCounterClass =

λr:InstrCounterRep.

λself: InstrCounter.

let super = setCounterClass r self in

{get = super.get,

set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = λ_:Unit. !(r.a)};

ñ instrCounterClass : InstrCounterRep →

InstrCounter → InstrCounter

Because of the open recursion through self, the call to set from the body of

inc will result in the instance variable a being incremented, even though the

incrementing behavior of set is defined in the subclass and the definition of

inc appears in the superclass.

18.11 Open Recursion and Evaluation Order 237

18.11 Open Recursion and Evaluation Order

There is one problem with our definition of instrCounterClass—we cannot

use it to build instances! If we write newInstrCounter in the usual way

newInstrCounter =

λ_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r);

ñ newInstrCounter : Unit → InstrCounter

and then attempt to create an instrumented counter by applying it to unit,

ic = newInstrCounter unit;

the evaluator will diverge. To see how this happens, consider the sequence of

evaluation steps that ensue when we start from this term.

1. We first apply newInstrCounter to unit, yielding

let r = {x=ref 1, a=ref 0} in fix (instrCounterClass r)

2. We next allocate two ref cells, package them into a record—let’s call it

<ivars>—and substitute <ivars> for r in the rest.

fix (instrCounterClass <ivars>)

3. We pass <ivars> to instrCounterClass. Since instrCounterClass be-

gins with two lambda-abstractions, we immediately get back a function

that is waiting for self,

fix (λself:InstrCounter.

let super = setCounterClass <ivars> self in <imethods>)

where <imethods> is the record of instrumented-counter methods. Let’s

call this function <f> and write the current state (fix <f>).

4. We apply the evaluation rule for fix (E-Fix in Figure 11-12, page 144),

which “unfolds” fix <f> by substituting (fix <f>) for self in the body

of <f>, yielding

let super = setCounterClass <ivars> (fix <f>) in <imethods>

5. We now reduce the application of setCounterClass to <ivars>, yielding:

let super = (λself:SetCounter. <smethods>) (fix <f>)

in <imethods>

238 18 Case Study: Imperative Objects

where <smethods> is the record of set-counter methods.

6. By the evaluation rules for applications, we cannot reduce the applica-

tion of (λself:SetCounter. <smethods>) to (fix <f>) until the latter

has been reduced to a value. So the next step of evaluation again unfolds

fix <f>, yielding:

let super = (λself:SetCounter. <smethods>)

(let super = setCounterClass <ivars> (fix <f>)

in <imethods>)

in <imethods>

7. Since the argument to the outer lambda-abstraction is still not a value,

we must continue to work on evaluating the inner one. We perform the

application of setCounterClass to <ivars>, yielding

let super = (λself:SetCounter. <smethods>)

(let super = (λself:SetCounter. <smethods>)

(fix <f>)

in <imethods>)

in <imethods>

8. Now we have created an inner application similar in form to the outer

one. Just as before, this inner application cannot be reduced until its ar-

gument, fix <f>, has been fully evaluated. So our next step is again to

unfold fix <f>, yielding a yet more deeply nested expression of the same

form as in step 6. It should be clear at this point that we are never going

to get around to evaluating the outer application.

Intuitively, the problem here is that the argument to the fix operator is us-

ing its own argument, self, too early. The operational semantics of fix is

defined with the expectation that, when we apply fix to some function λx.t,

the body t should refer to x only in “protected” positions, such as the bodies

of inner lambda-abstractions. For example, we defined iseven on page 143

by applying fix to a function of the form λie. λx. ..., where the recursive

reference to ie in the body was protected by the abstraction on x. By con-

trast, the definition of instrCounterClass tries to use self right away in

calculating the value of super.

At this point, we can proceed in several ways:

• We can protect the reference to self in instrCounterClass to prevent it

from being evaluated too early, for example by inserting dummy lambda-

abstractions. We develop this solution below. We will see that it is not com-

pletely satisfactory, but it is straightforward to describe and understand

18.11 Open Recursion and Evaluation Order 239

using the mechanisms we have already seen. We will also find it useful

later, when we consider purely functional object encodings in Chapter 32.

• We can look for different ways of using low-level language features to

model the semantics of classes. For example, instead of using fix to build

the method table of a class, we could build it more explicitly using refer-

ences. We develop this idea in §18.12 and further refine it in Chapter 27.

• We can forget about encoding objects and classes in terms of lambda-

abstraction, records, and fix, and instead take them as language prim-

itives, with their own evaluation (and typing) rules. Then we can simply

choose evaluation rules that match our intentions about how objects and

classes should behave, rather than trying to work around the problems

with the given rules for application and fix. This approach will be devel-

oped in Chapter 19.

Using dummy lambda-abstractions to control evaluation order is a well-

known trick in the functional programming community. The idea is that an

arbitrary expression t can be turned into a function λ_:Unit.t, called a

thunk. This “thunked form” of t is a syntactic value; all the computation

involved in evaluating t is postponed until the thunk is applied to unit. This

gives us a way to pass t around in unevaluated form and, later, ask for its

result.

What we want to do at the moment is to delay the evaluation of self. We

can do this by changing its type from an object (e.g. SetCounter) to an object

thunk (Unit→SetCounter). This involves (1) changing the type of the self

parameter to the class, (2) adding a dummy abstraction before we construct

the result object, and (3) changing every occurrence of self in the method

bodies to (self unit).

setCounterClass =

λr:CounterRep.

λself: Unit→SetCounter.

λ_:Unit.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (self unit).set(succ((self unit).get unit))};

ñ setCounterClass : CounterRep →

(Unit→SetCounter) → Unit → SetCounter

Since we do not want the type of newSetCounter to change (it should still

return an object), we also need to modify its definition slightly so that it

passes a unit argument to the thunk that results when we form the fixed

point of setCounterClass.

240 18 Case Study: Imperative Objects

newSetCounter =

λ_:Unit. let r = {x=ref 1} in

fix (setCounterClass r) unit;

ñ newSetCounter : Unit → SetCounter

Similar changes are needed in the definition of instrCounterClass. Note

that none of these modifications actually require any thinking: once we have

changed the type of self, every other change is dictated by the typing rules.

instrCounterClass =

λr:InstrCounterRep.

λself: Unit→InstrCounter.

λ_:Unit.

let super = setCounterClass r self unit in

{get = super.get,

set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = λ_:Unit. !(r.a)};

ñ instrCounterClass : InstrCounterRep →

(Unit→InstrCounter) → Unit → InstrCounter

Finally, we change newInstrCounter so that it supplies a dummy argument

to the thunk constructed by fix.

newInstrCounter =

λ_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r) unit;

ñ newInstrCounter : Unit → InstrCounter

We can now use newInstrCounter to actually build an object.

ic = newInstrCounter unit;

ñ ic : InstrCounter

Recall that this was the step that diverged before we added thunks.

The following tests demonstrate how the accesses method counts calls to

both set and inc, as we intended.

(ic.set 5; ic.accesses unit);

ñ 1 : Nat

(ic.inc unit; ic.get unit);

ñ 6 : Nat

18.12 A More Efficient Implementation 241

ic.accesses unit;

ñ 2 : Nat

18.11.1 Exercise [Recommended, «««]: Use the fullref checker to implement the

following extensions to the classes above:

1. Rewrite instrCounterClass so that it also counts calls to get.

2. Extend your modified instrCounterClass with a subclass that adds a

reset method, as in §18.4.

3. Add another subclass that also supports backups, as in §18.7. �

18.12 A More Efficient Implementation

The tests above demonstrate that our implementation of classes matches the

“open recursion” behavior of method calls through self in languages like

Smalltalk, C++, and Java. However, we should note that the implementation

is not entirely satisfactory from the point of view of efficiency. All the thunks

we have inserted to make the fix calculation converge have the effect of

postponing the calculation of the method tables of classes. In particular, note

that all the calls to self inside method bodies have become (self unit)—

that is, the methods of self are being recalculated on the fly every time we

make a recursive call to one of them!

We can avoid all this recalculation by using reference cells instead of fixed

points to “tie the knot” in the class hierarchy when we build objects.3 Instead

of abstracting classes on a record of methods called self that will be con-

structed later using fix, we abstract on a reference to a record of methods,

and allocate this record first. That is, we instantiate a class by first allocating

a heap cell for its methods (initialized with a dummy value), then construct-

ing the real methods (passing them a pointer to this heap cell, which they can

use to make recursive calls), and finally back-patching the cell to contain the

real methods. For example, here is setCounterClass again.

setCounterClass =

λr:CounterRep. λself: Ref SetCounter.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (!self).set (succ ((!self).get unit))};

3. This is essentially the same idea as we used in the solution to Exercise 13.5.8. I am grateful

to James Riely for the insight that it can be applied to class construction by exploiting the

covariance of Source types.

242 18 Case Study: Imperative Objects

ñ setCounterClass : CounterRep → (Ref SetCounter) → SetCounter

The self parameter is a pointer to the cell that contains the methods of the

current object. When setCounterClass is called, this cell is initialized with

a dummy value:

dummySetCounter =

{get = λ_:Unit. 0,

set = λi:Nat. unit,

inc = λ_:Unit. unit};

ñ dummySetCounter : SetCounter

newSetCounter =

λ_:Unit.

let r = {x=ref 1} in

let cAux = ref dummySetCounter in

(cAux := (setCounterClass r cAux); !cAux);

ñ newSetCounter : Unit → SetCounter

However, since all of the dereference operations (!self) are protected by

lambda-abstractions, the cell will not actually be dereferenced until after it

has been back-patched by newSetCounter.

To support building subclasses of setCounterClass, we need to make

one further refinement in its type. Each class expects its self parameter to

have the same type as the record of methods that it constructs. That is, if

we define a subclass of instrumented counters, then the self parameter of

this class will be a pointer to a record of instrumented counter methods. But,

as we saw in §15.5, the types Ref SetCounter and Ref InstrCounter are

incompatible—it is unsound to promote the latter to the former. This will

lead to trouble (i.e., a parameter type mismatch) when we try to create super

in the definition of instrCounterClass.

instrCounterClass =

λr:InstrCounterRep. λself: Ref InstrCounter.

let super = setCounterClass r self in

{get = super.get,

set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = λ_:Unit. !(r.a)};

ñ Error: parameter type mismatch

The way out of this difficulty is to replace the Ref constructor in the type

of self by Source—i.e., to pass to the class just the capability to read from

18.12 A More Efficient Implementation 243

the method pointer, not the capability to write to it (which it does not need

anyway). As we saw in §15.5, Source permits covariant subtyping—i.e., we

have Ref InstrCounter <: Ref SetCounter—so the creation of super in

instrCounterClass becomes well typed.

setCounterClass =

λr:CounterRep. λself: Source SetCounter.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (!self).set (succ ((!self).get unit))};

ñ setCounterClass : CounterRep → (Source SetCounter) → SetCounter

instrCounterClass =

λr:InstrCounterRep. λself: Source InstrCounter.

let super = setCounterClass r self in

{get = super.get,

set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = λ_:Unit. !(r.a)};

ñ instrCounterClass : InstrCounterRep →

(Source InstrCounter) → InstrCounter

To build an instrumented counter object, we first define a dummy collec-

tion of instrumented counter methods, as before, to serve as the initial value

of the self pointer.

dummyInstrCounter =

{get = λ_:Unit. 0,

set = λi:Nat. unit,

inc = λ_:Unit. unit,

accesses = λ_:Unit. 0};

ñ dummyInstrCounter : InstrCounter

We then create an object by allocating heap space for the instance variables

and methods, calling instrCounterClass to construct the actual methods,

and back-patching the reference cell.

newInstrCounter =

λ_:Unit.

let r = {x=ref 1, a=ref 0} in

let cAux = ref dummyInstrCounter in

(cAux := (instrCounterClass r cAux); !cAux);

ñ newInstrCounter : Unit → InstrCounter

244 18 Case Study: Imperative Objects

The code for constructing the method table (in instrCounterClass and

counterClass) is now called once per object creation, rather than once per

method invocation. This achieves what we set out to do, but it is still not quite

as efficient as we might wish: after all the method table that we construct for

each instrumented counter object is always exactly the same, so it would

seem we should be able to compute this method table just once, when the

class is defined, and never again. We will see in Chapter 27 how this can be

accomplished using the bounded quantification introduced in Chapter 26.

18.13 Recap

The first section of this chapter listed several characteristic features of the

object-oriented programming style. Let us recall these features and briefly

discuss how they relate to the examples developed in the chapter.

1. Multiple representations. All of the objects that we have seen in this chap-

ter are counters—i.e., they belong to the type Counter. But their represen-

tations vary widely, from single reference cells in §18.2 to records con-

taining several references in §18.9. Each object is a record of functions,

providing implementations of the Counter methods (and perhaps others)

appropriate to its own internal representation.

2. Encapsulation. The fact that the instance variables of an object are acces-

sible only from its methods follows directly from the way we build objects,

building the methods by passing the record of instance variables to a con-

structor function. It is obvious that the instance variables can be named

only from inside the methods.

3. Subtyping. In this setting, subtyping between object types is just ordinary

subtyping between types of records of functions.

4. Inheritance. We modeled inheritance by copying implementations of meth-

ods from an existing superclass to a newly defined subclass. There were

a few interesting technicalities here: strictly speaking, both the superclass

and the new subclass are functions from instance variables to records of

methods. The subclass waits for its instance variables, then instantiates

the superclass with the instance variables it is given, forming a record of

superclass methods operating on the same variables.

5. Open recursion. The open recursion provided by self (or this) in real-

world object-oriented languages is modeled here by abstracting classes

not only on instance variables but also on a self parameter, which can

18.14 Notes 245

be used in methods to refer to other methods of the same object. This

parameter is resolved at object-creation time by using fix to “tie the knot.”

18.13.1 Exercise [«««]: Another feature of objects that is useful for some purposes

is a notion of object identity—an operation sameObject that yields true if

its two arguments evaluate to the very same object, and false if they eval-

uate to objects that were created at different times (by different calls to new

functions). How might the model of objects in this chapter be extended to

support object identity? �

18.14 Notes

Object encodings are a staple source of examples and problems for the pro-

gramming languages research community. An early encoding was given by

Reynolds (1978); general interest in the area was sparked by an article by

Cardelli (1984). The understanding of self in terms of fixed points was de-

veloped by Cook (1989), Cook and Palsberg (1989), Kamin (1988), and Reddy

(1988); relations between these models were explored by Kamin and Reddy

(1994) and Bruce (1991).

A number of important early papers in the area are collected in Gunter

and Mitchell (1994). Later developments are surveyed by Bruce, Cardelli, and

Pierce (1999) and by Abadi and Cardelli (1996). Bruce (2002) gives an up-to-

date picture of progress in the area. Alternative foundational approaches to

objects and their type systems can be found in Palsberg and Schwartzbach

(1994) and Castagna (1997).

Some additional historical notes can be found at the end of Chapter 32.

Inheritance is highly overrated. —Grady Booch

19 Case Study: Featherweight Java

We saw in Chapter 18 how a lambda-calculus with subtyping, records, and

references can model certain key features of object-oriented programming.

The goal in that chapter was to deepen our understanding of these features

by encoding them in terms of more elementary ones. In this chapter, we take

a different approach, showing how to adapt the ideas in previous chapters

to a direct treatment of a core object-oriented language based on Java. Prior

acquaintance with Java is assumed.

19.1 Introduction

Formal modeling can offer a significant boost to the design of complex real-

world artifacts such as programming languages. A formal model may be used

to describe some aspect of a design precisely, to state and prove its proper-

ties, and to direct attention to issues that might otherwise be overlooked.

In formulating a model, however, there is a tension between completeness

and compactness: the more aspects the model addresses at the same time,

the more unwieldy it becomes. Often it is sensible to choose a model that

is less complete but more compact, offering maximum insight for minimum

investment. This strategy may be seen in a flurry of recent papers on the for-

mal properties of Java, which omit advanced features such as concurrency

and reflection and concentrate on fragments of the full language to which

well-understood theory can be applied.

Featherweight Java, or FJ, was proposed by Igarashi, Pierce, and Wadler

(1999) as a contender for a minimal core calculus for modeling Java’s type

system. The design of FJ favors compactness over completeness almost ob-

sessively, having just five forms of term: object creation, method invocation,

The examples in this chapter are terms of FeatherWeight Java (Figures 19-1 through 19-4).

There is no associated OCaml implementation; rather, since FJ is designed to be a strict subset

of Java, any Java implementation can be used to run the examples.

248 19 Case Study: Featherweight Java

field access, casting, and variables. Its syntax, typing rules, and operational

semantics fit comfortably on a single (letter-sized) page. Indeed, the aim of

its design was to omit as many features as possible—even assignment—while

retaining the core features of Java typing. There is a direct correspondence

between FJ and a purely functional core of Java, in the sense that every FJ

program is literally an executable Java program.

FJ is only a little larger than the lambda-calculus or Abadi and Cardelli’s

object calculus (1996), and is significantly smaller than other formal models

of class-based languages like Java, including those of Drossopoulou, Eisen-

bach, and Khurshid (1999), Syme (1997), Nipkow and Oheimb (1998), and

Flatt, Krishnamurthi, and Felleisen (1998a, 1998b). Being smaller, FJ can fo-

cus on just a few key issues. For example, we shall see that capturing the

behavior of Java’s casting construct in a small-step operational semantics is

trickier than we might have expected.

FJ’s main application is modeling extensions of Java. Because FJ itself is so

compact, it focuses attention on essential aspects of an extension. Moreover,

because the proof of type safety for pure FJ is very simple, a rigorous safety

proof for even a significant extension may remain manageable. The origi-

nal FJ paper illustrated this utility by enriching FJ with generic classes and

methods à la GJ (Bracha, Odersky, Stoutamire, and Wadler, 1998). A followup

paper (Igarashi, Pierce, and Wadler, 2001) formalized raw types, a feature in-

troduced in GJ to ease evolution of Java programs to GJ. Igarashi and Pierce

(2000) used FJ as the basis for a study of Java’s inner class features. FJ has

also been used for studies of type-preserving compilation (League, Trifonov,

and Shao, 2001) and semantic foundations (Studer, 2001) for Java.

The goal in designing FJ was to make its proof of type safety as concise

as possible, while still capturing the essence of the safety argument for the

central features of full Java. Any language feature that made the safety proof

longer without making it significantly different was a candidate for omission.

Like other studies of its kind, FJ omits advanced features such as concurrency

and reflection. Other Java features missing from FJ include assignment, inter-

faces, overloading, messages to super, null pointers, base types (int, bool,

etc.), abstract method declarations, inner classes, shadowing of superclass

fields by subclass fields, access control (public, private, etc.), and excep-

tions. The features of Java that FJ does model include mutually recursive class

definitions, object creation, field access, method invocation, method override,

method recursion through this, subtyping, and casting.

A key simplification in FJ is the omission of assignment. We assume that

an object’s fields are initialized by its constructor and never changed after-

wards. This restricts FJ to a “functional” fragment of Java, in which many

common Java idioms, such as use of enumerations, cannot be represented.

19.2 Overview 249

Nonetheless, this fragment is computationally complete (it is easy to encode

the lambda-calculus into it), and is large enough to include useful programs—

for example, many of the programs in Felleisen and Friedman’s Java text

(1998) use a purely functional style.

19.2 Overview

In FJ, a program consists of a collection of class definitions plus a term to be

evaluated, corresponding to the body of the main method in full Java. Here

are some typical class definitions in FJ.

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

// Constructor:

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

// Method definition:

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); } }

For the sake of syntactic regularity, we always include the superclass (even

when it is Object), we always write out the constructor (even for the trivial

classes A and B), and we always name the receiver in a field access or a method

invocation (as in this.snd), even when the receiver is this. Constructors

always take the same stylized form: there is one parameter for each field,

with the same name as the field; the super constructor is invoked to initialize

the fields of the superclass; and then the remaining fields are initialized to

the corresponding parameters. In this example, the superclass of all three

classes is Object, which has no fields, so the invocations of super have no

arguments. Constructors are the only place where super or = appears in an

FJ program. Since FJ provides no side-effecting operations, a method body

always consists of return followed by a term, as in the body of setfst().

There are five forms of term in FJ. In the example, new A(), new B(), and

new Pair(. . ., . . .) are object constructors, andsetfst(. . .) is a method

invocation. In the body of setfst, the term this.snd is a field access, and the

occurrences of newfst and this are variables.1 In the context of the above

1. The syntax of FJ differs slightly from Java in treating this as a variable, not a keyword.

250 19 Case Study: Featherweight Java

definitions, the term

new Pair(new A(), new B()).setfst(new B())

evaluates to new Pair(new B(), new B()).

The remaining form of term is a cast (see §15.5). The term

((Pair)new Pair(new Pair(new A(), new B()),

new A()).fst).snd

evaluates to new B(). The subterm (Pair)t, where t is new Pair(. . .).fst,

is a cast. The cast is required, because t is a field access to fst, which is

declared to contain an Object, whereas the next field access, to snd, is valid

only on a Pair. At run time, the evaluation rules check whether the Object

stored in the fst field is a Pair (in this case the check succeeds).

Dropping side effects has a pleasant side effect: evaluation can easily be

formalized entirely within the syntax of FJ, with no additional mechanisms

for modeling the heap (see Chapter 13). There are three basic computation

rules: one for field access, one for method invocation, and one for casts. Re-

call that, in the lambda-calculus, the evaluation rule for applications assumes

that the function is first simplified to a lambda abstraction. Similarly, in FJ

the evaluation rules assume the object operated upon is first simplified to

a new term. The slogan in the lambda-calculus is “everything is a function”;

here, “everything is an object.”

The next example shows the rule for field access (E-ProjNew) in action:

new Pair(new A(), new B()).snd -→ new B()

Because of the stylized syntax of object constructors, we know that the con-

structor has one parameter for each field, in the same order that the fields

are declared. Here the fields are fst and snd, and an access to the snd field

selects the second parameter.

Here is the rule for method invocation (E-InvkNew) in action:

new Pair(new A(), new B()).setfst(new B())

-→

[

newfst, new B(),

this, new Pair(new A(),new B())

]

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

The receiver of the invocation is the object new Pair(new A(),new B()), so

we look up the setfst method in the Pair class, where we find that it has

formal parameter newfst and body new Pair(newfst, this.snd). The invo-

cation reduces to the body with the formal parameter replaced by the actual,

19.3 Nominal and Structural Type Systems 251

and the special variable this replaced by the receiver object. This is similar

to the beta-reduction rule (E-AppAbs) of the lambda-calculus. The key differ-

ences are the fact that the class of the receiver determines where to look for

the body (supporting method override), and the substitution of the receiver

for this (supporting “open recursion through self”).2 In FJ, as in the lambda-

calculus, if the formal parameter appears more than once in the body this

may lead to duplication of the argument value, but since there are no side

effects this difference from the standard Java semantics cannot be observed.

Here is the rule for casts (E-CastNew) in action:

(Pair)new Pair(new A(), new B()) -→ new Pair(new A(), new B())

Once the subject of the cast is reduced to an object, it is easy to check that the

class of the constructor is a subclass of the target of the cast. If so (as is the

case here), the reduction removes the cast. If not, as in the term (A)new B(),

then no rule applies and the computation is stuck, denoting a run-time error.

There are three ways in which a computation may get stuck: an attempt to

access a field not declared for the class, an attempt to invoke a method not

declared for the class (“message not understood”), or an attempt to cast to

something other than a superclass of an object’s run-time class. We will prove

that the first two of these never happen in well-typed programs, and that the

third never happens in well-typed programs that contain no downcasts (and

no “stupid casts”—a technicality explained below).

We adopt a standard call-by-value evaluation strategy. Here are the steps

of evaluation for the second example term above, where the next subterm to

be reduced is underlined at each step.

((Pair) (new Pair(new Pair(new A(),new B()), new A())

.fst).snd

-→ ((Pair)new Pair(new A(),new B())).snd

-→ new Pair(new A(), new B()).snd

-→ new B()

19.3 Nominal and Structural Type Systems

Before proceeding with the formal definition of FJ, we should pause to exam-

ine one fundamental stylistic difference between FJ (and Java) and the typed

lambda-calculi that are the main focus in this book. This difference concerns

the status of type names.

2. Readers familiar with Abadi and Cardelli’s object calculus (1996) will see a strong similarity

to their ς-reduction rule.

252 19 Case Study: Featherweight Java

In previous chapters, we have often defined short names for long or com-

plex compound types to improve the readability of examples, e.g.:

NatPair = {fst:Nat, snd:Nat};

Such definitions are purely cosmetic: the name NatPair is a simple abbre-

viation for {fst:Nat,snd:Nat}, and the two are interchangeable in every

context. Our formal presentations of the calculi have ignored abbreviations.

By contrast, in Java, as in many widely used programming languages, type

definitions play a much more significant role. Every compound type used in

a Java program has a name, and, when we declare the type of a local variable,

a field, or a method parameter, we always do so by giving the name. “Bare”

types like {fst:Nat,snd:Nat} simply cannot appear in these positions.

These type names play a crucial role in Java’s subtype relation. Whenever

a new name is introduced (in a class or interface definition), the programmer

explicitly declares which classes and interfaces the new one extends (or, in

the case of a new class and an existing interface, “implements”). The compiler

checks these declarations to make sure that the facilities provided by the new

class or interface really extend those of each super-class or super-interface—

this check corresponds to record subtyping in a typed lambda-calculus. The

subtype relation is now defined between type names as the reflexive and tran-

sitive closure of the declared immediate-subtype relation. If one name has not

been declared to be a subtype of another, then it is not.

Type systems like Java’s, in which names are significant and subtyping is

explicitly declared, are called nominal. Type systems like most of the ones in

this book, in which names are inessential and subtyping is defined directly

on the structures of types are called structural.

Nominal type systems have both advantages and disadvantages over struc-

tural presentations. Probably the most important advantage is that the type

names in nominal systems are useful not only during typechecking, but at

run time as well. Most nominal languages tag each run-time object with a

header word containing its type name, represented concretely as a pointer

to a run-time data structure describing the type and giving pointers to its

immediate supertypes. These type tags are handy for a variety of purposes,

including run-time type testing (e.g., Java’s instanceOf test and downcasting

operation), printing, marshaling data structures into binary forms for storage

in files or transmission over networks, and reflective facilities that permit a

program to dynamically investigate the fields and methods of an object that

it has been given. Run-time type tags can also be supported in structural sys-

tems (see Glew, 1999; League, Shao, and Trifonov, 1999; League, Trifonov, and

Shao, 2001; and the citations given there), but they constitute an additional,

19.3 Nominal and Structural Type Systems 253

separate mechanism; in nominal systems, the run-time tags are identified

with the compile-time types.

A less essential, but pleasant, property of nominal systems is that they of-

fer a natural and intuitive account of recursive types—types whose definition

mentions the type itself. (We will discuss recursive types in detail in Chap-

ter 20.) Such types are ubiquitous in serious programming, being required to

describe such common structures as lists and trees, and nominal type sys-

tems support them in the most straightforward possible way: referring to

List in the body of its own declaration is just as easy as referring to any

other type. Indeed, even mutually recursive types are straightforward. We

view the set of type names as being given from the beginning, so that, if the

definition of type A involves the name B and the definition of B refers to A,

there is no issue about “which is defined first.” Of course, recursive types can

also be handled in structural type systems. Indeed, high-level languages with

structural typing, such as ML, generally “bundle” recursive types with other

features, so that, for the programmer, they are just as natural and easy to

use as in nominal languages. But in calculi intended for more foundational

purposes, such as type safety proofs, the mechanisms required to deal rig-

orously with recursive types can become rather heavy, especially if mutually

recursive types are allowed. The fact that recursive types come essentially for

free in nominal systems is a decided benefit.

Another advantage of nominal systems is that checking whether one type

is a subtype of another becomes almost trivial. Of course, the compiler must

still do the work of verifying that the declared subtype relations are safe,

which essentially duplicates the structural subtype relation, but this work

needs to be done only once per type, at the point where it is defined, rather

than during every subtype check. This makes it somewhat easier to achieve

good performance in typecheckers for nominal type systems. In more seri-

ous compilers, though, it is not clear that the difference between nominal

and structural styles has much effect on performance, since well-engineered

typecheckers for structural systems incorporate representation techniques

that reduce most subtype checks to a single comparison—see page 222.

A final advantage often cited for explicit subtype declarations is that they

prevent “spurious subsumption,” where the typechecker fails to reject a pro-

gram that uses a value of one type where a completely different, but struc-

turally compatible, type is expected. This point is more contentious than the

ones above, since there are other—arguably better—ways of preventing spuri-

ous subsumption, for example using single-constructor datatypes (page 138)

or abstract data types (Chapter 24).

Given all these advantages—especially the general usefulness of type tags

and the simple treatment of recursive types—it is no surprise to find that

254 19 Case Study: Featherweight Java

nominal type systems are the norm in mainstream programming languages.

The research literature on programming languages, on the other hand, is al-

most completely concerned with structural type systems.

One immediate reason for this is that, at least in the absence of recursive

types, structural systems are somewhat tidier and more elegant. In a struc-

tural setting, a type expression is a closed entity: it carries with it all the

information that is needed to understand its meaning. In a nominal system,

we are always working with respect to some global collection of type names

and associated definitions. This tends to make both definitions and proofs

more verbose.

A more interesting reason is that the research literature tends to focus on

more advanced features—in particular, on powerful mechanisms for type ab-

straction (parametric polymorphism, abstract data types, user-defined type

operators, functors, etc.)—and on languages such as ML and Haskell that em-

body these features. Unfortunately, such features do not fit very comfortably

into nominal systems. A type like List(T), for example, seems irreducibly

compound—there will be just one definition somewhere in the program for

the constructor List, and we need to refer to this definition to see how

List(T) behaves, so we cannot treat List(T) as an atomic name. A few

nominal languages have been extended with such “generic” features (Myers,

Bank, and Liskov, 1997; Agesen, Freund, and Mitchell, 1997; Bracha, Odersky,

Stoutamire, and Wadler, 1998; Cartwright and Steele, 1998; Stroustrup, 1997),

but the results of such extensions are no longer pure nominal systems, but

somewhat complex hybrids of the two approaches. Designers of languages

with advanced typing features thus tend to favor the structural approach.

A full account of the relation between nominal and structural type systems

remains a topic of ongoing research.

19.4 Definitions

We now turn to the formal definition of FJ.

Syntax

The syntax of FJ is given in Figure 19-1. The metavariables A, B, C, D, and E

range over class names; f and g range over field names; m ranges over method

names; x ranges over parameter names; s and t range over terms; u and v

range over values; CL ranges over class declarations; K ranges over construc-

tor declarations; M ranges over method declarations. We assume that the set

of variables includes the special variable this, but that this is never used as

19.4 Definitions 255

Syntax

CL ::= class declarations:

class C extends C {C f; K M}

K ::= constructor declarations:

C(C f) {super(f); this.f=f;}

M ::= method declarations:

C m(C x) {return t;}

t ::= terms:

x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values:

new C(v) object creation

Subtyping C<:D

C <: C

C <: D D <: E

C <: E

CT(C) = class C extends D {...}

C <: D

Figure 19-1: Featherweight Java (syntax and subtyping)

the name of an argument to a method. Instead, it is considered to be implicitly

bound in every method declaration. The evaluation rule for method invoca-

tion (rule E-InvkNew in Figure 19-3) will substitute an appropriate object for

this in addition to substituting argument values for parameters.

We write f as shorthand for f1,. . .,fn (similarly C, x, t, etc.) and write

M for M1. . . Mn (with no commas). We abbreviate operations on pairs of se-

quences similarly, writing “C f” for “C1 f1,. . .,Cn fn”, where n is the length

of C and f, “C f;” for the declarations “C1 f1;. . . Cn fn;” and “this.f=f;” for

“this.f1=f1;. . . ;this.fn=fn;”. Sequences of field declarations, parameter

names, and method declarations are assumed to contain no duplicate names.

The declaration class C extends D {C f; K M} introduces a class named C

with superclass D. The new class has fields f with types C, a single construc-

tor K, and a suite of methods M. The instance variables declared by C are

added to the ones declared by D and its superclasses, and should have names

distinct from these.3 The methods of C, on the other hand, may either over-

3. In Java, instance variables of superclasses may be redeclared—the redeclaration shadows

256 19 Case Study: Featherweight Java

ride methods with the same names that are already present in D or add new

functionality special to C.

The constructor declaration C(D g, C f) {super(g); this.f=f;} shows

how to initialize the fields of an instance of C. Its form is completely deter-

mined by the instance variable declarations of C and its superclasses: it must

take exactly as many parameters as there are instance variables, and its body

must consist of a call to the superclass constructor to initialize its fields from

the parameters g, followed by an assignment of the parameters f to the new

fields of the same names declared by C. (These constraints are enforced by

the typing rule for classes in Figure 19-4.) In full Java, a subclass constructor

must contain a call to its superclass constructor (when the superclass con-

structor takes arguments); this is the reason that the constructor body here

calls super to initialize the superclass’s instance variables. If we did not care

about making FJ a literal subset of Java, we could drop the call to super and

make each constructor initialize all the instance variables directly.

The method declaration D m(C x) {return t;} introduces a method named

m with result type D and parameters x of types C. The body of the method is

the single statement return t. The variables x are bound in t. The special

variable this is also considered bound in t.

A class table CT is a mapping from class names C to class declarations CL.

A program is a pair (CT,t) of a class table and a term. To lighten the notation

in what follows, we always assume a fixed class table CT.

Every class has a superclass, declared with extends. This raises a question:

what is the superclass of the Object class? There are various ways to deal

with this issue; the simplest one (which we adopt here) is to take Object as a

distinguished class name whose definition does not appear in the class table.

The auxiliary function that looks up fields in the class table is equipped with

a special case for Object that returns the empty sequence of fields, denoted

•; Object is also assumed to have no methods.4

By looking at the class table, we can read off the subtype relation between

classes. We write C <: D when C is a subtype of D—i.e., subtyping is the re-

flexive and transitive closure of the immediate subclass relation given by the

extends clauses in CT . It is defined formally in Figure 19-1.

The given class table is assumed to satisfy some sanity conditions: (1)

CT(C) = class C... for every C ∈ dom(CT); (2) Object ∉ dom(CT); (3)

for every class name C (except Object) appearing anywhere in CT, we have

C ∈ dom(CT); and (4) there are no cycles in the subtype relation induced by

CT—that is, the <: relation is antisymmetric.

the original in the current class and its subclasses. We omit this feature in FJ.

4. In full Java, the class Object actually has several methods. We ignore these in FJ.

19.4 Definitions 257

Field lookup fields(C) = C f

fields(Object) = •

CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g, C f

Method type lookup mtype(m,C) = C→C

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mtype(m,C) = B→B

CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m,C) =mtype(m,D)

Method body lookup mbody(m,C) = (x,t)

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mbody(m,C) = (x,t)

CT(C) = class C extends D {C f; K M}

m is not defined in M

mbody(m,C) =mbody(m,D)

Valid method overriding override(m, D, C→C0)

mtype(m,D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Figure 19-2: Featherweight Java (auxiliary definitions)

Note that the types defined by the class table are allowed to be recursive, in

the sense that the definition of a class A may use the name A in the types of its

methods and instance variables. Mutual recursion between class definitions

is also allowed.

19.4.1 Exercise [«]: By analogy with the S-Top rule in our lambda-calculus with sub-

typing, one might expect to see a rule stating that Object is a supertype of

every class. Why don’t we need it here? �

Auxiliary Definitions

For the typing and evaluation rules, we will need a few auxiliary definitions;

these are given in Figure 19-2. The fields of a class C, written fields(C), is a

sequence C f pairing the class of each field with its name, for all the fields

declared in class C and all of its superclasses. The type of the method m in

class C, written mtype(m,C), is a pair, written B→B, of a sequence of argument

types B and a single result type B. Similarly, the body of the method m in class

C, written mbody(m,C), is a pair, written (x,t), of a sequence of parameters

x and a term t. The predicate override(m, D, C→C0) judges whether a method

m with argument types C and a result type C0 may be defined in a subclass of

258 19 Case Study: Featherweight Java

Evaluation t -→ t′

fields(C) = C f

(new C(v)).fi -→ vi
(E-ProjNew)

mbody(m,C) = (x,t0)

(new C(v)).m(u)

-→ [x, u, this, new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) -→ new C(v)
(E-CastNew)

t0 -→ t′0

t0.f -→ t′0.f
(E-Field)

t0 -→ t′0

t0.m(t) -→ t′0.m(t)
(E-Invk-Recv)

ti -→ t′i

v0.m(v, ti, t)

-→ v0.m(v, t′i, t)

(E-Invk-Arg)

ti -→ t′i

new C(v, ti, t)

-→ new C(v, t′i, t)

(E-New-Arg)

t0 -→ t′0

(C)t0 -→ (C)t′0
(E-Cast)

Figure 19-3: Featherweight Java (evaluation)

D. In case of overriding, if a method with the same name is declared in the

superclass then it must have the same type.

Evaluation

We use a standard call-by-value operational semantics (Figure 19-3). The three

computation rules—for field access, method invocation, and casting—were

explained in §19.2. The rest of the rules formalize the call-by-value strategy.

The values that can result from normal termination of the evaluator are fully

evaluated object creation terms of the form new C(v).

Note that the run-time behavior of the cast operation is to test whether

the actual type of the object being cast is a subtype of the type declared in

the cast. If it is, then the cast operation is thrown away and the result is the

object itself. This corresponds exactly to the semantics of Java: a run-time

cast does not change an object in any way—it simply either succeeds or else

fails and raises an exception. In FJ, instead of raising an exception a failing

cast will just get stuck, since there will be no evaluation rule that applies.

Typing

The typing rules for terms, method declarations, and class declarations are

given in Figure 19-4. An environment Γ is a finite mapping from variables to

types, written x:C. Typing statements for terms have the form Γ ` t : C,

19.4 Definitions 259

Term typing Γ ` t : C

x:C ∈ Γ

Γ ` x : C
(T-Var)

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci
(T-Field)

Γ ` t0 : C0

mtype(m,C0) = D→C

Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

fields(C) = D f

Γ ` t : C C <: D

Γ ` new C(t) : C
(T-New)

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)

Γ ` t0 : D C <: D C ≠ D

Γ ` (C)t0 : C
(T-DCast)

Γ ` t0 : D C 6<: D D 6<: C

stupid warning

Γ ` (C)t0 : C
(T-SCast)

Method typing M OK in C

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}

override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

Class typing C OK

K = C(D g, C f)

{super(g); this.f = f;}

fields(D) = D g M OK in C

class C extends D {C f; K M} OK

Figure 19-4: Featherweight Java (typing)

read “in the environment Γ , term t has type C.” The typing rules are syntax

directed,5 with one rule for each form of term, save that there are three rules

for casts (discussed below). The typing rules for constructors and method

invocations check that each argument has a type that is a subtype of the

one declared for the corresponding formal parameter. We abbreviate typing

statements on sequences in the obvious way, writing Γ ` t : C as shorthand

for Γ ` t1 : C1, . . . , Γ ` tn : Cn and C <: D as shorthand for C1 <: D1, . . . ,

Cn <: Dn.

One minor technical innovation in FJ is the introduction of “stupid” casts.

There are three rules for type casts: in an upcast the subject is a subclass

of the target, in a downcast the target is a subclass of the subject, and in a

stupid cast the target is unrelated to the subject. The Java compiler rejects

as ill typed a term containing a stupid cast, but we must allow stupid casts

in FJ if we are to formulate type safety as a type preservation theorem for

a small-step semantics. This is because a sensible term may be reduced to

5. We follow full Java in choosing an algorithmic formulation of the typing relation. Interest-

ingly, in full Java this choice is actually forced. See Exercise 19.4.6.

260 19 Case Study: Featherweight Java

one containing a stupid cast. For example, consider the following, which uses

classes A and B as defined in §19.2:

(A)(Object)new B() -→ (A)new B()

We indicate the special nature of stupid casts by including the hypothesis

stupid warning in the type rule for stupid casts (T-SCast); an FJ typing corre-

sponds to a legal Java typing only if it does not contain this rule.

Typing statements for method declarations have the form M OK in C, read

“method declaration M is well formed if it occurs in class C.” It uses the term

typing relation on the body of the method, where the free variables are the

parameters of the method with their declared types, plus the special variable

this with type C.

Typing statements for class declarations have the form CL OK, read “class

declaration CL is well formed.” It checks that the constructor applies super

to the fields of the superclass and initializes the fields declared in this class,

and that each method declaration in the class is ok.

The type of a term may depend on the type of any methods it invokes, and

the type of a method depends on the type of a term (its body), so it behooves

us to check that there is no ill-defined circularity here. Indeed there is none:

the circle is broken because the type of each method is explicitly declared. It

is possible to load the class table and use it for typechecking before all the

classes in it have been checked, so long as each class is eventually checked.

19.4.2 Exercise [««]: A number of design decisions in FJ are dictated by the desire

to make it a subset of Java, in the sense that every well- or ill-typed FJ program

is well- or ill-typed as a Java program, and the well-typed programs behave the

same. Suppose this requirement were dropped—i.e., suppose all we wanted

was a Java-like core calculus. How would you change the design of FJ to make

it simpler or more elegant? �

19.4.3 Exercise [Recommended, ««« 3]: The operation of assigning a new value

to the field of an object is omitted from FJ to simplify its presentation, but it

can be added without changing the basic character of the calculus very much.

Do this, using the treatment of references in Chapter 13 as a model. �

19.4.4 Exercise [««« 3]: Extend FJ with analogs of Java’s raise and try forms,

using the treatment of exceptions in Chapter 14 as a model. �

19.4.5 Exercise [«« 3]: FJ, like full Java, presents the typing relation in algorithmic

form. There is no subsumption rule; instead, several of the other rules include

subtyping checks among their premises. Can the system be reformulated in

a more declarative style, dropping most or all of these premises in favor of a

single subsumption rule? �

19.5 Properties 261

19.4.6 Exercise [«««]: Full Java provides both classes and interfaces, which specify

the types of methods, but not their implementations. Interfaces are useful

because they permit a richer, non-tree-structured, subtype relation: each class

has a single superclass (from which it inherits instance variables and method

bodies), but may additionally implement any number of interfaces.

The presence of interfaces in Java actually forces the choice of an algo-

rithmic presentation of the typing relation, which gives each typable term

a unique (minimal) type. The reason is an interaction between conditional

expressions (written t1 ? t2 : t3 in Java) and interfaces.

1. Show how to extend FJ with interfaces in the style of Java.

2. Show that, in the presence of interfaces, the subtype relation is not nec-

essarily closed under joins. (Recall from §16.3 that the existence of joins

played a critical role in the minimal typing property for conditionals.)

3. What is Java’s typing rule for conditional expressions? Is it reasonable? �

19.4.7 Exercise [«««]: FJ includes Java’s this keyword, but omits super. Show

how to add it. �

19.5 Properties

We can prove a standard type-preservation theorem for FJ.

19.5.1 Theorem [Preservation]: If Γ ` t : C and t -→ t′, then Γ ` t′ : C′ for some

C′ <: C. �

Proof: Exercise [«««]. �

We can also show a variant of the standard progress theorem: if a program

is well typed, then the only way it can get stuck is if it reaches a point where

it cannot perform a downcast. We use the mechanism of evaluation contexts

to identify the failing downcast in the latter case.

19.5.2 Lemma: Suppose t is a well-typed term.

1. If t = new C0(t).f, then fields(C0) = C f and f ∈ f.

2. If t = new C0(t).m(s), then mbody(m,C0) = (x,t0) and |x| = |s|. �

Proof: Straightforward. �

262 19 Case Study: Featherweight Java

19.5.3 Definition: The set of evaluation contexts for FJ is defined as follows:

E ::= evaluation contexts:

[] hole

E.f field access

E.m(t) method invocation (receiver)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

Each evaluation context is a term with a hole (written []) somewhere inside

it. We write E[t] for the ordinary term obtained by replacing the hole in E

with t. �

Evaluation contexts capture the notion of the “next subterm to be reduced,”

in the sense that, if t -→ t′, then we can express t and t′ as t = E[r] and

t′ = E[r′] for a unique E, r, and r′, with r -→ r′ by one of the computation

rules E-ProjNew, E-InvkNew, or E-CastNew.

19.5.4 Theorem [Progress]: Suppose t is a closed, well-typed normal form. Then

either (1) t is a value, or (2) for some evaluation context E, we can express t

as t = E[(C)(new D(v))], with D 6<: C. �

Proof: Straightforward induction on typing derivations. �

The progress property can be sharpened a little: if t contains only upcasts,

then it cannot get stuck (and, if the original program contains only upcasts,

then evaluation will never produce any casts that are not upcasts). But, in

general, we want to use casting to lower the static types of objects, and so

we must live with the possibility that casts can fail at run time. In full Java,

of course, a cast failure does not stop the whole program: it generates an

exception that can be caught by a surrounding exception handler.

19.5.5 Exercise [««« 3]: Starting from one of the lambda-calculus typecheckers,

build a typechecker and interpreter for Featherweight Java. �

19.5.6 Exercise [«««« 3]: The original FJ paper (Igarashi, Pierce, and Wadler, 1999)

also formalizes polymorphic types in the style of GJ. Extend the typechecker

and interpreter from Exercise 19.5.5 to include these features. (You will need

to read Chapters 23, 25, 26, and 28 before attempting this exercise.) �

19.6 Encodings vs. Primitive Objects

We have seen two contrasting approaches to the semantics and typing of

simple object-oriented languages. In Chapter 18, we used combinations of

19.7 Notes 263

features from the simply typed lambda-calculus with records, references, and

subtyping to encode objects, classes, and inheritance. In the present chapter,

we gave a direct account of a simple language in which objects and classes

are primitive mechanisms.

Each of these approaches has its uses. Studying object encodings lays bare

the fundamental mechanisms of encapsulation and reuse and allows us to

compare them to other mechanisms with related aims. These encodings also

help in understanding the way objects are translated into yet lower-level lan-

guages by compilers, and in understanding the interactions between objects

and other language features. Treating objects as primitive, on the other hand,

allows us to talk about their operational semantics and typing behavior di-

rectly; this kind of presentation is a better tool for high-level language design

and documentation.

Ultimately, of course, we would like to have both views—a high-level lan-

guage including primitive features for objects, classes, etc., with its own typ-

ing rules and operational semantics, plus a translation from this language

to some lower-level language with just records and functions (or, indeed, an

even lower-level language with nothing but registers, pointers, and instruc-

tion sequences), and finally a proof that this translation is a correct imple-

mentation of the high-level language, in the sense that the translation pre-

serves the evaluation and typing properties of the high-level language. Many

variants of this exercise have been carried out—for FJ itself by League, Tri-

fonov, and Shao (2001), and for other object-oriented core calculi by Hofmann

and Pierce (1995b), Bruce (1994, 2002), Abadi, Cardelli, and Viswanathan

(1996), and others.

19.7 Notes

This chapter is adapted from the original FJ article by Igarashi, Pierce, and

Wadler (1999). The main difference in presentation is that we have used a

call-by-value operational semantics, for consistency with the rest of the book,

while the original used a nondeterministic beta-reduction relation.

There have been several proofs of type safety for subsets of Java. In the

earliest, Drossopoulou, Eisenbach, and Khurshid (1999), using a technique

later mechanically checked by Syme (1997), prove safety for a substantial

subset of sequential Java. Like FJ, they use a small-step operational semantics,

but they avoid the subtleties of “stupid casts” by omitting casting entirely.

Nipkow and Oheimb (1998) give a mechanically checked proof of safety for

a somewhat larger core language. Their language does include casts, but it

is formulated using a “big-step” operational semantics, which sidesteps the

264 19 Case Study: Featherweight Java

stupid cast problem. Flatt, Krishnamurthi, and Felleisen (1998a, 1998b) use

a small-step semantics and formalize a language with both assignment and

casting, treating stupid casts as in FJ. Their system is somewhat larger than FJ

(the syntax, typing, and operational semantics rules take perhaps three times

the space), and its safety proof, though correspondingly longer, is of similar

complexity.

Of these three studies, Flatt, Krishnamurthi, and Felleisen’s is closest to FJ

in an important sense: the goal there, as here, is to choose a core calculus that

is as small as possible, capturing just the features of Java that are relevant to

some particular task. In their case, the task is analyzing an extension of Java

with Common Lisp style mixins. The goal of the other two systems mentioned

above, on the other hand, is to include as large a subset of Java as possible,

since their primary interest is proving the safety of Java itself.

The literature on foundations of object-oriented languages contains many

papers on formalizing class-based object-oriented languages, either taking

classes as primitive (e.g., Wand, 1989a, Bruce, 1994, Bono, Patel, Shmatikov,

and Mitchell, 1999b, Bono, Patel, and Shmatikov, 1999a) or translating classes

into lower-level mechanisms (e.g., Fisher and Mitchell, 1998, Bono and Fisher,

1998, Abadi and Cardelli, 1996, Pierce and Turner, 1994).

A related thread of work considers models of object-oriented languages

in which classes are replaced by some form of method override or delegation

(Ungar and Smith, 1987), where individual objects may inherit behaviors from

other objects. The resulting calculi tend to be somewhat simpler than those

for class-based languages, since they deal with a smaller set of concepts. The

most highly developed and best known of these is Abadi and Cardelli’s object

calculus (1996). Another popular one was developed by Fisher, Honsell, and

Mitchell (1994).

A rather different approach to objects, classes, and inheritance, known as

multi-methods, has been formalized by Castagna, Ghelli, and Longo (1995).

The footnote on page 226 gives additional citations.

Inside every large language is a small language struggling to get out. . . .

—Igarashi, Pierce, and Wadler (1999)

Inside every large program is a small program struggling to get out. . . .

—Tony Hoare, Efficient Production of Large Programs (1970)

I’m fat, but I’m thin inside.

Has it ever struck you that there’s a thin man inside every fat man?

—George Orwell, Coming Up For Air (1939)

P a r t I V

Recursive Types

20 Recursive Types

We saw in §11.12 how to extend a simple type system to include a type con-

structor List(T) whose elements are lists with elements of type T. Lists

are just one example of a large class of common structures—also includ-

ing queues, binary trees, labeled trees, abstract syntax trees, etc.—that may

grow to arbitrary size, but that have a simple, regular structure. An element

of List(Nat), for example, is always either nil or else a pair (a “cons cell”)

of a number and another List(Nat). Clearly, it does not make sense to pro-

vide every one of these structures as a separate, primitive language feature.

Instead, we need a general mechanism with which they can be defined from

simpler elements, as needed. This mechanism is called recursive types.

Consider again the type of lists of numbers.1 We can represent the fact

that a list is either nil or a pair using the variant and tuple types defined in

§11.10 and §11.7:

NatList = <nil:Unit, cons:{...,...}>;

The data value carried by nil is trivial, since the nil tag itself already tells

us everything that we need to know about an empty list. The value carried by

the cons tag, on the other hand, is a pair consisting of a number and another

list. The first component of this pair has type Nat,

NatList = <nil:Unit, cons: {Nat, ...}>;

while the second component is a list of numbers—i.e., an element of the very

type NatList that we are defining:

NatList = <nil:Unit, cons:{Nat,NatList}>;

The system studied in this chapter is the simply typed calculus with recursive types. The

examples use a variety of features from earlier chapters; the associated checker for these is

fullequirec. For §20.2, the associated checker is fullisorec.

1. We ignore, in the rest of this chapter, the question of how to give a single, generic definition

of lists with elements of an arbitrary type T. To deal with this, we also need the mechanism of

type operators, which will be introduced in Chapter 29.

268 20 Recursive Types

This equation is not just a simple definition—that is, we are not giving a new

name to a phrase whose meaning we already understand—since the right-

hand side mentions the very name that we are in the process of defining.

Instead, we can think of it as a specification of an infinite tree:

{nil: , cons: }

Unit { , }

Nat {nil: , cons: }

Unit { , }

Nat {nil: , cons: }

Unit .
.
.

The recursive equation specifying this infinite tree type is similar to the equa-

tion specifying the recursive factorial function on page 52. Here, as there,

it is convenient to make this equation into a proper definition by moving the

“loop” over to the right-hand side of the =.2 We do this by introducing an

explicit recursion operator µ for types:

NatList = µX. <nil:Unit, cons:{Nat,X}>;

Intuitively, this definition is read, “Let NatList be the infinite type satisfying

the equation X = <nil:Unit, cons:{Nat,X}>.”

We will see in §20.2 that there are actually two somewhat different ways

of formalizing recursive types—the so-called equi-recursive and iso-recursive

presentations—differing in the amount of help that the programmer is ex-

pected to give to the typechecker in the form of type annotations. In the pro-

gramming examples in the following section, we use the lighter equi-recursive

presentation.

20.1 Examples

Lists

First, let’s finish off the example of lists of numbers that we started above.

To program with lists, we need a constant nil, a constructor cons for adding

2. The reason this move is convenient is that it allows us to talk about recursive types without

giving them names. However, there are also some advantages to working with explicitly named

recursive types—see the discussion of nominal vs. structural type systems in §19.3.

20.1 Examples 269

an element to the front of an existing list, an isnil operation that takes a

list and returns a boolean, and destructors hd and tl for extracting the head

and tail of a non-empty list. We defined all these as built-in operations in

Figure 11-13; our job here is to build them from simpler parts.

The definitions of nil and cons follow directly from the definition of

NatList as a two-field variant type.

nil = <nil=unit> as NatList;

ñ nil : NatList

cons = λn:Nat. λl:NatList. <cons={n,l}> as NatList;

ñ cons : Nat → NatList → NatList

(Recall from §11.10 that expressions of the form <l=t> as T are used to in-

troduce values of variant types: the value t is tagged with the label l and “in-

jected” into the variant type T. Also, note that the typechecker here automat-

ically “unfolds” the recursive type NatList to the variant type <nil:Unit,

cons:{Nat,NatList}>.)

The rest of the basic operations on lists involve testing their structure and

extracting appropriate parts. They are all implemented in terms of case.

isnil = λl:NatList. case l of

<nil=u> ⇒ true

| <cons=p> ⇒ false;

ñ isnil : NatList → Bool

hd = λl:NatList. case l of <nil=u> ⇒ 0 | <cons=p> ⇒ p.1;

ñ hd : NatList → Nat

tl = λl:NatList. case l of <nil=u> ⇒ l | <cons=p> ⇒ p.2;

ñ tl : NatList → NatList

We’ve arbitrarily decided to define hd of an empty list to be 0 and tl of the

empty list to be the empty list. We might alternatively have raised exceptions

in these cases.

We can use all these definitions together to write a recursive function that

sums the elements of a list:

sumlist = fix (λs:NatList→Nat. λl:NatList.

if isnil l then 0 else plus (hd l) (s (tl l)));

ñ sumlist : NatList → Nat

270 20 Recursive Types

mylist = cons 2 (cons 3 (cons 5 nil));

sumlist mylist;

ñ 10 : Nat

Note that, although NatList itself is an infinitely long type expression,

all its elements are finite lists (because there is no way to use the pairing and

tagging primitives or the call-by-value fix to build infinitely large structures).

20.1.1 Exercise [««]: One presentation of labeled binary trees defines a tree to be

either a leaf (with no label) or else an interior node with a numeric label

and two child trees. Define a type NatTree and suitable operations for con-

structing, destructing, and testing trees. Write a function that performs a

depth-first traversal of a tree and returns a list of the labels it finds. Use the

fullequirec checker to test your code. �

Hungry Functions

Another example illustrating a somewhat trickier use of recursive types is a

type of “hungry functions” that can accept any number of numeric arguments

and always return a new function that is hungry for more:

Hungry = µA. Nat→A;

An element of this type can be defined using the fix operator:

f = fix (λf: Nat→Hungry. λn:Nat. f);

ñ f : Hungry

f 0 1 2 3 4 5;

ñ <fun> : Hungry

Streams

A more useful variant of the Hungry type above is the type Stream of func-

tions that can consume an arbitrary number of unit values, each time return-

ing a pair of a number and a new stream.

Stream = µA. Unit→{Nat,A};

We can define two “destructors” for streams; if s is a stream, then hd s is the

first number it returns when we pass it unit.

20.1 Examples 271

hd = λs:Stream. (s unit).1;

ñ hd : Stream → Nat

Similarly, tl s is the new stream that we obtain when we pass unit to s.

tl = λs:Stream. (s unit).2;

ñ tl : Stream → Stream

To construct a stream, we use fix as above:

upfrom0 = fix (λf: Nat→Stream. λn:Nat. λ_:Unit. {n,f (succ n)}) 0;

ñ upfrom0 : Stream

hd upfrom0;

ñ 0 : Nat

hd (tl (tl (tl upfrom0)));

ñ 3 : Nat

20.1.2 Exercise [Recommended, ««]: Define a stream that yields successive ele-

ments of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, . . .). �

Streams can be further generalized to a simple form of processes—functions

that accept a number and return a number and a new process.

Process = µA. Nat→{Nat,A};

For example, here is a process that, at each step, returns the sum of all the

numbers it has been given so far:

p = fix (λf: Nat→Process. λacc:Nat. λn:Nat.

let newacc = plus acc n in

{newacc, f newacc}) 0;

ñ p : Process

As we did for streams, we can define auxiliary functions for interacting with

processes:

curr = λs:Process. (s 0).1;

ñ curr : Process → Nat

send = λn:Nat. λs:Process. (s n).2;

ñ send : Nat → Process → Process

If we send the process p the numbers 5, 3, and 20, the number it returns in

response to the last interaction is 28.

curr (send 20 (send 3 (send 5 p)));

ñ 28 : Nat

272 20 Recursive Types

Objects

A slight rearrangement of the last example gives us another familiar idiom of

interacting with data: objects. For instance, here is the type of counter objects

that keep track of a number and allow us to either query or increment it:

Counter = µC. {get:Nat, inc:Unit→C};

Note that our treatment of objects here is purely functional (like the one in

Chapter 19 and unlike Chapter 18): sending a counter object the inc message

does not cause this object to mutate its state internally; instead, the opera-

tion returns a new counter object with incremented internal state. The use of

recursive types here allows us to specify that the returned object has exactly

the same type as the original.

The only difference between these objects and the processes discussed

above is that an object is a recursively defined record (containing a function),

whereas a process was a recursively defined function (returning a tuple). The

reason this change in point of view is useful is that we can extend our record

to include more than one function—for example, a decrement operation:

Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C};

To create a counter object, we use the fixed-point combinator, as we did

above.

c = let create = fix (λf: {x:Nat}→Counter. λs: {x:Nat}.

{get = s.x,

inc = λ_:Unit. f {x=succ(s.x)},

dec = λ_:Unit. f {x=pred(s.x)} })

in create {x=0};

ñ c : Counter

To invoke one of c’s operations, we simply project out the appropriate field:

c1 = c.inc unit;

c2 = c1.inc unit;

c2.get;

ñ 2 : Nat

20.1.3 Exercise [««]: Extend the Counter type and the counter c above to include

backup and reset operations (as we did in §18.7): invoking backup causes

the counter to store its current value in a separate internal register; calling

reset causes the counter’s value to be reset to the value in this register. �

20.1 Examples 273

Recursive Values from Recursive Types

A more surprising use of recursive types—and one that clearly reveals their

expressive power—is a well-typed implementation of the fixed-point combi-

nator. For any type T, we can define a fixed-point constructor for functions

on T as follows.

fixT = λf:T→T. (λx:(µA.A→T). f (x x)) (λx:(µA.A→T). f (x x));

ñ fixT : (T→T) → T

Note that, if we erase types, this term is precisely the untyped fixed point

combinator that we saw on page 65.

The key trick here is using a recursive type to type the two occurrences of

the subexpression x x. As we observed in Exercise 9.3.2, typing this term re-

quires that x have an arrow type whose domain is the type of x itself. Clearly,

there is no finite type with this property, but the infinite type µA.A→T does

the job perfectly.

A corollary of this example is that the presence of recursive types breaks

the strong normalization property: we can use the fixT combinator to write

a well-typed term whose evaluation (when applied to unit) will diverge.

divergeT = λ_:Unit. fixT (λx:T. x);

ñ divergeT : Unit → T

Moreover, since we can can obtain such terms for every type, it follows that

every type in this system is inhabited, unlike λ→.3

Untyped Lambda-Calculus, Redux

Perhaps the best illustration of the power of recursive types is the fact that

we can embed the whole untyped lambda-calculus—in a well-typed way—into

a statically typed language with recursive types. Let D be the following type:4

D = µX.X→X;

Define an “injection function” lam mapping functions from D to D into ele-

ments of D as follows:

3. This fact makes systems with recursive types useless as logics: if we interpret types as

logical propositions following the Curry-Howard correspondence (see §9.4) and read “type T is

inhabited” as “proposition T is provable,” then the fact that every type is inhabited means that

every proposition in the logic is provable—that is, the logic is inconsistent.

4. Readers familiar with denotational semantics will observe that D’s definition is precisely

the defining property of the universal domains used in semantic models of the pure lambda-

calculus.

274 20 Recursive Types

lam = λf:D→D. f as D;

ñ lam : D

To apply one element of D to another, we simply unfold the type of the first,

yielding a function, and apply this to the second:

ap = λf:D. λa:D. f a;

ñ ap : D

Now, suppose M is a closed lambda-term involving just variables, abstrac-

tions, and applications. Then we can construct an element of D representing

M, written M?, in a uniform way as follows:

x? = x

(λx.M)? = lam (λx:D. M?)

(M N)? = ap M? N?

For example, here is the untyped fixed point combinator expressed as an

element of D:

fixD = lam (λf:D.

ap (lam (λx:D. ap f (ap x x)))

(lam (λx:D. ap f (ap x x))));

ñ fixD : D

This embedding of the pure lambda-calculus can be extended to include

features such as numbers. We change the definition of D to a variant type

with one tag for numbers and one for functions:

D = µX. <nat:Nat, fn:X→X>;

That is, an element of D is either a number or a function from D to D, tagged

nat or fn, respectively. The implementation of the lam constructor is essen-

tially the same as before:

lam = λf:D→D. <fn=f> as D;

ñ lam : (D→D) → D

The implementation of ap, though, is different in an interesting way:

ap = λf:D. λa:D.

case f of

<nat=n> ⇒ divergeD unit

| <fn=f> ⇒ f a;

20.2 Formalities 275

ñ ap : D → D → D

Before we can apply f to a, we need to extract a function from f with a case.

This forces us to specify how application behaves when f is not a function.

(In this example, we just diverge; we could also raise an exception.) Note

how closely the tag-checking here resembles the run-time tag checking in

an implementation of a dynamically typed language such as Scheme. In this

sense, typed computation may be said to “include” untyped or dynamically

typed computation.

Similar tag checking is needed in order to define the successor function on

elements of D:

suc = λf:D. case f of

<nat=n> ⇒ (<nat=succ n> as D)

| <fn=f> ⇒ divergeD unit;

ñ suc : D → D

The injection of 0 into D is trivial:

zro = <nat=0> as D;

ñ zro : D

20.1.4 Exercise [«]: Extend this encoding with booleans and conditionals, and en-

code the terms if false then 1 else 0 and if false then 1 else false as

elements of D. What happens when we evaluate these terms? �

20.1.5 Exercise [Recommended, ««]: Extend the datatype D to include records

D = µX. <nat:Nat, fn:X→X, rcd:Nat→X>;

and implement record construction and field projection. For simplicity, use

natural numbers as field labels—i.e., records are represented as functions

from natural numbers to elements of D. Use the fullequirec checker to test

your extension. �

20.2 Formalities

In the literature on type systems, there are two basic approaches to recursive

types. The essential difference between them is captured in their response

to a simple question: What is the relation between the type µX.T and its

one-step unfolding? For example, what is the relation between NatList and

<nil:Unit,cons:{Nat,NatList}>?

276 20 Recursive Types

→ µ Extends λ→ (9-1)

t ::= ... terms:

fold [T] t folding

unfold [T] t unfolding

v ::= ... values:

fold [T] v folding

T ::= ... types:

X type variable

µX.T recursive type

New evaluation rules t -→ t′

unfold [S] (fold [T] v1) -→ v1

(E-UnfldFld)

t1 -→ t′1

fold [T] t1 -→ fold [T] t′1
(E-Fld)

t1 -→ t′1

unfold [T] t1 -→ unfold [T] t′1
(E-Unfld)

New typing rules Γ ` t : T

U = µX.T1 Γ ` t1 : [X, U]T1

Γ ` fold [U] t1 : U
(T-Fld)

U = µX.T1 Γ ` t1 : U

Γ ` unfold [U] t1 : [X, U]T1

(T-Unfld)

Figure 20-1: Iso-recursive types (λµ)

1. The equi-recursive approach takes these two type expressions as definition-

ally equal—interchangeable in all contexts—since they stand for the same

infinite tree.5 It is the typechecker’s responsibility to make sure that a

term of one type will be allowed as an argument to a function expecting

the other, etc.

The pleasant thing about the equi-recursive treatment is that allowing type

expressions to be infinite6 is the only alteration to the declarative presen-

tations of the systems we already understand. Existing definitions, safety

theorems, and proofs remain unchanged, as long as they do not depend

on induction on type expressions (which naturally no longer works).

Of course, the implementation of equi-recursive types requires some work,

since typechecking algorithms cannot work directly with infinite struc-

tures. Exactly how this can be achieved is the topic of Chapter 21.

2. The iso-recursive approach, on the other hand, takes a recursive type and

its unfolding as different, but isomorphic.

Formally, the unfolding of a recursive type µX.T is the type obtained by

taking the body T and replacing all occurrences of X by the whole recur-

5. The mapping from µ-types to their infinite tree expansions is defined precisely in §21.8.

6. Strictly speaking, we should say regular—see §21.7.

20.2 Formalities 277

sive type—i.e., using the standard notation for substitution, it is [X ,

(µX.T)]T. For example, the type NatList, i.e.,

µX.<nil:Unit,cons:{Nat,X}>,

unfolds to

<nil:Unit, cons:{Nat, µX.<nil:Unit,cons:{Nat,X}>}>.

In a system with iso-recursive types, we introduce, for each recursive type

µX.T, a pair of functions

unfold[µX.T] : µX.T→ [X, µX.T]T

fold[µX.T] : [X, µX.T]T→ µX.T

that “witness the isomorphism” by mapping values back and forth be-

tween the two types:

µX.T [X, µX.T]T

fold[µX.T]

unfold[µX.T]

The fold and unfold maps are provided as primitives by the language, as

described in Figure 20-1. The fact that they form an isomorphism is cap-

tured by the evaluation rule E-UnfldFld, which annihilates a fold when

it meets a corresponding unfold. (The evaluation rule does not require

the type annotations on the fold and the unfold to be the same, since

we would have to invoke the typechecker at run time to verify such a con-

straint. However, in the evaluation of a well-typed program, these two type

annotations will be equal whenever E-UnfldFld is applied.)

Both approaches are widely used in both theoretical studies and program-

ming language designs. The equi-recursive style is arguably more intuitive,

but places stronger demands on the typechecker, which must effectively infer

the points where fold and unfold annotations should occur. Moreover, the

interactions between equi-recursive types and other advanced typing features

such as bounded quantification and type operators can be quite complex,

leading to significant theoretical difficulties (e.g. Ghelli, 1993; Colazzo and

Ghelli, 1999) or even undecidable typechecking problems (Solomon, 1978).

The iso-recursive style is notationally somewhat heavier, requiring pro-

grams to be decorated with fold and unfold instructions wherever recursive

278 20 Recursive Types

types are used. In practice, however, these annotations can often be “hidden”

by coalescing them with other annotations. In languages in the ML family, for

example, every datatype definition implicitly introduces a recursive type.

Each use of one of the constructors to build a value of the datatype implicitly

includes a fold, and each constructor appearing in a pattern match implicitly

forces an unfold. Similarly, in Java each class definition implicitly introduces

a recursive type, and invoking a method on an object involves an implicit

unfold. This felicitous overlap of mechanisms makes the iso-recursive style

quite palatable in practice.

For example, here is the NatList example in iso-recursive form. First, it is

convenient to define an abbreviation for the unfolded form of NatList:

NLBody = <nil:Unit, cons:{Nat,NatList}>;

Now, nil is defined by building a variant, of type NLBody, and then folding it

up as a NatList; cons is similar.

nil = fold [NatList] (<nil=unit> as NLBody);

cons = λn:Nat. λl:NatList. fold [NatList] <cons={n,l}> as NLBody;

Conversely, the definitions of the isnil, hd, and tl operations need to take a

NatList and consider it as a variant so that they can perform a case analysis

on its tag. This is achieved by unfolding the argument l:

isnil = λl:NatList.

case unfold [NatList] l of

<nil=u> ⇒ true

| <cons=p> ⇒ false;

hd = λl:NatList.

case unfold [NatList] l of

<nil=u> ⇒ 0

| <cons=p> ⇒ p.1;

tl = λl:NatList.

case unfold [NatList] l of

<nil=u> ⇒ l

| <cons=p> ⇒ p.2;

20.2.1 Exercise [Recommended, ««]: Reformulate some of the other examples in

§20.1 (in particular, the fixT example on page 273) with explicit fold and

unfold annotations. Check them using the fullisorec checker. �

20.2.2 Exercise [«« 3]: Sketch proofs of the progress and preservation theorems

for the iso-recursive system. �

20.3 Subtyping 279

20.3 Subtyping

The final question that we need to address in this chapter concerns the combi-

nation of recursive types with the other major refinement of the simply typed

lambda-calculus that we have seen so far—subtyping. For example, supposing

that the type Even is a subtype of Nat, what should be the relation between

the types µX.Nat→(Even×X) and µX.Even→(Nat×X)?

The simplest way to think through such questions is to view them “in

the limit”—i.e., using an equi-recursive treatment of recursive types. In the

present example, the elements inhabiting both types can be thought of as

simple reactive processes (cf. page 271): given a number, they return another

number plus a new process that is ready to receive a number, and so on. Pro-

cesses belonging to the first type always yield even numbers and are capable

of accepting arbitrary numbers. Those belonging to the second type yield ar-

bitrary numbers, but expect always to be given even numbers. The constraints

both on what arguments the function must accept and on what results it may

return are more demanding for the first type, so intuitively we expect the

first to be a subtype of the second. We can draw a picture summarizing these

calculations as follows:

<:<:

<:<:

Nat

→Nat

→

×

×

...

Nat

→

Nat

→

×

×

...

Even

Even

Even

Even

:> <:

<::>

<:

Can this intuitive argument be made precise? Indeed it can, as we shall see in

Chapter 21.

20.4 Notes

Recursive types in computer science go back at least to Morris (1968). Ba-

sic syntactic and semantic properties (without subtyping) are collected in

Cardone and Coppo (1991). Properties of infinite and regular trees are sur-

280 20 Recursive Types

veyed by Courcelle (1983). Basic syntactic and semantic properties of recur-

sive types without subtyping were established in early papers by Huet (1976)

and MacQueen, Plotkin, and Sethi (1986). The relation between iso- and equi-

recursive systems was explored by Abadi and Fiore (1996). Additional cita-

tions on recursive types with subtyping can be found in §21.12.

Morris (1968, pp. 122–124) first observed that recursive types can be used

to construct a well-typed fix operator for terms (§20.1).

The two formulations of recursive types have been around since the earliest

work in the area, but the pleasantly mnemonic terms iso-recursive and equi-

recursive are a recent coinage by Crary, Harper, and Puri (1999).

21 Metatheory of Recursive Types

In Chapter 20 we saw two alternative presentations of recursive types: equi-

recursive types, which are definitionally equivalent to their unfoldings, and

iso-recursive types, where this equivalence is explicitly witnessed by fold

and unfold terms. In this chapter, we develop the theoretical foundations

of typecheckers for equi-recursive types. (Implementing iso-recursive types

is comparatively straightforward.) We will deal with a system including both

recursive types and subtyping, since these are often combined in practice.

A system with equi-recursive types but not subtyping would be only a little

simpler, since we would still need to check equivalence of recursive types.

We saw in Chapter 20 that subtyping for equi-recursive types can be un-

derstood intuitively in terms of infinite subtyping derivations over infinite

types. Our job here is to make these intuitions precise using the mathematical

framework of coinduction, and to draw a precise connection between infinite

trees and derivations and the finite representations manipulated by an actual

subtyping algorithm.

We begin in §21.1 by reviewing the basic theory of inductive and coinduc-

tive definitions and their associated proof principles. §21.2 and §21.3 instan-

tiate this general theory for the case of subtyping, defining both the familiar

inductive subtype relation on finite types and its coinductive extension to in-

finite types. §21.4 makes a brief detour to consider some issues connected

with the rule of transitivity (a notorious troublemaker in subtyping systems,

as we have seen). §21.5 derives simple algorithms for checking membership

in inductively and co-inductively defined sets; §21.6 considers more refined

algorithms. These algorithms are applied to subtyping for the important spe-

cial case of “regular” infinite types in §21.7. §21.8 introduces µ-types as a

finite notation for representing infinite types and proves that the more com-

plex (but finitely implementable) subtype relation on µ-types corresponds to

The system studied in this chapter is the simply typed calculus with subtyping (Figure 15-1),

products (11-5), and equi-recursive types. The corresponding checker is equirec.

282 21 Metatheory of Recursive Types

the ordinary coinductive definition of subtyping between infinite types. §21.9

proves termination of the subtyping algorithm for µ-types. §21.10 compares

this algorithm with another algorithm due to Amadio and Cardelli. §21.11

briefly discusses iso-recursive types.

21.1 Induction and Coinduction

Assume we have fixed some universal set U as the domain of discourse for

our inductive and coinductive definitions.U represents the set of “everything

in the world,” and the role of an inductive or coinductive definition will be to

pick out some subset of U. (Later on, we are going to choose U to be the

set of all pairs of types, so that subsets of U are relations on types. For the

present discussion, an arbitrary setU will do.)

21.1.1 Definition: A function F ∈ P(U) → P(U) is monotone if X ⊆ Y implies

F(X) ⊆ F(Y). (Recall that P(U) is the set of all subsets of U.) �

In the following, we assume that F is some monotone function on P(U).

We often refer to F as a generating function.

21.1.2 Definition: Let X be a subset of U.

1. X is F-closed if F(X) ⊆ X.

2. X is F-consistent if X ⊆ F(X).

3. X is a fixed point of F if F(X) = X. �

A useful intuition for these definitions is to think of the elements of U as

some sort of statements or assertions, and of F as representing a “justifica-

tion” relation that, given some set of statements (premises), tells us what new

statements (conclusions) follow from them. An F-closed set, then, is one that

cannot be made any bigger by adding elements justified by F—it already con-

tains all the conclusions that are justified by its members. An F-consistent

set, on the other hand, is one that is “self-justifying”: every assertion in it is

justified by other assertions that are also in it. A fixed point of F is a set that

is both closed and consistent: it includes all the justifications required by its

members, all the conclusions that follow from its members, and nothing else.

21.1.3 Example: Consider the following generating function on the three-element

universeU = {a,b, c}:

E1(∅) = {c} E1({a,b}) = {c}

E1({a}) = {c} E1({a, c}) = {b, c}

E1({b}) = {c} E1({b, c}) = {a,b, c}

E1({c}) = {b, c} E1({a,b, c}) = {a,b, c}

21.1 Induction and Coinduction 283

There is just one E1-closed set—{a,b, c}—and four E1-consistent sets—∅,

{c}, {b, c}, {a,b, c}.

E1 can be represented compactly by a collection of inference rules:

c

c

b

b c

a

Each rule states that if all of the elements above the bar are in the input set,

then the element below is in the output set. �

21.1.4 Theorem [Knaster-Tarski (Tarski, 1955)]:

1. The intersection of all F-closed sets is the least fixed point of F .

2. The union of all F-consistent sets is the greatest fixed point of F . �

Proof: We consider only part (2); the proof of part (1) is symmetric. Let C =

{X |X ⊆ F(X)} be the collection of all F-consistent sets, and let P be the

union of all these sets. Taking into account the fact that F is monotone and

that, for any X ∈ C , we know both that X is F-consistent and that X ⊆ P ,

we obtain X ⊆ F(X) ⊆ F(P). Consequently, P =
⋃

X∈C X ⊆ F(P), i.e. P is

F-consistent. Moreover, by its definition, P is the largest F-consistent set.

Using the monotonicity of F again, we obtain F(P) ⊆ F(F(P)). This means,

by the definition of C , that F(P) ∈ C . Hence, as for any member of C , we

have F(P) ⊆ P , i.e. P is F-closed. Now we have established both that P is the

largest F-consistent set and that P is a fixed point of F , so P is the largest

fixed point. �

21.1.5 Definition: The least fixed point of F is written µF . The greatest fixed point

of F is written νF . �

21.1.6 Example: For the sample generating function E1 shown above, we have µE1 =

νE1 = {a,b, c}. �

21.1.7 Exercise [«]: Suppose a generating function E2 on the universe {a,b, c} is

defined by the following inference rules:

a

c

b

a b

c

Write out the set of pairs in the relation E2 explicitly, as we did for E1 above.

List all the E2-closed and E2-consistent sets. What are µE2 and νE2? �

284 21 Metatheory of Recursive Types

Note that µF itself is F-closed (hence, it is the smallest F-closed set) and

that νF is F-consistent (hence, it is the largest F-consistent set). This obser-

vation gives us a pair of fundamental reasoning tools:

21.1.8 Corollary [of 21.1.4]:

1. Principle of induction: If X is F-closed, then µF ⊆ X.

2. Principle of coinduction: If X is F-consistent, then X ⊆ νF . �

The intuition behind these principles comes from thinking of the set X as

a predicate, represented as its characteristic set—the subset of U for which

the predicate is true; showing that property X holds of an element x is the

same as showing that x is in the set X. Now, the induction principle says that

any property whose characteristic set is closed under F (i.e., the property is

preserved by F) is true of all the elements of the inductively defined set µF .

The coinduction principle, on the other hand, gives us a method for es-

tablishing that an element x is in the coinductively defined set νF . To show

x ∈ νF , it suffices to find a set X such that x ∈ X and X is F-consistent. Al-

though it is a little less familiar than induction, the principle of coinduction is

central to many areas of computer science; for example, it is the main proof

technique in theories of concurrency based on bisimulation, and it lies at the

heart of many model checking algorithms.

The principles of induction and coinduction are used heavily throughout

the chapter. We do not write out every inductive argument in terms of gen-

erating functions and predicates; instead, in the interest of brevity, we often

rely on familiar abbreviations such as structural induction. Coinductive argu-

ments are presented more explicitly.

21.1.9 Exercise [Recommended, «««]: Show that the principles of ordinary induc-

tion on natural numbers (2.4.1) and lexicographic induction on pairs of num-

bers (2.4.4) follow from the principle of induction in 21.1.8. �

21.2 Finite and Infinite Types

We are going to instantiate the general definitions of greatest fixed points

and the coinductive proof method with the specifics of subtyping. Before we

can do this, though, we need to show precisely how to view types as (finite or

infinite) trees.

For brevity, we deal in this chapter with just three type constructors:→, × ,

and Top. We represent types as (possibly infinite) trees with nodes labeled by

21.2 Finite and Infinite Types 285

one of the symbols→, × , or Top. The definition is specialized to our present

needs; for a general treatment of infinite labeled trees see Courcelle (1983).

We write {1,2}∗ for the set of sequences of 1s and 2s. Recall that the empty

sequence is written •, and ik stands for k copies of i. If π and σ are sequences,

then π,σ denotes the concatenation of π and σ .

21.2.1 Definition: A tree type1 (or, simply, a tree) is a partial function T ∈ {1,2}∗ ⇀

{→, × ,Top} satisfying the following constraints:

• T(•) is defined;

• if T(π,σ) is defined then T(π) is defined;

• if T(π) = → or T(π) = × then T(π,1) and T(π,2) are defined;

• if T(π) = Top then T(π,1) and T(π,2) are undefined.

A tree type T is finite if dom(T) is finite. The set of all tree types is written T ;

the subset of all finite tree types is written Tf . �

For notational convenience, we write Top for the tree T with T(•) = Top.

When T1 and T2 are trees, we write T1×T2 for the tree with (T1×T2)(•) = ×

and (T1×T2)(i,π) = Ti(π) and T1→T2 for the tree with (T1→T2)(•) = → and

(T1→T2)(i,π) = Ti(π), for i = 1,2. For example, (Top×Top)→Top denotes

the finite tree type T defined by the function with T(•) = → and T(1) = ×

and T(2) = T(1,1) = T(1,2) = Top. We use ellipses informally for describing

non-finite tree types. For example, Top→(Top→(Top→...)) corresponds to

the type T defined by T(2k) = →, for all k ≥ 0, and T(2k,1) = Top, for all k ≥ 0.

Figure 21-1 illustrates these conventions.

The set of finite tree types can be defined more compactly by a grammar:

T ::= Top

T×T

T→T

Formally, Tf is the least fixed point of the generating function described by

the grammar. The universe of this generating function is the set of all finite

and infinite trees labeled with Top, →, and × (i.e., the set formed by gener-

alizing Definition 21.2.1 by dropping its two last conditions). The whole set

T can be derived from the same generating function by taking the greatest

fixed point instead of the least.

1. The locution “tree type” is slightly awkward, but it will help to keep things straight when

we discuss the alternative presentation of recursive types as finite expressions involving µ

(“µ-types”) in §21.8.

286 21 Metatheory of Recursive Types

(Top×Top)→Top Top→(Top→(Top→...))

→

Top×

Top Top

Top

→Top

Top

→

→

.

.

.

1

1

1

1

2

2

1 2

2

2

Figure 21-1: Sample tree types.

21.2.2 Exercise [Recommended, ««]: Following the ideas in the previous paragraph,

suggest a universe U and a generating function F ∈ P(U) → P(U) such that

the set of finite tree types Tf is the least fixed point of F and the set of all

tree types T is its greatest fixed point. �

21.3 Subtyping

We define subtype relations on finite tree types and on tree types in general as

least and greatest fixed points, respectively, of monotone functions on certain

universes. For subtyping on finite tree types the universe is the set Tf × Tf
of pairs of finite tree types; our generating function will map subsets of this

universe—that is, relations on Tf—to other subsets, and their fixed points will

also be relations on Tf . For subtyping on arbitrary (finite or infinite) trees, the

universe is T ×T .

21.3.1 Definition [Finite subtyping]: Two finite tree types S and T are in the sub-

type relation (“S is a subtype of T”) if (S,T) ∈ µSf , where the monotone func-

tion Sf ∈ P(Tf ×Tf)→ P(Tf ×Tf) is defined by

Sf (R) = {(T,Top) | T ∈ Tf }

∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R}

∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.

This generating function precisely captures the effect of the standard defini-

tion of the subtype relation by a collection of inference rules:

T <: Top

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

21.3 Subtyping 287

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

The statement S <: T above the line in the second and third rules should be

read as “if the pair (S,T) is in the argument to Sf ” and below the line as “then

(S,T) is in the result.” �

21.3.2 Definition [Infinite subtyping]: Two (finite or infinite) tree types S and T

are in the subtype relation if (S,T) ∈ νS , where S ∈ P(T × T) → P(T × T)

is defined by:

S(R) = {(T,Top) | T ∈ T }

∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R}

∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.

Note that the inference rule presentation of this relation is precisely the same

as for the inductive relation above: all that changes is that we consider a

larger universe of types and take a greatest instead of a least fixed point. �

21.3.3 Exercise [«]: Check that νS is not the whole of T × T by exhibiting a pair

(S,T) that is not in νS . �

21.3.4 Exercise [«]: Is there a pair of types (S,T) that is related by νS , but not by

µS? What about a pair of types (S,T) that is related by νSf , but not by µSf ? �

One fundamental property of the subtype relation on infinite tree types—

the fact that it is transitive—should be verified right away. (We have already

seen in §16.1 that subtyping on finite types is transitive.) If the subtype rela-

tion were not transitive, the critical property of preservation of types under

evaluation would immediately fail. To see this, suppose that there were types

S, T, and U with S<:T and T<:U but not S<:U. Let s be a value of type S and f

a function of type U→Top. Then the term (λx:T. f x) s could be typed, using

the rule of subsumption once for each application, but this term reduces in

one step to the ill-typed term f s.

21.3.5 Definition: A relation R ⊆ U×U is transitive if R is closed under the mono-

tone function TR(R) = {(x, y) | ∃z ∈ U. (x, z), (z, y) ∈ R}—i.e., if TR(R) ⊆

R. �

21.3.6 Lemma: Let F ∈ P(U×U) → P(U×U) be a monotone function. If TR(F(R)) ⊆

F(TR(R)) for any R ⊆ U×U, then νF is transitive. �

Proof: Since νF is a fixed point, νF = F(νF), implying TR(νF) = TR(F(νF)).

Therefore, by the lemma’s assumption, TR(νF) ⊆ F(TR(νF)). In other words,

TR(νF) is F-consistent, so, by the principle of coinduction, TR(νF) ⊆ νF .

Equivalently, νF is transitive by Definition 21.3.5. �

288 21 Metatheory of Recursive Types

This lemma is reminiscent of the traditional technique for establishing

redundancy of the transitivity rule in inference systems, often called “cut-

elimination proofs” (see §16.1). The condition TR(F(R)) ⊆ F(TR(R)) corre-

sponds to the crucial step in this technique: given that a certain statement

can be obtained by taking some statements from R, applying rules from F ,

and then applying the rule of transitivity TR, we argue that the statement can

instead be obtained by reversing the steps—first applying the rule of transi-

tivity, and then rules from F . We use the lemma to establish transitivity of

the subtype relation.

21.3.7 Theorem: νS is transitive. �

Proof: By Lemma 21.3.6, it suffices to show that TR(S(R)) ⊆ S(TR(R)) for

any R ⊆ T × T . Let (S,T) ∈ TR(S(R)). By the definition of TR, there exists

some U ∈ T such that (S,U), (U,T) ∈ S(R). Our goal is to show that (S,T) ∈

S(TR(R)). Consider the possible shapes of U.

Case: U = Top

Since (U,T) ∈ S(R), the definition of S implies that T must be Top. But

(A,Top) ∈ S(Q) for any A and Q; in particular, (S,T) = (S,Top) ∈ S(TR(R)).

Case: U = U1×U2

If T = Top, then (S,T) ∈ S(TR(R)) as in the previous case. Otherwise, (U,T) ∈

S(R) implies T = T1×T2, with (U1,T1), (U2,T2) ∈ R. Similarly, (S,U) ∈ S(R)

implies S = S1×S2, with (S1,U1), (S2,U2) ∈ R. By the definition of TR, we have

(S1,T1), (S2,T2) ∈ TR(R), from which (S1×S2,T1×T2) ∈ S(TR(R)) follows

from the definition of S .

Case: U = U1→U2

Similar. �

21.3.8 Exercise [Recommended, ««]: Show that the subtype relation on infinite tree

types is also reflexive. �

The following section continues the discussion of transitivity by compar-

ing its treatment in standard accounts of subtyping for finite types and in

the present account of subtyping for infinite tree types. It can be skipped or

skimmed on a first reading.

21.4 A Digression on Transitivity

We saw in Chapter 16 that standard formulations of inductively defined sub-

type relations generally come in two forms: a declarative presentation that is

21.4 A Digression on Transitivity 289

optimized for readability and an algorithmic presentation that corresponds

more or less directly to an implementation. In simple systems, the two pre-

sentations are fairly similar; in more complex systems, they can be quite dif-

ferent, and proving that they define the same relation on types can pose a

significant challenge. (We will see an example of this in Chapter 28; many

others have been studied.)

One of the most distinctive differences between declarative and algorithmic

presentations is that declarative presentations include an explicit rule of tran-

sitivity—if S<:U and U<:T then S<:T—while algorithmic systems do not. This

rule is useless in an algorithm, since applying it in a goal-directed manner

would involve guessing U.

The rule of transitivity plays two useful roles in declarative systems. First,

it makes it obvious to the reader that the subtype relation is, indeed, tran-

sitive. Second, transitivity often allows other rules to be stated in simpler,

more primitive forms; in algorithmic presentations, these simple rules need

to be combined into heavier mega-rules that take into account all possible

combinations of the simpler ones. For example, in the presence of transitiv-

ity, the rules for “depth subtyping” within record fields, “width subtyping”

by adding new fields, and “permutation” of fields can be stated separately,

making them all easier to understand, as we did in §15.2. Without transitiv-

ity, the three rules must be merged into a single one that takes width, depth,

and permutation into account all at once, as we did in §16.1.

Somewhat surprisingly, the possibility of giving a declarative presentation

with the rule of transitivity turns out to be a consequence of a “trick” that

can be played with inductive, but not coinductive, definitions. To see why,

observe that the property of transitivity is a closure property—it demands

that the subtype relation be closed under the transitivity rule. Since the sub-

type relation for finite types is itself defined as the closure of a set of rules,

we can achieve closure under transitivity simply by adding it to the other

rules. This is a general property of inductive definitions and closure proper-

ties: the union of two sets of rules, when applied inductively, generates the

least relation that is closed under both sets of rules separately. This fact can

be formulated more abstractly in terms of generating functions:

21.4.1 Proposition: Suppose F and G are monotone functions, and let H(X) =

F(X)∪G(X). Then µH is the smallest set that is both F-closed and G-closed. �

Proof: First, we show that µH is closed under both F and G. By definition,

µH = H(µH) = F(µH) ∪ G(µH), so F(µH) ⊆ µH and G(µH) ⊆ µH. Second,

we show that µH is the least set closed under both F and G. Suppose there is

some setX such that F(X) ⊆ X andG(X) ⊆ X. ThenH(X) = F(X)∪G(X) ⊆ X,

290 21 Metatheory of Recursive Types

that is,X isH-closed. Since µH is the leastH-closed set (by the Knaster-Tarski

theorem), we have µH ⊆ X. �

Unfortunately, this trick for achieving transitive closure does not work

when we are dealing with coinductive definitions. As the following exercise

shows, adding transitivity to the rules generating a coinductively defined re-

lation always gives us a degenerate relation.

21.4.2 Exercise [«]: Suppose F is a generating function on the universe U. Show

that the greatest fixed point νFTR of the generating function

FTR(R) = F(R) ∪ TR(R)

is the total relation on U×U. �

In the coinductive setting, then, we drop declarative presentations and

work just with algorithmic ones.

21.5 Membership Checking

We now turn our attention to the central question of the chapter: how to

decide, given a generating function F on some universe U and an element

x ∈ U, whether or not x falls in the greatest fixed point of F . Membership

checking for least fixed points is addressed more briefly (in Exercise 21.5.13).

A given element x ∈ U can, in general, be generated by F in many ways.

That is, there can be more than one set X ⊆ U such that x ∈ F(X). Call

any such set X a generating set for x. Because of the monotonicity of F , any

superset of a generating set for x is also a generating set for x, so it makes

sense to restrict our attention to minimal generating sets. Going one step

further, we can focus on the class of “invertible” generating functions, where

each x has at most one minimal generating set.

21.5.1 Definition: A generating function F is said to be invertible if, for all x ∈ U,

the collection of sets

Gx = {X ⊆ U|x ∈ F(X)}

either is empty or contains a unique member that is a subset of all the others.

When F is invertible, the partial function supportF ∈ U⇀ P(U) is defined as

follows:

supportF(x) =

{

X if X ∈ Gx and ∀X′ ∈ Gx. X ⊆ X
′

↑ if Gx = ∅

21.5 Membership Checking 291

The support function is lifted to sets as follows:

supportF (X) =

{ ⋃

x∈X supportF(x) if ∀x ∈ X. supportF (x)↓

↑ otherwise

When F is clear from context, we will often omit the subscript in supportF
(and similar functions based on F that we define later). �

21.5.2 Exercise [««]: Verify that Sf and S , the generating functions for the subtyp-

ing relations from Definitions 21.3.1 and 21.3.2, are invertible, and give their

support functions. �

Our goal is to develop algorithms for checking membership in the least

and greatest fixed points of a generating function F . The basic steps in these

algorithms will involve “running F backwards”: to check membership for an

element x, we need to ask how x could have been generated by F . The advan-

tage of an invertible F is that there is at most one way to generate a given

x. For a non-invertible F , elements can be generated in multiple ways, lead-

ing to a combinatorial explosion in the number of paths that the algorithm

must explore. From now on, we restrict our attention to invertible generating

functions.

21.5.3 Definition: An element x is F-supported if supportF(x)↓; otherwise, x is F-

unsupported. An F-supported element is called F-ground if supportF(x) =

∅. �

Note that an unsupported element x does not appear in F(X) for any X,

while a ground x is in F(X) for every X.

An invertible function can be visualized as a support graph. For exam-

ple, Figure 21-2 defines a function E on the universe {a,b, c, d, e, f , g, h, i}

by showing which elements are needed to support a given element of the uni-

verse: for a given x, the set supportE(x) contains every y for which there is

an arrow from x to y . An unsupported element is denoted by a slashed circle.

In this example, i is the only unsupported element and g is the only ground

element. (Note that, according to our definition, h is supported, even though

its support set includes an unsupported element.)

21.5.4 Exercise [«]: Give inference rules corresponding to this function, as we did

in Example 21.1.3. Check that E({b, c}) = {g,a, d}, that E({a, i}) = {g,h}, and

that the sets of elements marked in the figure as µE and νE are indeed the

least and the greatest fixed points of E. �

Thinking about the graph in Figure 21-2 suggests the idea that an element

x is in the greatest fixed point iff no unsupported element is reachable from

292 21 Metatheory of Recursive Types

i

d

b

e

νE

µE

g

c

f

h

a

Figure 21-2: A sample support function

x in the support graph. This suggests an algorithmic strategy for checking

whether x is in νF : enumerate all elements reachable from x via the support

function; return failure if an unsupported element occurs in the enumeration;

otherwise, succeed. Observe, however, that there can be cycles of reachability

between the elements, and the enumeration procedure must take some pre-

cautions against falling into an infinite loop. We will pursue this idea for the

remainder of this section.

21.5.5 Definition: Suppose F is an invertible generating function. Define the boolean-

valued function gfpF (or just gfp) as follows:

gfp(X) = if support(X) ↑, then false

else if support(X) ⊆ X, then true

else gfp(support(X)∪X).

Intuitively, gfp starts from X and keeps enriching it using support until either

it becomes consistent or else an unsupported element is found. We extend

gfp to individual elements by taking gfp(x) = gfp({x}). �

21.5.6 Exercise [«]: Another observation that can be made from Figure 21-2 is that

an element x of νF is not a member of µF if x participates in a cycle in the

support graph (or if there is a path from x to an element that participates in

a cycle). Is the converse also true—that is, if x is a member of νF but not µF ,

is it necessarily the case that x leads to a cycle? �

The remainder of the section is devoted to proving the correctness and

termination of gfp. (First-time readers may want to skip this material and

21.5 Membership Checking 293

jump to the next section.) We start by observing a couple of properties of the

support function.

21.5.7 Lemma: X ⊆ F(Y) iff supportF(X)↓ and supportF(X) ⊆ Y . �

Proof: It suffices to show that x ∈ F(Y) iff support(x)↓ and support(x) ⊆ Y .

Suppose first that x ∈ F(Y). Then Y ∈ Gx = {X ⊆ U|x ∈ F(X)}—that is, Gx ≠

∅. Therefore, since F is invertible, support(x), the smallest set in Gx, exists

and support(x) ⊆ Y . Conversely, if support(x) ⊆ Y , then F(support(x)) ⊆

F(Y) by monotonicity. But x ∈ F(support(x)) by the definition of support , so

x ∈ F(Y). �

21.5.8 Lemma: Suppose P is a fixed point of F . Then X ⊆ P iff supportF (X)↓ and

supportF(X) ⊆ P . �

Proof: Recall that P = F(P) and apply Lemma 21.5.7. �

Now we can prove partial correctness of gfp. (We are not concerned with to-

tal correctness yet, because some generating functions will make gfp diverge.

We prove termination for a restricted class of generating functions later in

the section.)

21.5.9 Theorem:

1. If gfpF(X) = true, then X ⊆ νF .

2. If gfpF(X) = false, then X 6⊆ νF . �

Proof: The proof of each clause proceeds by induction on the recursive struc-

ture of a run of the algorithm.

1. From the definition of gfp, it is easy to see that there are two cases where

gfp(X) can return true. If gfp(X) = true because support(X) ⊆ X, then, by

Lemma 21.5.7, we have X ⊆ F(X), i.e., X is F-consistent; thus, X ⊆ νF

by the coinduction principle. On the other hand, if gfp(X) = true be-

cause gfp(support(X) ∪ X) = true, then, by the induction hypothesis,

support(X)∪X ⊆ νF , and so X ⊆ νF .

2. Again, there are two ways to get gfp(X) = false. Suppose first that gfp(X) =

false because support(X) ↑. Then X 6⊆ νF by Lemma 21.5.8. On the other

hand, suppose gfp(X) = false because gfp(support(X) ∪ X) = false. By

the induction hypothesis, support(X) ∪ X 6⊆ νF . Equivalently, X 6⊆ νF or

support(X) 6⊆ νF . Either way, X 6⊆ νF (using Lemma 21.5.8 in the second

case). �

294 21 Metatheory of Recursive Types

Next, we identify a sufficient termination condition for gfp, giving a class

of generating functions for which the algorithm is guaranteed to terminate.

To describe the class, we need some additional terminology.

21.5.10 Definition: Given an invertible generating function F and an element x ∈ U,

the set predF (x) (or just pred(x)) of immediate predecessors of x is

pred(x) =

{

∅ if support(x) ↑

support(x) if support(x)↓

and its extension to sets X ⊆ U is

pred(X) =
⋃

x∈X

pred(x).

The set reachableF(X) (or just reachable(X)) of all elements reachable from

a set X via support is defined as

reachable(X) =
⋃

n≥0

predn(X).

and its extension to single elements x ∈ U is

reachable(x) = reachable({x}).

An element y ∈ U is reachable from an element x if y ∈ reachable(x). �

21.5.11 Definition: An invertible generating function F is said to be finite state if

reachable(x) is finite for each x ∈ U. �

For a finite-state generating function, the search space explored by gfp is

finite and gfp always terminates:

21.5.12 Theorem: If reachableF (X) is finite, then gfpF(X) is defined. Consequently,

if F is finite state, then gfpF (X) terminates for any finite X ⊆ U. �

Proof: For each recursive call gfp(Y) in the call graph generated by the orig-

inal invocation gfp(X), we have Y ⊆ reachable(X). Moreover, Y strictly in-

creases on each call. Since reachable(X) is finite, m(Y) = |reachable(X)| − |Y |

serves as a termination measure for gfp. �

21.5.13 Exercise [«««]: Suppose F is an invertible generating function. Define the

function lfpF (or just lfp) as follows:

lfp(X) = if support(X) ↑, then false

else if X = ∅, then true

else lfp(support(X)).

21.6 More Efficient Algorithms 295

Intuitively, lfp works by starting with a set X and using the support relation to

reduce it until it becomes empty. Prove that this algorithm is partially correct,

in the sense that

1. If lfpF(X) = true, then X ⊆ µF .

2. If lfpF(X) = false, then X 6⊆ µF .

Can you find a class of generating functions for which lfpF is guaranteed to

terminate on all finite inputs? �

21.6 More Efficient Algorithms

Although the gfp algorithm is correct, it is not very efficient, since it has to

recompute the support of the whole set X every time it makes a recursive call.

For example, in the following trace of gfp on the function E from Figure 21-2,

gfp({a})

= gfp({a,b, c})

= gfp({a,b, c, e, f , g})

= gfp({a,b, c, e, f , g, d})

= true.

Note that support(a) is recomputed four times. We can refine the algorithm

to eliminate this redundant recomputation by maintaining a set A of assump-

tions whose support sets have already been considered and a set X of goals

whose support has not yet been considered.

21.6.1 Definition: Suppose F is an invertible generating function. Define the func-

tion gfpaF (or just gfpa) as follows (the superscript “a” is for “assumptions”):

gfpa(A,X) = if support(X) ↑, then false

else if X = ∅, then true

else gfp
a
(A∪X, support(X) \ (A∪X)).

In order to check x ∈ νF , compute gfpa(∅, {x}). �

This algorithm (like the two following algorithms in this section) computes

the support of each element at most once. A trace for the above example

looks like this:

gfpa(∅, {a})

= gfpa({a}, {b, c})

= gfp
a
({a,b, c}, {e, f , g})

= gfp
a
({a,b, c, e, f , g}, {d})

= gfpa({a,b, c, e, f , g, d}, ∅)

= true.

296 21 Metatheory of Recursive Types

Naturally, the correctness statement for this algorithm is slightly more

elaborate than the one we saw in the previous section.

21.6.2 Theorem:

1. If supportF(A) ⊆ A∪X and gfpaF (A,X) = true, then A∪X ⊆ νF .

2. If gfpaF(A,X) = false, then X 6⊆ νF . �

Proof: Similar to 21.5.9. �

The remainder of this section examines two more variations on the gfp

algorithm that correspond more closely to well-known subtyping algorithms

for recursive types. First-time readers may want to skip to the beginning of

the next section.

21.6.3 Definition: A small variation on gfp
a

has the algorithm pick just one ele-

ment at a time from X and expand its support . The new algorithm is called

gfpsF (or just gfps , “s” being for “single”).

gfps(A,X) = if X = ∅, then true

else let x be some element of X in

if x ∈ A then gfps(A, X \ {x})

else if support(x) ↑ then false

else gfp
s
(A∪ {x}, (X ∪ support(x)) \ (A∪ {x})).

The correctness statement (i.e., the invariant of the recursive “loop”) for this

algorithm is exactly the same as Theorem 21.6.2.

Unlike the above algorithm, many existing algorithms for recursive sub-

typing take just one candidate element, rather than a set, as an argument.

Another small modification to our algorithm makes it more similar to these.

The modified algorithm is no longer tail recursive,2 since it uses the call stack

to remember subgoals that have not yet been checked. Another change is that

the algorithm both takes a set of assumptions A as an argument and returns

a new set of assumptions as a result. This allows it to record the subtyp-

ing assumptions that have been generated during completed recursive calls

and reuse them in later calls. In effect, the set of assumptions is “threaded”

through the recursive call graph—whence the name of the algorithm, gfpt .

2. A tail-recursive call (or tail call) is a recursive call that is the last action of the calling

function—i.e., such that the result returned from the recursive call will also be caller’s result.

Tail calls are interesting because most compilers for functional languages will implement a tail

call as a simple branch, re-using the stack space of the caller instead of allocating a new stack

frame for the recursive call. This means that a loop implemented as a tail-recursive function

compiles into the same machine code as an equivalent while loop.

21.6 More Efficient Algorithms 297

21.6.4 Definition: Given an invertible generating function F , define the function

gfptF (or just gfpt) as follows:

gfpt(A, x) = if x ∈ A, then A

else if support(x) ↑, then fail

else

let {x1, . . . , xn} = support(x) in

let A0 = A∪ {x} in

let A1 = gfp
t
(A0, x1) in

. . .

let An = gfpt(An−1, xn) in

An.

To check x ∈ νF , compute gfpt(∅, x). If this call succeeds, then x ∈ νF ;

if it fails, then x 6∈ νF . We use the following convention for failure: if an

expression B fails, then “let A = B in C” also fails. This avoids writing explicit

“exception handling” clauses for every recursive invocation of gfpt . �

The correctness statement for this algorithm must again be refined from

what we had above, taking into account the non-tail-recursive nature of this

formulation by positing an extra “stack” X of elements whose supports re-

main to be checked.

21.6.5 Lemma:

1. If gfptF(A, x) = A
′, then A∪ {x} ⊆ A′.

2. For allX, if supportF(A) ⊆ A∪X∪{x} and gfptF(A, x) = A
′, then supportF(A

′)

⊆ A′ ∪X. �

Proof: Part (1) is a routine induction on the recursive structure of a run of

the algorithm.

Part (2) also goes by induction on the recursive structure of a run of the

algorithm. If x ∈ A, then A′ = A and the desired conclusion follows immedi-

ately from the assumption. On the other hand, suppose A′ ≠ A, and consider

the special case where support(x) contains two elements x1 and x2—the gen-

eral case (not shown here) is proved similarly, using an inner induction on

the size of support(x). The algorithm calculates A0, A1, and A2 and returns

A2. We want to show, for an arbitrary X0, that if support(A) ⊆ A ∪ {x} ∪ X0,

then support(A2) ⊆ A2 ∪X0. Let X1 = X0 ∪ {x2}. Since

support(A0) = support(A) ∪ support(x)

= support(A) ∪ {x1, x2}

⊆ A∪ {x} ∪X0 ∪ {x1, x2}

= A0 ∪X0 ∪ {x1, x2}

= A0 ∪X1 ∪ {x1},

298 21 Metatheory of Recursive Types

we can apply the induction hypothesis to the first recursive call by instantiat-

ing the universally quantified X with X1. This yields support(A1) ⊆ A1∪X1 =

A1 ∪ {x2} ∪ X0. Now, we can apply the induction hypothesis to the second

recursive call by instantiating the universally quantified X with X0 to obtain

the desired result: support(A2) ⊆ A2 ∪X0. �

21.6.6 Theorem:

1. If gfptF(∅, x) = A
′, then x ∈ νF .

2. If gfp
t
F(∅, x) = fail, then x ∉ νF . �

Proof: For part (1), observe that, by Lemma 21.6.5(1), x ∈ A′. Instantiating

part (2) of the lemma with X = ∅, we obtain support(A′) ⊆ A′—that is, A′ is

F-consistent by Lemma 21.5.7, and so A′ ⊆ νF by coinduction. For part (2), we

argue (by an easy induction on the depth of a run of the gfptF algorithm, using

Lemma 21.5.8) that if, for some A, we have gfptF(A, x) = fail, then x ∉ νF . �

Since all of the algorithms in this section examine the reachable set, a suffi-

cient termination condition for all of them is the same as that of the original

gfp algorithm: they terminate on all inputs when F is finite state.

21.7 Regular Trees

At this point, we have developed generic algorithms for checking member-

ship in a set defined as the greatest fixed point of a generating function F ,

assuming that F is invertible and finite state; separately, we have shown how

to define subtyping between infinite trees as the greatest fixed point of a par-

ticular generating function S . The obvious next step is to instantiate one of

our algorithms with S . Of course, this concrete algorithm will not terminate

on all inputs, since in general the set of states reachable from a given pair of

infinite types can be infinite. But, as we shall see in this section, if we restrict

ourselves to infinite types of a certain well-behaved form, so-called regular

types, then the sets of reachable states will be guaranteed to remain finite

and the subtype checking algorithm will always terminate.

21.7.1 Definition: A tree type S is a subtree of a tree type T if S = λσ. T(π,σ)

for some π—that is, if the function S from paths to symbols can be obtained

from the function T by adding some constant prefix π to the argument paths

we give to T; the prefix π corresponds to the path from the root of T to the

root of S. We write subtrees(T) for the set of all subtrees of T. �

21.7.2 Definition: A tree type T ∈ T is regular if subtrees(T) is finite—i.e., if T has

finitely many distinct subtrees. The set of regular tree types is written Tr . �

21.8 µ-Types 299

21.7.3 Examples:

1. Every finite tree type is regular; the number of distinct subtrees is at most

the number of nodes. The number of distinct subtrees of a tree type can be

strictly less than the number of nodes. For example, T = Top→(Top×Top)

has five nodes but only three distinct subtrees (T itself, Top× Top, and

Top).

2. Some infinite tree types are regular. For example, the tree

T = Top × (Top × (Top × ...))

has just two distinct subtrees (T itself and Top).

3. The tree type

T = B×(A×(B×(A× (A×(B×(A×(A× (A×(B×...)

where pairs of consecutive Bs are separated by increasingly many As, is

not regular. Because T is irregular, the set reachableS(T,T) containing all

the subtyping pairs needed to justify the statement T<:T is infinite. �

21.7.4 Proposition: The restriction Sr of the generating function S to regular tree

types is finite state. �

Proof: We need to show that for any pair (S,T) of regular tree types, the

set reachableSr (S,T) is finite. Observe that reachableSr (S,T) ⊆ subtrees(S) ×

subtrees(T); the latter is finite, since both subtrees(S) and subtrees(T) are. �

This means that we can obtain a decision procedure for the subtype rela-

tion on regular tree types by instantiating one of the membership algorithms

with S . Naturally, for this to work in a practical implementation, regular trees

must be represented by some finite structures. One such representation, µ-

notation, is discussed in the next section.

21.8 µ-Types

This section develops the finite µ-notation, defines subtyping on µ-expressions,

and establishes the correspondence between this notion of subtyping and the

subtyping on tree types.

21.8.1 Definition: Let X range over a fixed countable set {X1,X2, . . .} of type vari-

ables. The set T raw
m of raw µ-types is the set of expressions defined by the

following grammar:

300 21 Metatheory of Recursive Types

T ::= X

Top

T×T

T→T

µX.T

The syntactic operator µ is a binder, and gives rise, in the standard way, to

notions of bound and free variables, closed raw µ-types, and equivalence of

raw µ-types up to renaming of bound variables. FV(T) denotes the set of free

variables of a raw µ-type T. The capture-avoiding substitution [X , S]T of a

raw µ-type S for free occurrences of X in a raw µ-type T is defined as usual. �

Raw µ-types have to be restricted a little to achieve a tight correspondence

with regular trees: we want to be able to “read off” a tree type as the infinite

unfolding of a given µ-type, but there are raw µ-types that cannot be rea-

sonably interpreted as representations of tree types. These types have subex-

pressions of the form µX.µX1...µXn.X, where the variables X1 through Xn

are distinct from X. For example, consider T = µX.X. Unfolding of T gives T

again, so we cannot read off any tree by unfolding T. This leads us to the

following restriction.

21.8.2 Definition: A raw µ-type T is contractive if, for any subexpression of T of

the form µX.µX1...µXn.S, the body S is not X. Equivalently, a raw µ-type is

contractive if every occurrence of a µ-bound variable in the body is separated

from its binder by at least one → or × .

A raw µ-type is called simply a µ-type if it is contractive. The set of µ-types

is written Tm.

When T is a µ-type, we write µ-height(T) for the number of µ-bindings at

the front of T. �

The common understanding of µ-types as finite notation for infinite regular

tree types is formalized by the following function.

21.8.3 Definition: The function treeof , mapping closed µ-types to tree types, is

defined inductively as follows:

treeof (Top)(•) = Top

treeof (T1→T2)(•) = →

treeof (T1→T2)(i,π) = treeof (Ti)(π)

treeof (T1×T2)(•) = ×

treeof (T1×T2)(i,π) = treeof (Ti)(π)

treeof (µX.T)(π) = treeof ([X, µX.T]T)(π)

21.8 µ-Types 301

.

.

.
.
.
.

.

.

.

.

.

.

×

Top

→

→×

Top ×

Top

treeof (µX.((X×Top)→X)) =

11 2

1

2

2

1 2

21

21

→

Figure 21-3: Sample treeof application

To verify that this definition is proper (i.e., exhaustive and terminating), note

the following:

1. Every recursive use of treeof on the right-hand side reduces the lexico-

graphic size of the pair (|π|, µ-height(T)): the cases for S→T and S×T

reduce |π| and the case for µX.T preserves |π| but reduces µ-height(T).

2. All recursive calls preserve contractiveness and closure of the argument

types. In particular, the type µX.T is contractive and closed iff its unfold-

ing [X , µX.T]T is. This justifies the unfolding step in the definition of

treeof (µX.T).

The treeof function is lifted to pairs of types by defining treeof (S,T) =

(treeof (S), treeof (T)). �

An sample application of treeof to a µ-type is shown in Figure 21-3.

The subtype relation for tree types was defined in §21.3 as the greatest

fixed point of the generating function S . In the present section, we extended

the syntax of types with µ-types, whose behavior is intuitively described by

the rules of (right and left, correspondingly) µ-folding:

S <: [X, µX.T]T

S <: µX.T
and

[X, µX.S]S <: T

µX.S <: T

Formally, we define subtyping for µ-types by giving a generating function Sm,

with three clauses identical to the definition of S and two additional clauses

corresponding to the µ-folding rules.

302 21 Metatheory of Recursive Types

21.8.4 Definition: Two µ-types S and T are said to be in the subtype relation if

(S,T) ∈ νSm, where the monotone function Sm ∈ P(Tm×Tm)→ P(Tm×Tm)

is defined by:

Sm(R) = {(S,Top) | S ∈ Tm}

∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R}

∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}

∪ {(S, µX.T) | (S, [X, µX.T]T) ∈ R}

∪ {(µX.S,T) | ([X, µX.S]S,T) ∈ R, T ≠ Top, and T ≠ µY.T1}.

Note that this definition does not embody precisely the µ-folding rules above:

we have introduced an asymmetry between its final and penultimate clauses

to make it invertible (otherwise, the clauses would overlap). However, as the

next exercise shows, Sm generates the same subtype relation as the more

natural generating function3 Sd whose clauses exactly correspond to the in-

ference rules. �

21.8.5 Exercise [«««]: Write down the function Sd mentioned above, and demon-

strate that it is not invertible. Prove that νSd = νSm. �

The generating function Sm is invertible because the corresponding sup-

port function is well-defined:

supportSm(S,T) =

∅ if T = Top

{(S1,T1), (S2,T2)} if S = S1×S2 and

T = T1×T2

{(T1,S1), (S2,T2)} if S = S1→S2 and

T = T1→T2

{(S, [X, µX.T1]T1)} if T = µX.T1

{([X, µX.S1]S1,T)} if S = µX.S1 and

T ≠ µX.T1, T ≠ Top

↑ otherwise.

The subtype relation on µ-types so far has been introduced independently

of the previously defined subtyping on tree types. Since we think of µ-types

as just a way of representing regular types in a finite form, it is necessary

to ensure that the two notions of subtyping correspond to each other. The

next theorem (21.8.7) establishes this correspondence. But first, we need a

technical lemma.

21.8.6 Lemma: Suppose that R ⊆ Tm×Tm is Sm-consistent. For any (S,T) ∈ R, there

is some (S′,T′) ∈ R such that treeof (S′,T′) = treeof (S,T) and neither S′ nor

T′ starts with µ. �

3. The “d” in Sd is a reminder that the function is based on the “declarative” inference rules

for µ-folding, in contrast to the “algorithmic” versions used in Sm .

21.8 µ-Types 303

Proof: By induction on the total number of µs at the front of S and T. If

neither S nor T starts with µ, then we can take (S′,T′) = (S,T). On the other

hand, if (S,T) = (S, µX.T1), then by the Sm-consistency of R, we have (S,T) ∈

Sm(R), so (S′′,T′′) = (S, [X, µX.T1]T1) ∈ R. Since T is contractive, the result

T′′ of unfolding T has one fewer µ at the front than T does. By the induction

hypothesis, there is some (S′,T′) ∈ R such that neither S′ nor T′ starts with

µ and such that treeof (S′′,T′′) = (S′,T′). Since, by the definition of treeof ,

treeof (S,T) = treeof (S′′,T′′), the pair (S′,T′) is the one we need. The case

where (S,T) = (µX.S1,T) is similar. �

21.8.7 Theorem: Let (S,T) ∈ Tm ×Tm. Then (S,T) ∈ νSm iff treeof (S,T) ∈ νS . �

Proof: First, let us consider the “only if” direction—that (S,T) ∈ νSm implies

treeof (S,T) ∈ νS . Let (A,B) = treeof (S,T) ∈ T × T . By the coinduction prin-

ciple, the result will follow if we can exhibit an S-consistent set Q ∈ T × T

such that (A,B) ∈ Q. Our claim is that Q = treeof (νSm) is such a set. To

verify this, we must show that (A′,B′) ∈ S(Q) for every (A′,B′) ∈ Q.

Let (S′,T′) ∈ νSm be a pair of µ-types such that treeof (S′,T′) = (A′,B′).

By Lemma 21.8.6, we may assume that neither S′ nor T′ starts with µ. Since

νSm is Sm-consistent, (S′,T′) must be supported by one of the clauses in the

definition of Sm—i.e., it must have one of the following shapes.

Case: (S′,T′) = (S′,Top)

Then B′ = Top, and (A′,B′) ∈ S(Q) by the definition of S .

Case: (S′,T′) = (S1×S2,T1×T2) with (S1,T1), (S2,T2) ∈ νSm

By the definition of treeof , we have B′ = treeof (T′) = B1×B2, where each

Bi = treeof (Ti). Similarly, A′ = A1×A2, where Ai = treeof (Si). Applying treeof

to these pairs gives (A1,B1), (A2,B2) ∈ Q. But then, by the definition of S , we

have (A,B) = (A1×A2,B1×B2) ∈ S(Q).

Case: (S′,T′) = (S1→S2,T1→T2) with (T1,S1), (S2,T2) ∈ νSm

Similar.

Next, let us check the “if” direction of the theorem—that treeof (S,T) ∈ νS

implies (S,T) ∈ νSm. By the coinduction principle, it suffices to exhibit an

Sm-consistent set R ∈ Tm × Tm with (S,T) ∈ R. We claim that R = {(S′,T′) ∈

Tm × Tm | treeof (S′,T′) ∈ νS}. Clearly, (S,T) ∈ R. To finish the proof, we

must now show that (S′,T′) ∈ R implies (S′,T′) ∈ Sm(R).

Note that, since νS is S-consistent, any pair (A′,B′) ∈ νS must have one

of the forms (A′,Top), (A1×A2,B1×B2), or (A1→A2,B1→B2). From this and

the definition of treeof , we see that any pair (S′,T′) ∈ R must have one of the

forms (S′,Top), (S1×S2,T1×T2), (S1→S2,T1→T2), (S
′, µX.T1), or (µX.S1,T

′).

We consider each of these cases in turn.

304 21 Metatheory of Recursive Types

Case: (S′,T′) = (S′,Top)

Then (S′,T′) ∈ Sm(R) immediately, by the definition of Sm.

Case: (S′,T′) = (S1×S2,T1×T2)

Let (A′,B′) = treeof (S′,T′). Then (A′,B′) = (A1×A2,B1×B2), with Ai = treeof (Si)

and Bi = treeof (Ti). Since (A′,B′) ∈ νS , the S-consistency of νS implies that

(Ai,Bi) ∈ νS , which in turn yields (Si ,Ti) ∈ R, by the definition of R. The

definition of Sm yields (S′,T′) = (S1×S2,T1×T2) ∈ Sm(R).

Case: (S′,T′) = (S1→S2,T1→T2)

Similar.

Case: (S′,T′) = (S′, µX.T1)

Let T′′ = [X , µX.T1]T1. By definition, treeof (T′′) = treeof (T′). Therefore,

by the definition of R, we have (S′,T′′) ∈ R, and so (S′,T′) ∈ Sm(R), by the

definition of Sm.

Case: (S′,T′) = (µX.S1,T
′)

If T′ = Top or T′ starts with µ, then one of the cases above applies; otherwise,

the argument is similar to the previous one. �

The correspondence established by the theorem is a statement of sound-

ness and completeness of subtyping between µ-types, as defined in this sec-

tion, with respect to the ordinary subtype relation between infinite tree types,

restricted to those tree types that can be represented by finite µ-expressions.

21.9 Counting Subexpressions

Instantiating the generic algorithm gfpt (21.6.4) with the specific support

function supportSm for the subtype relation on µ-types (21.8.4) yields the sub-

typing algorithm shown in Figure 21-4. The argument in Section 21.6 shows

that the termination of this algorithm can be guaranteed if reachableSm(S,T)

is finite for any pair of µ-types (S,T). The present section is devoted to prov-

ing that this is the case (Proposition 21.9.11).

At first glance, the property seems almost obvious, but proving it rigor-

ously requires a surprising amount of work. The difficulty is that there are

two possible ways of defining the set of “closed subexpressions” of a µ-

type. One, which we call top-down subexpressions, directly corresponds to the

subexpressions generated by support Sm . The other, called bottom-up subex-

pressions, supports a straightforward proof that the set of closed subex-

pressions of every closed µ-type is finite. The termination proof proceeds

by defining both of these sets and showing that the former is a subset of the

21.9 Counting Subexpressions 305

subtype(A,S,T) = if (S,T) ∈ A, then

A

else let A0 = A∪ {(S,T)} in

if T = Top, then

A0

else if S = S1×S2 and T = T1×T2, then

let A1 = subtype(A0,S1,T1) in

subtype(A1,S2,T2)

else if S = S1→S2 and T = T1→T2, then

let A1 = subtype(A0,T1,S1) in

subtype(A1,S2,T2)

else if T = µX.T1, then

subtype(A0, S, [X, µX.T1]T1)

else if S = µX.S1, then

subtype(A0, [X, µX.S1]S1, T)

else

fail

Figure 21-4: Concrete subtyping algorithm for µ-types

latter (Proposition 21.9.10). The development here is based on Brandt and

Henglein’s (1997).

21.9.1 Definition: A µ-type S is a top-down subexpression of a µ-type T, written

S v T, if the pair (S,T) is in the least fixed point of the following generating

function:
TD(R) = {(T,T) | T ∈ Tm}

∪ {(S,T1×T2) | (S,T1) ∈ R}

∪ {(S,T1×T2) | (S,T2) ∈ R}

∪ {(S,T1→T2) | (S,T1) ∈ R}

∪ {(S,T1→T2) | (S,T2) ∈ R}

∪ {(S, µX.T) | (S, [X, µX.T]T) ∈ R}

21.9.2 Exercise [«]: Give an equivalent definition of the relation S v T as a set of

inference rules. �

From the definition of supportSm it is easy to see that, for any µ-types S

and T, all the pairs contained in supportSm(S,T) are formed from top-down

subexpressions of S and T:

21.9.3 Lemma: If (S′,T′) ∈ supportSm(S,T), then either S′ v S or S′ v T, and either

T′ v S or T′ v T. �

306 21 Metatheory of Recursive Types

Proof: Straightforward inspection of the definition of supportSm . �

Also, the top-down subexpression relation is transitive:

21.9.4 Lemma: If S v U and U v T, then S v T. �

Proof: The statement of the lemma is equivalent to ∀U,T. U v T⇒ (∀S. S v

U ⇒ S v T). In other words, we must show that µ(TD) ⊆ R, where R =

{(U,T) | ∀S. S v U ⇒ S v T}. By the induction principle, it suffices to show

that R is TD-closed—that is, that TD(R) ⊆ R. So suppose (U,T) ∈ TD(R).

Proceed by cases on the clauses in the definition of TD.

Case: (U,T) = (T,T)

Clearly, (T,T) ∈ R.

Case: (U,T) = (U,T1×T2) and (U,T1) ∈ R

Since (U,T1) ∈ R, it must be the case that S v U ⇒ S v T1 for all S. By the

definition of v, it must also be the case that S v U ⇒ S v T1×T2 for all S.

Thus, (U,T) = (U,T1×T2) ∈ R, by the definition of R.

Other cases:

Similar. �

Combining the two previous lemmas gives us the proposition that moti-

vates the introduction of top-down subexpressions:

21.9.5 Proposition: If (S′,T′) ∈ reachableSm(S,T), then S′ v S or S′ v T, and T′ v S

or T′ v T. �

Proof: By induction on the definition of reachableSm , using transitivity of v.

�

The finiteness of reachableSm(S,T) will follow (in Proposition 21.9.11) from

the above proposition and the fact that any µ-type U has only a finite num-

ber of top-down subexpressions. Unfortunately, the latter fact is not obvious

from the definition of v. Attempting to prove it by structural induction on U

using the definition of TD does not work because the last clause of TD breaks

the induction: to construct the subexpressions of U = µX.T, it refers to a

potentially larger expression [X, µX.T]T.

The alternative notion of bottom-up subexpressions avoids this problem

by performing the substitution of µ-types for recursion variables after calcu-

lating the subexpressions instead of before. This change will lead to a simple

proof of finiteness.

21.9 Counting Subexpressions 307

21.9.6 Definition: A µ-type S is a bottom-up subexpression of a µ-type T, written

S � T, if the pair (S,T) is in the least fixed point of the following generating

function:
BU(R) = {(T,T) | T ∈ Tm}

∪ {(S,T1×T2) | (S,T1) ∈ R}

∪ {(S,T1×T2) | (S,T2) ∈ R}

∪ {(S,T1→T2) | (S,T1) ∈ R}

∪ {(S,T1→T2) | (S,T2) ∈ R}

∪ {([X, µX.T]S, µX.T) | (S,T) ∈ R}

This new definition of subexpressions differs from the old one only in the

clause for a type starting with a µ binder. To obtain the top-down subex-

pressions of such a type, we unfolded it first and then collected the subex-

pressions of the unfolding. To obtain the bottom-up subexpressions, we first

collect the (not necessarily closed) subexpressions of the body, and then close

them by applying the unfolding substitution.

21.9.7 Exercise [««]: Give an equivalent definition of the relation S � T as a set of

inference rules. �

The fact that an expression has only finitely many bottom-up subexpres-

sions is easily proved.

21.9.8 Lemma: {S | S � T} is finite for each T. �

Proof: Straightforward structural induction on T, using the following obser-

vations, which follow from the definition of BU and �:

• if T = Top or T = X then {S | S � T} = {T};

• if T = T1×T2 or T = T1→T2 then {S | S � T} = {T}∪{S | S � T1}∪{S | S �

T2};

• if T = µX.T′ then {S | S � T} = {T} ∪ {[X, T]S | S � T′}. �

To prove that the bottom-up subexpressions of a type include its top-down

subexpressions, we will need the following lemma relating bottom-up subex-

pressions and substitution.

21.9.9 Lemma: If S � [X , Q]T, then either S � Q or else S = [X , Q]S′ for some S′

with S′ � T. �

Proof: By structural induction on T.

308 21 Metatheory of Recursive Types

Case: T = Top

Only the reflexivity clause of BU allows Top as the right-hand element of the

pair, so we must have S = Top. Taking S′ = Top yields the desired result.

Case: T = Y

If Y = X, we have S � [X , Q]T = Q, and the desired result holds by assump-

tion. If Y ≠ X, we have S = [X , Q]T = Y. Only the reflexivity clause of BU can

justify this pair, so we must have S = Y. Take S′ = Y to get the desired result.

Case: T = T1×T2

We have S � [X, Q]T = [X, Q]T1× [X, Q]T2. According to the definition of

BU, there are three ways in which S can be a bottom-up subexpression of this

product type. We consider each in turn.

Subcase: S = [X, Q]T

Then take S′ = T.

Subcase: S � [X, Q]T1

By the induction hypothesis, either S � Q (in which case we are done) or else

S = [X , Q]S′ for some S′ � T1. The latter alternative implies the desired

result S′ � T1×T2 by the definition of BU.

Subcase: S � [X, Q]T2

Similar.

Case: T = T1→T2

Similar to the product case.

Case: T = µY.T′

We have S � [X , Q]T = µY.[X , Q]T′. There are two ways in which S can be

a bottom-up subexpression of this µ-type.

Subcase: S = [X, Q]T

Take S′ = T

Subcase: S = [Y, µY.[X, Q]T′]S1 with S1 � [X, Q]T′

Applying the induction hypothesis gives us two possible alternatives:

• S1 � Q. By our conventions on bound variable names, we know that Y ∉

FV(Q), so it must be that Y ∉ FV(S1). But then S = [Y , µY.[X , Q]T′]S1 =

S1, so S � Q.

• S1 = [X , Q]S2 for some S2 such that S2 � T′. In this case, S = [Y ,

µY.[X , Q]T′]S1 = [Y , µY.[X , Q]T′][X , Q]S2 = [X , Q][Y , µY.T′]S2.

Take S′ = [Y, µY.S′]S2 to obtain the desired result. �

21.10 Digression: An Exponential Algorithm 309

The final piece of the proof establishes that every top-down subexpression

of a µ-type can be found among its bottom-up subexpressions.

21.9.10 Proposition: If S v T, then S � T. �

Proof: We want to show that µTD ⊆ µBU. By the principle of induction, this

will follow if we can show that µBU is TD-closed—that is, TD(µBU) ⊆ µBU. In

other words, we want to show that (A,B) ∈ TD(µBU) implies (A,B) ∈ µBU =

BU(µBU). The latter will be true if every clause of TD that could have gen-

erated (A,B) from µBU is matched by a clause of BU that also generates

(A,B) from µBU. This is trivially true for all the clauses of TD except the

last, since they are exactly the same as the corresponding clauses of BU. In

the last clause, (A,B) = (S, µX.T) ∈ TD(µBU) and (S, [X , µX.T]T) ∈ µBU

or, equivalently, S � [X , µX.T]T. By Lemma 21.9.9, either S � µX.T, which

is (S, µX.T) ∈ µBU, what is needed, or S = [X , µX.T]S′ for some S′ with

(S′,T) ∈ µBU. The latter implies (S, µX.T) ∈ BU(µBU) = µBU, by the last

clause of BU. �

Combining the facts established in this section gives us the final result.

21.9.11 Proposition: For any µ-types S and T, the set reachableSm(S,T) is finite. �

Proof: For S and T, let Td be the set of all their top-down subexpressions,

and Bu be the set of all their bottom-up subexpressions. According to Propo-

sition 21.9.5, reachableSm(S,T) ⊆ Td × Td. By Proposition 21.9.10, Td× Td ⊆

Bu× Bu. By Lemma 21.9.8, the latter set is finite. Therefore, reachableSm(S,T)

is finite. �

21.10 Digression: An Exponential Algorithm

The algorithm subtype presented at the beginning of §21.9 (Figure 21-4) can

be simplified a bit more by making it return just a boolean value rather

than a new set of assumptions (see Figure 21-5). The resulting procedure,

subtypeac , corresponds to Amadio and Cardelli’s algorithm for checking sub-

typing (1993). It computes the same relation as the one computed by subtype,

but much less efficiently because it does not remember pairs of types in the

subtype relation across the recursive calls in the → and × cases. This seem-

ingly innocent change results in a blowup of the number of recursive calls the

algorithm makes. Whereas the number of recursive calls made by subtype is

proportional to the square of the total number of subexpressions in the two

argument types (as can be seen by inspecting the proofs of Lemma 21.9.8 and

Proposition 21.9.11), in the case of subtype
ac

it is exponential.

310 21 Metatheory of Recursive Types

subtypeac(A,S,T) = if (S,T) ∈ A, then true

else let A0 = A∪ (S,T) in

if T = Top, then true

else if S = S1×S2 and T = T1×T2, then

subtype
ac
(A0,S1,T1) and

subtype
ac
(A0,S2,T2)

else if S = S1→S2 and T = T1→T2, then

subtypeac(A0,T1,S1) and

subtypeac(A0,S2,T2)

else if S = µX.S1, then

subtypeac(A0, [X, µX.S1]S1, T)

else if T = µX.T1, then

subtypeac(A0, S, [X, µX.T1]T1)

else false.

Figure 21-5: Amadio and Cardelli’s subtyping algorithm

The exponential behavior of subtype
ac

can be seen clearly in the following

example. Define families of types Sn and Tn inductively as follows:

S0 = µX.Top×X Sn+1 = µX.X→Sn
T0 = µX.Top×(Top×X) Tn+1 = µX.X→Tn.

Since Sn and Tn each contain just one occurrence of Sn−1 and Tn−1, respec-

tively, their size (after expanding abbreviations) will be linear in n. Checking

Sn <: Tn generates an exponential derivation, however, as can be seen by the

following sequence of recursive calls

subtypeac(∅,Sn,Tn)

= subtypeac(A1,Sn→Sn−1,Tn)

= subtypeac(A2,Sn→Sn−1,Tn→Tn−1)

= subtype
ac
(A3,Tn,Sn) and subtype

ac
(A3,Sn−1,Tn−1)

= subtype
ac
(A4,Tn→Tn−1,Sn) and . . .

= subtypeac(A5,Tn→Tn−1,Sn→Sn−1) and . . .

= subtypeac(A6,Sn,Tn) and subtypeac(A6,Tn−1,Sn−1) and . . .

= etc.,

where

A1 = {(Sn,Tn)}

A2 = A1 ∪ {(Sn→Sn−1,Tn)}

A3 = A2 ∪ {(Sn→Sn−1,Tn→Tn−1)}

A4 = A3 ∪ {(Tn,Sn)}

A5 = A4 ∪ {(Tn→Tn−1,Sn)}

A6 = A5 ∪ {(Tn→Tn−1,Sn→Sn−1)}.

21.11 Subtyping Iso-Recursive Types 311

Notice that the initial call subtypeac(∅,Sn,Tn) results in the two underlined

recursive calls of the same form involving Sn−1 and Tn−1. These, in turn, will

each give rise to two recursive calls involving Sn−2 and Tn−2, and so on. The

total number of recursive calls is thus proportional to 2n .

21.11 Subtyping Iso-Recursive Types

We remarked in §20.2 that some treatments of recursive types adopt an iso-

recursive presentation, where the folding and unfolding of recursive types

is witnessed explicitly by the term constructors fold and unfold. In such

languages, the µ type constructor is “rigid,” in the sense that its position in a

type affects how terms belonging to this type can be used.

If we add subtyping to a language with iso-recursive types, the rigidity of

the µ constructor also affects the subtype relation. Instead of intuitively “un-

rolling to the limit, then subtyping,” as we have done in most of this chapter,

we must define subtyping rules involving recursive types directly.

The most common definition of iso-recursive subtyping is the Amber rule—

so-called because it was popularized by Cardelli’s Amber language (1986):

Σ, X<:Y ` S <: T

Σ ` µX.S <: µY.T
(S-Amber)

Intuitively, this rule can be read, “To show that µX.S is a subtype of µY.T

under some set of assumptions Σ, it suffices to show S <: T under the ad-

ditional assumption that X <: Y.”4
Σ here is just a set of pairs of recursion

variables, recording the pairs of recursive types that have already been con-

sidered. These assumptions are used by another subtyping rule

(X <: Y) ∈ Σ

Σ ` X <: Y
(S-Assumption)

that allows us to conclude X <: Y if we are currently assuming it.

In effect, adding these two rules to the usual subtyping algorithm from

Chapter 16 (and extending the other rules so that they pass Σ through from

premises to conclusion) yields an algorithm that behaves somewhat like the

subtypeac algorithm in Figure 21-5, with Σ playing the role of A. The differ-

ences are that (1) we “unfold” recursive types only when they appear on both

sides of the <: at once, and (2) we do not substitute the recursive types into

their bodies (we just leave them as variables), which makes it easy to see that

the algorithm terminates.

4. Note that this rule, unlike most rules involving binding constructs on both sides, such as

S-All in Figure 26-1, demands that the bound variables X and Y be renamed to be distinct

before the rule is applied.

312 21 Metatheory of Recursive Types

The subtyping rules found in nominal type systems (such as Featherweight

Java, Chapter 19) are closely related to the Amber rule.

21.11.1 Exercise [Recommended, ««]: Find recursive types S and T such that S <: T

using the equi-recursive definition, but not using the Amber rule. �

21.12 Notes

This chapter is based on a tutorial article by Gapeyev, Levin, and Pierce (2000).

Background on coinduction can be found in Barwise and Moss’s Vicious

Circles (1996), Gordon’s tutorial on coinduction and functional programming

(1995), and Milner and Tofte’s expository article on coinduction in program-

ming language semantics (1991a). For basic information on monotone func-

tions and fixed points see Aczel (1977) and Davey and Priestley (1990).

The use of coinductive proof methods in computer science dates from the

1970s, for example in the work of Milner (1980) and Park (1981) on con-

currency; also see Arbib and Manes’s categorical discussion of duality in au-

tomata theory (1975). But the use of induction in its dual “co-” form was

familiar to mathematicians considerably earlier and is developed explicitly

in, for example, universal algebra and category theory. Aczel’s seminal book

(1988) on non-well-founded sets includes a brief historical survey.

Amadio and Cardelli (1993) gave the first subtyping algorithm for recur-

sive types. Their paper defines three relations: an inclusion relation between

infinite trees, an algorithm that checks subtyping between µ-types, and a ref-

erence subtype relation between µ-types defined as the least fixed point of

a set of declarative inference rules; these relations are proved to be equiv-

alent, and connected to a model construction based on partial equivalence

relations. Coinduction is not used; instead, to reason about infinite trees, a

notion of finite approximations of an infinite tree is introduced. This notion

plays a key role in many of the proofs.

Brandt and Henglein (1997) laid bare the underlying coinductive nature of

Amadio and Cardelli’s system, giving a new inductive axiomatization of the

subtype relation that is sound and complete with respect to that of Amadio

and Cardelli. The so-called Arrow/Fix rule of the axiomatization embodies

the coinductiveness of the system. The paper describes a general method for

deriving an inductive axiomatization for relations that are naturally defined

by coinduction and presents a detailed proof of termination for a subtyp-

ing algorithm. §21.9 of the present chapter closely follows the latter proof.

Brandt and Henglein establish that the complexity of their algorithm isO(n2).

Kozen, Palsberg, and Schwartzbach (1993) obtain an elegant quadratic sub-

typing algorithm by observing that a regular recursive type corresponds to

21.12 Notes 313

an automaton with labeled states. They define a product of two automata

that yields a conventional word automaton accepting a word iff the types

corresponding to the original automata are not in the subtype relation. A

linear-time emptiness test now solves the subtyping problem. This fact, plus

the quadratic complexity of product construction and linear-time conversion

from types to automata, gives an overall quadratic complexity.

Hosoya, Vouillon, and Pierce (2001) use a related automata-theoretic ap-

proach, associating recursive types (with unions) to tree automata in a sub-

typing algorithm tuned to XML processing applications.

Jim and Palsberg (1999) address type reconstruction (see Chapter 22) for

languages with subtyping and recursive types. As we have done in this chap-

ter, they adopt a coinductive view of the subtype relation over infinite trees

and motivate a subtype checking algorithm as a procedure building the min-

imal simulation (i.e., consistent set, in our terminology) from a given pair of

types. They define the notions of consistency and P1-closure of a relation

over types, which correspond to our consistency and reachable sets.

If you think about it long enough, you’ll see that it’s obvious. —Saul Gorn

P a r t V

Polymorphism

22 Type Reconstruction

The typechecking algorithms for the calculi we have seen so far all depend on

explicit type annotations—in particular, they require that lambda-abstractions

be annotated with their argument types. In this chapter, we develop a more

powerful type reconstruction algorithm, capable of calculating a principal type

for a term in which some or all of these annotations are left unspecified. Re-

lated algorithms lie at the heart of languages like ML and Haskell.

Combining type reconstruction with other language features is often a

somewhat delicate matter. In particular, both records and subtyping pose

significant challenges. To keep things simple, we consider type reconstruc-

tion here only for simple types; §22.8 gives some starting points for further

reading on other combinations.

22.1 Type Variables and Substitutions

In some of the calculi in previous chapters, we have assumed that the set

of types includes an infinite collection of uninterpreted base types (§11.1).

Unlike interpreted base types such as Bool and Nat, these types come with

no operations for introducing or eliminating terms; intuitively, they are just

placeholders for some particular types whose exact identities we do not care

about. In this chapter, we will be asking questions like “if we instantiate the

placeholder X in the term t with the concrete type Bool, do we obtain a ty-

pable term?” In other words, we will treat our uninterpreted base types as

type variables, which can be substituted or instantiated with other types.

For the technical development in this chapter, it is convenient to separate

the operation of substituting types for type variables into two parts: describ-

ing a mapping σ from type variables to types, called a type substitution, and

The system studied in this chapter is the simply typed lambda-calculus (Figure 9-1) with

booleans (8-1), numbers (8-2), and an infinite collection of base types (11-1). The corresponding

OCaml implementations are recon and fullrecon.

318 22 Type Reconstruction

applying this mapping to a particular type T to obtain an instance σT. For

example, we might define σ = [X , Bool] and then apply σ to the type X→X

to obtain σ(X→X) = Bool→Bool.

22.1.1 Definition: Formally, a type substitution (or just substitution, when it’s clear

that we’re talking about types) is a finite mapping from type variables to

types. For example, we write [X , T, Y , U] for the substitution that asso-

ciates X with T and Y with U. We write dom(σ) for the set of type variables

appearing on the left-hand sides of pairs in σ , and range(σ) for the set of

types appearing on the right-hand sides. Note that the same variable may

occur in both the domain and the range of a substitution. Like term substitu-

tions, the intention in such cases is that all the clauses of the substitution are

applied simultaneously; for example, [X , Bool, Y , X→X] maps X to Bool

and Y to X→X, not Bool→Bool.

Application of a substitution to a type is defined in the obvious way:

σ(X) =

{

T if (X, T) ∈ σ

X if X is not in the domain of σ

σ(Nat) = Nat

σ(Bool) = Bool

σ(T1→T2) = σT1 → σT2

Note that we do not need to make any special provisions to avoid variable cap-

ture during type substitution, because there are no constructs in the language

of type expressions that bind type variables. (We’ll get to these in Chapter 23.)

Type substitution is extended pointwise to contexts by defining

σ(x1:T1, . . . ,xn:Tn) = (x1:σT1, . . . ,xn:σTn).

Similarly, a substitution is applied to a term t by applying it to all types

appearing in annotations in t.

If σ and γ are substitutions, we write σ ◦ γ for the substitution formed by

composing them as follows:

σ ◦ γ =

[

X, σ(T) for each (X, T) ∈ γ

X, T for each (X, T) ∈ σ with X ∉ dom(γ)

]

Note that (σ ◦ γ)S = σ(γS). �

A crucial property of type substitutions is that they preserve the validity of

typing statements: if a term involving variables is well typed, then so are all

of its substitution instances.

22.1.2 Theorem [Preservation of typing under type substitution]: If σ is any

type substitution and Γ ` t : T, then σ Γ ` σt : σT. �

Proof: Straightforward induction on typing derivations. �

22.2 Two Views of Type Variables 319

22.2 Two Views of Type Variables

Suppose that t is a term containing type variables and Γ is an associated

context (possibly also containing type variables). There are two quite different

questions that we can ask about t:

1. “Are all substitution instances of t well typed?” That is, for every σ , do we

have σ Γ ` σt : T for some T?

2. “Is some substitution instance of t well typed?” That is, can we find a σ

such that σ Γ ` σt : T for some T?

According to the first view, type variables should be held abstract during

typechecking, thus ensuring that a well-typed term will behave properly no

matter what concrete types are later substituted for its type variables. For

example, the term

λf:X→X. λa:X. f (f a);

has type (X→X)→X→X, and, whenever we replace X by a concrete type T, the

instance

λf:T→T. λa:T. f (f a);

is well typed. Holding type variables abstract in this way leads us to para-

metric polymorphism, where type variables are used to encode the fact that a

term can be used in many concrete contexts with different concrete types. We

will return to parametric polymorphism later in this chapter (in §22.7) and,

in more depth, in Chapter 23.

On the second view, the original term t may not even be well typed; what

we want to know is whether it can be instantiated to a well typed term by

choosing appropriate values for some of its type variables. For example, the

term

λf:Y. λa:X. f (f a);

is not typable as it stands, but if we replace Y by Nat→Nat and X by Nat, we

obtain

λf:Nat→Nat. λa:Nat. f (f a);

of type (Nat→Nat)→Nat→Nat. Or, if we simply replace Y by X→X, we obtain

the term

λf:X→X. λa:X. f (f a);

320 22 Type Reconstruction

which is well typed even though it contains variables. Indeed, this term is a

most general instance of λf:Y. λa:X. f (f a), in the sense that it makes the

smallest commitment about the values of type variables that yields a well-

typed term.

Looking for valid instantiations of type variables leads to the idea of type

reconstruction (sometimes called type inference), in which the compiler helps

fill in type information that has been left out by the programmer. In the limit,

we may, as in ML, allow the programmer to leave out all type annotations

and write in the syntax of the bare, untyped lambda-calculus. During parsing,

we annotate each bare lambda-abstraction λx.t with a type variable, λx:X.t,

choosing X to be different from the type variables on all the other abstractions

in the program. We then perform type reconstruction to find the most gen-

eral values for all these variables that make the term typecheck. (This story

becomes a little more complicated in the presence of ML’s let-polymorphism;

we return to this in §22.6 and §22.7.)

To formalize type reconstruction, we will need a concise way of talking

about the possible ways that type variables can be substituted by types, in a

term and its associated context, to obtain a valid typing statement.1

22.2.1 Definition: Let Γ be a context and t a term. A solution for (Γ ,t) is a pair

(σ ,T) such that σ Γ ` σt : T. �

22.2.2 Example: Let Γ = f:X, a:Y and t = f a. Then

([X, Y→Nat], Nat) ([X , Y→Z], Z)

([X, Y→Z, Z, Nat], Z) ([X , Y→Nat→Nat], Nat→Nat)

([X, Nat→Nat, Y, Nat], Nat→Nat)

are all solutions for (Γ ,t). �

22.2.3 Exercise [« 3]: Find three different solutions for the term

λx:X. λy:Y. λz:Z. (x z) (y z).

in the empty context. �

1. There are other ways of setting up these basic definitions. One is to use a general mech-

anism called existential unificands, due to Kirchner and Jouannaud (1990), instead of all the

individual freshness conditions in the constraint generation rules in Figure 22-1. Another pos-

sible improvement, employed by Rémy (1992a, 1992b, long version, 1998, Chapter 5), is to treat

typing statements themselves as unificands; we begin with a triple (Γ ,t,T), where all three com-

ponents may contain type variables, and look for substitutions σ such that σ Γ ` σ(t) : σ(T),

i.e., substitutions that unify the schematic typing statement Γ ` t : T.

22.3 Constraint-Based Typing 321

22.3 Constraint-Based Typing

We now present an algorithm that, given a term t and a context Γ , calculates

a set of constraints—equations between type expressions (possibly involving

type variables)—that must be satisfied by any solution for (Γ ,t). The intuition

behind this algorithm is essentially the same as the ordinary typechecking al-

gorithm; the only difference is that, instead of checking constraints, it simply

records them for later consideration. For example, when presented with an

application t1 t2 with Γ ` t1 : T1 and Γ ` t2 : T2, rather than checking that

t1 has the form T2→T12 and returning T12 as the type of the application, it

instead chooses a fresh type variable X, records the constraint T1 = T2→X,

and returns X as the type of the application.

22.3.1 Definition: A constraint set C is a set of equations {Si = Ti
i∈1..n}. A substi-

tution σ is said to unify an equation S = T if the substitution instances σS

and σT are identical. We say that σ unifies (or satisfies) C if it unifies every

equation in C . �

22.3.2 Definition: The constraint typing relation Γ ` t : T |X C is defined by the

rules in Figure 22-1. Informally, Γ ` t : T |X C can be read “term t has type

T under assumptions Γ whenever constraints C are satisfied.” In rule T-App,

we write FV(T) for the set of all type variables mentioned in T.

The X subscripts are used to track the type variables introduced in each

subderivation and make sure that the fresh variables created in different sub-

derivations are actually distinct. On a first reading of the rules, it may be

helpful to ignore these subscripts and all the premises involving them. On

the next reading, observe that these annotations and premises ensure two

things. First, whenever a type variable is chosen by the final rule in some

derivation, it must be different from any variables chosen in subderivations.

Second, whenever a rule involves two or more subderivations, the sets of vari-

ables chosen by these subderivations must be disjoint. Also, note that these

conditions never prevent us from building some derivation for a given term;

they merely prevent us from building a derivation in which the same vari-

able is used “fresh” in two different places. Since there is an infinite supply

of type variable names, we can always find a way of satisfying the freshness

requirements.

When read from bottom to top, the constraint typing rules determine a

straightforward procedure that, given Γ and t, calculates T and C (and X)

such that Γ ` t : T |X C . However, unlike the ordinary typing algorithm

for the simply typed lambda-calculus, this one never fails, in the sense that

for every Γ and t there are always some T and C such that Γ ` t : T |X C ,

and moreover that T and C are uniquely determined by Γ and t. (Strictly

322 22 Type Reconstruction

x:T ∈ Γ

Γ ` x : T |∅ {}
(CT-Var)

Γ , x:T1 ` t2 : T2 |X C

Γ ` λx:T1.t2 : T1→T2 |X C
(CT-Abs)

Γ ` t1 : T1 |X1
C1 Γ ` t2 : T2 |X2

C2

X1 ∩X2 = X1 ∩ FV(T2) = X2 ∩ FV(T1) = ∅

X ∉ X1, X2, T1, T2, C1, C2, Γ , t1, or t2

C′ = C1 ∪ C2 ∪ {T1 = T2→X}

Γ ` t1 t2 : X |X1∪X2∪{X} C
′

(CT-App)

Γ ` 0 : Nat |∅ {} (CT-Zero)

Γ ` t1 : T |X C

C′ = C ∪ {T = Nat}

Γ ` succ t1 : Nat |X C′
(CT-Succ)

Γ ` t1 : T |X C

C′ = C ∪ {T = Nat}

Γ ` pred t1 : Nat |X C′
(CT-Pred)

Γ ` t1 : T |X C

C′ = C ∪ {T = Nat}

Γ ` iszero t1 : Bool |X C′
(CT-IsZero)

Γ ` true : Bool |∅ {} (CT-True)

Γ ` false : Bool |∅ {} (CT-False)

Γ ` t1 : T1 |X1
C1

Γ ` t2 : T2 |X2
C2 Γ ` t3 : T3 |X3

C3

X1, X2, X3 nonoverlapping

C′ = C1 ∪ C2 ∪ C3 ∪ {T1 = Bool, T2 = T3}

Γ ` if t1 then t2 else t3 : T2 |X1∪X2∪X3
C′

(CT-If)

Figure 22-1: Constraint typing rules

speaking, the algorithm is deterministic only if we consider it “modulo the

choice of fresh names.” We return to this point in Exercise 22.3.9.)

To lighten the notation in the following discussion, we sometimes elide the

X and write just Γ ` t : T | C . �

22.3.3 Exercise [« 3]: Construct a constraint typing derivation whose conclusion

is

` λx:X. λy:Y. λz:Z. (x z) (y z) : S |X C

for some S, X , and C . �

The idea of the constraint typing relation is that, given a term t and a

context Γ , we can check whether t is typable under Γ by first collecting the

constraints C that must be satisfied in order for t to have a type, together

with a result type S, sharing variables with C , that characterizes the possible

types of t in terms of these variables. Then, to find solutions for t, we just

look for substitutions σ that satisfy C (i.e., that make all the equations in C

into identities); for each such σ , the type σS is a possible type of t. If we find

that there are no substitutions that satisfy C , then we know that t cannot be

instantiated in such a way as to make it typable.

22.3 Constraint-Based Typing 323

For example, the constraint set generated by the algorithm for the term t =

λx:X→Y. x 0 is {Nat→Z = X→Y}, and the associated result type is (X→Y)→Z.

The substitution σ = [X , Nat, Z , Bool, Y , Bool] makes the equa-

tion Nat→Z = X→Y into an identity, so we know that σ((X→Y)→Z), i.e.,

(Nat→Bool)→Bool, is a possible type for t.

This idea is captured formally by the following definition.

22.3.4 Definition: Suppose that Γ ` t : S | C . A solution for (Γ ,t,S, C) is a pair

(σ ,T) such that σ satisfies C and σS = T. �

The algorithmic problem of finding substitutions unifying a given con-

straint set C will be taken up in the next section. First, though, we should

check that our constraint typing algorithm corresponds in a suitable sense to

the original, declarative typing relation.

Given a context Γ and a term t, we have two different ways of characterizing

the possible ways of instantiating type variables in Γ and t to produce a valid

typing:

1. [declarative] as the set of all solutions for (Γ ,t) in the sense of Defini-

tion 22.2.1; or

2. [algorithmic] via the constraint typing relation, by finding S and C such

that Γ ` t : S | C and then taking the set of solutions for (Γ ,t,S, C).

We show the equivalence of these two characterizations in two steps. First

we show that every solution for (Γ ,t,S, C) is also a solution for (Γ ,t) (The-

orem 22.3.5). Then we show that every solution for (Γ ,t) can be extended

to a solution for (Γ ,t,S, C) (Theorem 22.3.7) by giving values for the type

variables introduced by constraint generation.

22.3.5 Theorem [Soundness of constraint typing]: Suppose that Γ ` t : S | C .

If (σ ,T) is a solution for (Γ ,t,S, C), then it is also a solution for (Γ ,t). �

For this direction of the argument, the fresh variable sets X are secondary

and can be elided.

Proof: By induction on the given constraint typing derivation for Γ ` t : S |

C , reasoning by cases on the last rule used.

Case CT-Var: t = x x:S ∈ Γ C = {}

We are given that (σ ,T) is a solution for (Γ ,t,S, C); since C is empty, this

means just that σS = T. But then by T-Var we immediately obtain σ Γ ` x : T,

as required.

324 22 Type Reconstruction

Case CT-Abs: t = λx:T1.t2 S = T1→S2 Γ , x:T1 ` t2 : S2 | C

We are given that (σ ,T) is a solution for (Γ ,t,S, C), that is, σ unifies C and

T = σS = σT1 → σS2. So (σ ,σS2) is a solution for (Γ ,t2,S2, C). By the induc-

tion hypothesis, (σ ,σS2) is a solution for ((Γ , x:T1), t2), i.e., σ Γ , x:σT1 `

σt2 : σS2. By T-Abs, σ Γ ` λx:σT1.σt2 : σT1→σS2 = σ(T1→S2) = T, as

required.

Case CT-App: t = t1 t2 S = X

Γ ` t1 : S1 | C1 Γ ` t2 : S2 | C2

C = C1 ∪ C2 ∪ {S1 = S2→X}

By definition, σ unifies C1 and C2 and σS1 = σ(S2→X). So (σ , σS1) and

(σ , σS2) are solutions for (Γ ,t1,S1, C1) and (Γ ,t2,S2, C2), from which the

induction hypothesis gives us σ Γ ` σt1 : σS1 and σ Γ ` σt2 : σS2. But

since σS1 = σS2→σX, we have σ Γ ` σt1 : σS2→σX, and, by T-App, σ Γ `

σ(t1 t2) : σX = T.

Other cases:

Similar. �

The argument for the completeness of constraint typing with respect to the

ordinary typing relation is a bit more delicate, because we must deal carefully

with fresh names.

22.3.6 Definition: Write σ\X for the substitution that is undefined for all the vari-

ables in X and otherwise behaves like σ . �

22.3.7 Theorem [Completeness of constraint typing]: Suppose Γ ` t : S |X
C . If (σ ,T) is a solution for (Γ ,t) and dom(σ) ∩ X = ∅, then there is some

solution (σ ′,T) for (Γ ,t,S, C) such that σ ′\X = σ . �

Proof: By induction on the given constraint typing derivation.

Case CT-Var: t = x x:S ∈ Γ

From the assumption that (σ ,T) is a solution for (Γ ,x), the inversion lemma

for the typing relation (9.3.1) tells us that T = σS. But then (σ ,T) is also a

(Γ ,x,S, {})-solution.

Case CT-Abs: t = λx:T1.t2 Γ , x:T1 ` t2 : S2 |X C S = T1→S2

From the assumption that (σ ,T) is a solution for (Γ , λx:T1.t2), the in-

version lemma for the typing relation yields σ Γ , x:σT1 ` σt2 : T2 and

T = σT1→T2 for some T2. By the induction hypothesis, there is a solution

(σ ′,T2) for ((Γ ,x:T1), t2, S2, C) such that σ ′\X agrees with σ . Now, X can-

not include any of the type variables in T1. So σ ′T1 = σT1, and σ ′(S) =

σ ′(T1→S2) = σT1→σ
′S2 = σT1→T2 = T. Thus, we see that (σ ′,T) is a solu-

tion for (Γ , (λx:T1.t2), T1→S2, C).

22.3 Constraint-Based Typing 325

Case CT-App: t = t1 t2 Γ ` t1 : S1 |X1
C1 Γ ` t2 : S2 |X2

C2

X1 ∩X2 = ∅

X1 ∩ FV(T2) = ∅

X2 ∩ FV(T1) = ∅

X not mentioned in X1, X2, S1, S2, C1, C2

S = X X = X1 ∪X2 ∪ {X} C = C1 ∪ C2 ∪ {S1 = S2→X}

From the assumption that (σ ,T) is a solution for (Γ , t1 t2), the inversion

lemma for the typing relation yields σ Γ ` σt1 : T1→T and σ Γ ` σt2 : T1.

By the induction hypothesis, there are solutions (σ1,T1→T) for (Γ ,t1,S1, C1)

and (σ2,T1) for (Γ ,t2,S2, C2), and σ1\X1 = σ = σ2\X2. We must exhibit a

substitution σ ′ such that: (1) σ ′\X agrees with σ ; (2) σ ′X = T; (3) σ ′ unifies

C1 and C2; and (4) σ ′ unifies {S1 = S2→X}, i.e., σ ′S1 = σ
′S2→σ

′X. Define σ ′

as follows:

σ ′ =

Y ,U if Y ∉ X and (Y, U) ∈ σ,

Y1,U1 if Y1 ∈ X1 and (Y1 , U1) ∈ σ1,

Y2,U2 if Y2 ∈ X2 and (Y2 , U2) ∈ σ2,

X ,T

Conditions (1) and (2) are obviously satisfied. (3) is satisfied because X1 and

X2 do not overlap. To check (4), first note that the side-conditions about

freshness guarantee that FV(S1) ∩ (X2 ∪ {X}) = ∅, so that σ ′S1 = σ1S1.

Now calculate as follows: σ ′S1 = σ1S1 = T1→T = σ2S2→T = σ ′S2→σ
′X =

σ ′(S2→X).

Other cases:

Similar. �

22.3.8 Corollary: Suppose Γ ` t : S | C . There is some solution for (Γ ,t) iff there

is some solution for (Γ ,t,S, C). �

Proof: By Theorems 22.3.5 and 22.3.7. �

22.3.9 Exercise [Recommended, «««]: In a production compiler, the nondetermin-

istic choice of a fresh type variable name in the rule CT-App would typically be

replaced by a call to a function that generates a new type variable—different

from all others that it ever generates, and from all type variables mentioned

explicitly in the context or term being checked—each time it is called. Because

such global “gensym” operations work by side effects on a hidden global

variable, they are difficult to reason about formally. However, we can mimic

their behavior in a fairly accurate and mathematically more tractable way

by “threading” a sequence of unused variable names through the constraint

generation rules.

326 22 Type Reconstruction

Let F denote a sequence of distinct type variable names. Then, instead of

writing Γ ` t : T |X C for the constraint generation relation, we write

Γ `F t : T |F ′ C , where Γ , F , and t are inputs to the algorithm and T, F ′, and

C are outputs. Whenever it needs a fresh type variable, the algorithm takes

the front element of F and returns the rest of F as F ′.

Write out the rules for this algorithm. Prove that they are equivalent, in an

appropriate sense, to the original constraint generation rules. �

22.3.10 Exercise [Recommended, ««]: Implement the algorithm from Exercise 22.3.9

in ML. Use the datatype

type ty =

TyBool

| TyArr of ty * ty

| TyId of string

| TyNat

for types, and

type constr = (ty * ty) list

for constraint sets. You will also need a representation for infinite sequences

of fresh variable names. There are lots of ways of doing this; here is a fairly

direct one using a recursive datatype:

type nextuvar = NextUVar of string * uvargenerator

and uvargenerator = unit → nextuvar

let uvargen =

let rec f n () = NextUVar("?X_" ^ string_of_int n, f (n+1))

in f 0

That is, uvargen is a function that, when called with argument (), returns a

value of the form NextUVar(x,f), where x is a fresh type variable name and

f is another function of the same form. �

22.3.11 Exercise [««]: Show how to extend the constraint generation algorithm to

deal with general recursive function definitions (§11.11). �

22.4 Unification

To calculate solutions to constraint sets, we use the idea, due to Hindley

(1969) and Milner (1978), of using unification (Robinson, 1971) to check that

the set of solutions is nonempty and, if so, to find a “best” element, in the

sense that all solutions can be generated straightforwardly from this one.

22.4 Unification 327

unify(C) = if C = ∅, then []

else let {S = T} ∪ C′ = C in

if S = T

then unify(C′)

else if S = X and X ∉ FV(T)

then unify([X , T]C′) ◦ [X, T]

else if T = X and X ∉ FV(S)

then unify([X , S]C′) ◦ [X, S]

else if S = S1→S2 and T = T1→T2

then unify(C′ ∪ {S1 = T1, S2 = T2})

else

fail

Figure 22-2: Unification algorithm

22.4.1 Definition: A substitution σ is less specific (or more general) than a substi-

tution σ ′, written σ v σ ′, if σ ′ = γ ◦ σ for some substitution γ. �

22.4.2 Definition: A principal unifier (or sometimes most general unifier) for a con-

straint set C is a substitution σ that satisfies C and such that σ v σ ′ for every

substitution σ ′ satisfying C . �

22.4.3 Exercise [«]: Write down principal unifiers (when they exist) for the follow-

ing sets of constraints:

{X = Nat, Y = X→X} {Nat→Nat = X→Y}

{X→Y = Y→Z, Z = U→W} {Nat = Nat→Y}

{Y = Nat→Y} {} (the empty set of constraints) �

22.4.4 Definition: The unification algorithm for types is defined in Figure 22-2.2

The phrase “let {S = T}∪C′ = C” in the second line should be read as “choose

a constraint S=T from the set C and let C′ denote the remaining constraints

from C .” �

The side conditions X ∉ FV(T) in the fifth line and X ∉ FV(S) in the seventh

are known as the occur check. Their effect is to prevent the algorithm from

generating a solution involving a cyclic substitution like X , X→X, which

2. Note that nothing in this algorithm depends on the fact that we are unifying type expres-

sions as opposed to some other sort of expressions; the same algorithm can be used to solve

equality constraints between any kind of (first-order) expressions.

328 22 Type Reconstruction

makes no sense if we are talking about finite type expressions. (If we expand

our language to include infinite type expressions—i.e. recursive types in the

sense of Chapters 20 and 21—then the occur check can be omitted.)

22.4.5 Theorem: The algorithm unify always terminates, failing when given a non-

unifiable constraint set as input and otherwise returning a principal unifier.

More formally:

1. unify(C) halts, either by failing or by returning a substitution, for all C ;

2. if unify(C) = σ , then σ is a unifier for C ;

3. if δ is a unifier for C , then unify(C) = σ with σ v δ. �

Proof: For part (1), define the degree of a constraint set C to be the pair

(m,n), where m is the number of distinct type variables in C and n is the

total size of the types in C . It is easy to check that each clause of the unify

algorithm either terminates immediately (with success in the first case or

failure in the last) or else makes a recursive call to unify with a constraint set

of lexicographically smaller degree.

Part (2) is a straightforward induction on the number of recursive calls

in the computation of unify(C). All the cases are trivial except for the two

involving variables, which depend on the observation that, if σ unifies [X ,

T]D, then σ ◦ [X, T] unifies {X = T} ∪D for any constraint set D.

Part (3) again proceeds by induction on the number of recursive calls in the

computation of unify(C). If C is empty, then unify(C) immediately returns

the trivial substitution []; since δ = δ ◦ [], we have [] v δ as required. If C is

non-empty, then unify(C) chooses some pair (S,T) from C and continues by

cases on the shapes of S and T.

Case: S = T

Since δ is a unifier for C , it also unifies C′. By the induction hypothesis,

unify(C) = σ with σ v δ, as required.

Case: S = X and X ∉ FV(T)

Since δ unifies S and T, we have δ(X) = δ(T). So, for any type U, we have

δ(U) = δ([X , T]U); in particular, since δ unifies C′, it must also unify [X ,

T]C′. The induction hypothesis then tells us that unify([X , T]C′) = σ ′,

with δ = γ ◦ σ ′ for some γ. Since unify(C) = σ ′ ◦ [X , T], showing that

δ = γ ◦ (σ ′ ◦ [X , T]) will complete the argument. So consider any type

variable Y. If Y ≠ X, then clearly (γ ◦ (σ ′ ◦ [X , T]))Y = (γ ◦ σ ′)Y = δY. On

the other hand, (γ ◦ (σ ′ ◦ [X , T]))X = (γ ◦ σ ′)T = δX, as we saw above.

Combining these observations, we see that δY = (γ ◦ (σ ′ ◦ [X , T]))Y for all

variables Y, that is, δ = (γ ◦ (σ ′ ◦ [X, T])).

22.5 Principal Types 329

Case: T = X and X ∉ FV(S)

Similar.

Case: S = S1→S2 and T = T1→T2

Straightforward. Just note that δ is a unifier of {S1→S2 = T1→T2}∪ C
′ iff it is

a unifier of C′ ∪ {S1 = T1, S2 = T2}.

If none of the above cases apply to S and T, then unify(C) fails. But this can

happen in only two ways: either S is Nat and T is an arrow type (or vice versa),

or else S = X and X ∈ T (or vice versa). The first case obviously contradicts the

assumption that C is unifiable. To see that the second does too, recall that,

by assumption, δS = δT; if X occurred in T, then δT would always be strictly

larger than δS. Thus, if unify(C) fails, then C is not unifiable, contradicting

our assumption that δ is a unifier for C ; so this case cannot occur. �

22.4.6 Exercise [Recommended, «««]: Implement the unification algorithm. �

22.5 Principal Types

We remarked above that if there is some way to instantiate the type variables

in a term so that it becomes typable, then there is a most general or principal

way of doing so. We now formalize this observation.

22.5.1 Definition: A principal solution for (Γ ,t,S, C) is a solution (σ ,T) such that,

whenever (σ ′,T′) is also a solution for (Γ ,t,S, C), we have σ v σ ′. When

(σ ,T) is a principal solution, we call T a principal type of t under Γ .3 �

22.5.2 Exercise [« 3]: Find a principal type for λx:X. λy:Y. λz:Z. (x z) (y z). �

22.5.3 Theorem [Principal types]: If (Γ ,t,S, C) has any solution, then it has a prin-

cipal one. The unification algorithm in Figure 22-2 can be used to determine

whether (Γ ,t,S, C) has a solution and, if so, to calculate a principal one. �

Proof: By the definition of a solution for (Γ ,t,S, C) and the properties of

unification. �

22.5.4 Corollary: It is decidable whether (Γ ,t) has a solution. �

Proof: By Corollary 22.3.8 and Theorem 22.5.3. �

3. Principal types should not be confused with principal typings. See page 337.

330 22 Type Reconstruction

22.5.5 Exercise [Recommended, ««« 3]: Combine the constraint generation and

unification algorithms from Exercises 22.3.10 and 22.4.6 to build a type-

checker that calculates principal types, taking the reconbase checker as a

starting point. A typical interaction with your typechecker might look like:

λx:X. x;

ñ <fun> : X → X

λz:ZZ. λy:YY. z (y true);

ñ <fun> : (?X0→?X1) → (Bool→?X0) → ?X1

λw:W. if true then false else w false;

ñ <fun> : (Bool→Bool) → Bool

Type variables with names like ?X0 are automatically generated. �

22.5.6 Exercise [«««]: What difficulties arise in extending the definitions above

(22.3.2, etc.) to deal with records? How might they be addressed? �

The idea of principal types can be used to build a type reconstruction algo-

rithm that works more incrementally than the one we have developed here.

Instead of generating all the constraints first and then trying to solve them,

we can interleave generation and solving, so that the type reconstruction al-

gorithm actually returns a principal type at each step. The fact that the types

are always principal ensures that the algorithm never needs to re-analyze a

subterm: it makes only the minimum commitments needed to achieve typa-

bility at each step. One major advantage of such an algorithm is that it can

pinpoint errors in the user’s program much more precisely.

22.5.7 Exercise [««« 3]: Modify your solution to Exercise 22.5.5 so that it per-

forms unification incrementally and returns principal types. �

22.6 Implicit Type Annotations

Languages supporting type reconstruction typically allow programmers to

completely omit type annotations on lambda-abstractions. One way to achieve

this (as we remarked in §22.2) is simply to make the parser fill in omitted an-

notations with freshly generated type variables. A better alternative is to add

un-annotated abstractions to the syntax of terms and a corresponding rule to

the constraint typing relation.

22.7 Let-Polymorphism 331

X ∉ X Γ , x:X ` t1 : T |X C

Γ ` λx.t1 : X→T |X∪{X} C
(CT-AbsInf)

This account of un-annotated abstractions is a bit more direct than regarding

them as syntactic sugar. It is also more expressive, in a small but useful way:

if we make several copies of an un-annotated abstraction, the CT-AbsInf rule

will allow us to choose a different variable as the argument type of each copy.

By contrast, if we regard a bare abstraction as being annotated with an invis-

ible type variable, then making copies will yield several expressions sharing

the same argument type. This difference is important for the discussion of

let-polymorphism in the following section.

22.7 Let-Polymorphism

The term polymorphism refers to a range of language mechanisms that allow

a single part of a program to be used with different types in different contexts

(§23.2 discusses several varieties of polymorphism in more detail). The type

reconstruction algorithm shown above can be generalized to provide a simple

form of polymorphism known as let-polymorphism (also ML-style or Damas-

Milner polymorphism). This feature was introduced in the original dialect

of ML (Milner, 1978) and has been incorporated in a number of successful

language designs, where it forms the basis of powerful generic libraries of

commonly used structures (lists, arrays, trees, hash tables, streams, user-

interface widgets, etc.).

The motivation for let-polymorphism arises from examples like the follow-

ing. Suppose we define and use a simple function double, which applies its

first argument twice in succession to its second:

let double = λf:Nat→Nat. λa:Nat. f(f(a)) in

double (λx:Nat. succ (succ x)) 2;

Because we want to apply double to a function of type Nat→Nat, we choose

type annotations that give it type (Nat→Nat)→(Nat→Nat). We can alterna-

tively define double so that it can be used to double a boolean function:

let double = λf:Bool→Bool. λa:Bool. f(f(a)) in

double (λx:Bool. x) false;

What we cannot do is use the same double function with both booleans and

numbers: if we need both in the same program, we must define two versions

that are identical except for type annotations.

let doubleNat = λf:Nat→Nat. λa:Nat. f(f(a)) in

let doubleBool = λf:Bool→Bool. λa:Bool. f(f(a)) in

332 22 Type Reconstruction

let a = doubleNat (λx:Nat. succ (succ x)) 1 in

let b = doubleBool (λx:Bool. x) false in ...

Even annotating the abstractions in double with a type variable

let double = λf:X→X. λa:X. f(f(a)) in ...

does not help. For example, if we write

let double = λf:X→X. λa:X. f(f(a)) in

let a = double (λx:Nat. succ (succ x)) 1 in

let b = double (λx:Bool. x) false in ...

then the use of double in the definition of a generates the constraint X→X =

Nat→Nat, while the use of double in the definition of b generates the con-

straint X→X = Bool→Bool. These constraints place unsatisfiable demands on

X, making the whole program untypable.

What went wrong here? The variable X plays two distinct roles in the exam-

ple. First, it captures the constraint that the first argument to double in the

calculation of a must be a function whose domain and range types are the

same as the type (Nat) of the other argument to double. Second, it captures

the constraint that the arguments to double in the calculation of b must be

similarly related. Unfortunately, because the same variable X is used in both

cases, we also end up with the spurious constraint that the second arguments

to the two uses of double must have the same type.

What we’d like is to break this last connection—i.e., to associate a different

variable X with each use of double. Fortunately, this is easily accomplished.

The first step is to change the ordinary typing rule for let so that, instead of

calculating a type for the right-hand side t1 and then using this as the type

of the bound variable x while calculating a type for the body t2,

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T-Let)

it instead substitutes t1 for x in the body, and then typechecks this expanded

expression:

Γ ` [x, t1]t2 : T2

Γ ` let x=t1 in t2 : T2

(T-LetPoly)

We write a constraint-typing rule for let in a similar way:

Γ ` [x, t1]t2 : T2 |X C

Γ ` let x=t1 in t2 : T2 |X C
(CT-LetPoly)

In essence, what we’ve done is to change the typing rules for let so that they

perform a step of evaluation

let x=v1 in t2 -→ [x, v1]t2 (E-LetV)

22.7 Let-Polymorphism 333

before calculating types.

The second step is to rewrite the definition of double using the implicitly

annotated lambda-abstractions from §22.6.

let double = λf. λa. f(f(a)) in

let a = double (λx:Nat. succ (succ x)) 1 in

let b = double (λx:Bool. x) false in ...

The combination of the constraint typing rules for let (CT-LetPoly) and the

implicitly annotated lambda-abstraction (CT-AbsInf) gives us exactly what

we need: CT-LetPoly makes two copies of the definition of double, and

Ct-AbsInf assigns each of the abstractions a different type variable. The or-

dinary process of constraint solving does the rest.

However, this scheme has some flaws that need to be addressed before we

can use it in practice. One obvious one is that, if we don’t happen to actually

use the let-bound variable in the body of the let, then the definition will

never actually be typechecked. For example, a program like

let x = <utter garbage> in 5

will pass the typechecker. This can be repaired by adding a premise to the

typing rule

Γ ` [x, t1]t2 : T2 Γ ` t1 : T1

Γ ` let x=t1 in t2 : T2

(T-LetPoly)

and a corresponding premise to CT-LetPoly, ensuring that t1 is well typed.

A related problem is that, if the body of the let contains many occur-

rences of the let-bound variable, then the whole right-hand side of the let-

definition will be checked once per occurrence, whether or not it contains any

implicitly annotated lambda-abstractions. Since the right-hand side itself can

contain let-bindings, this typing rule can cause the typechecker to perform

an amount of work that is exponential in the size of the original term!

To avoid this re-typechecking, practical implementations of languages with

let-polymorphism actually use a more clever (though formally equivalent)

re-formulation of the typing rules. In outline, the typechecking of a term

let x=t1 in t2 in a context Γ proceeds as follows:

1. We use the constraint typing rules to calculate a type S1 and a set C1 of

associated constraints for the right-hand side t1.

2. We use unification to find a most general solution σ to the constraints C1

and apply σ to S1 (and Γ) to obtain t1’s principal type T1.

3. We generalize any variables remaining in T1. If X1. . .Xn are the remaining

variables, we write ∀X1...Xn.T1 for the principal type scheme of t1.

334 22 Type Reconstruction

One caveat is here that we need to be careful not to generalize variables

T1 that are also mentioned in Γ , since these correspond to real constraints

between t1 and its environment. For example, in

λf:X→X. λx:X. let g=f in g(x);

we should not generalize the variable X in the type X→X of g, since doing

so would allow us to type wrong programs like this one:

(λf:X→X. λx:X. let g=f in g(0))

(λx:Bool. if x then true else false)

true;

4. We extend the context to record the type scheme ∀X1...Xn.T1 for the

bound variable x, and start typechecking the body t2. In general, the con-

text now associates each free variable with a type scheme, not just a type.

5. Each time we encounter an occurrence of x in t2, we look up its type

scheme ∀X1...Xn.T1. We now generate fresh type variables Y1...Yn and

use them to instantiate the type scheme, yielding [X1 , Y1, . . . , Xn ,

Yn]T1, which we use as the type of x.4

This algorithm is much more efficient than the simplistic approach of sub-

stituting away let expressions before typechecking. Indeed, decades of ex-

perience have shown that in practice it appears “essentially linear” in the size

of the input program. It therefore came as a significant surprise when Kfoury,

Tiuryn, and Urzyczyn (1990) and independently Mairson (1990) showed that

its worst-case complexity is still exponential! The example they constructed

involves using deeply nested sequences of lets in the right-hand sides of

other lets—rather than in their bodies, where nesting of lets is common—

to build expressions whose types grow exponentially larger than the expres-

sions themselves. For example, the following OCaml program, due to Mairson

(1990), is well typed but takes a very long time to typecheck.

let f0 = fun x → (x,x) in

let f1 = fun y → f0(f0 y) in

let f2 = fun y → f1(f1 y) in

let f3 = fun y → f2(f2 y) in

let f4 = fun y → f3(f3 y) in

let f5 = fun y → f4(f4 y) in

f5 (fun z → z)

4. The difference between a lambda-abstraction that is explicitly annotated with a type vari-

able and an un-annotated abstraction for which the constraint generation algorithm creates

a variable becomes moot once we introduce generalization and instantiation. Either way, the

right-hand side of a let is assigned a type involving a variable, which is generalized before

being added to the context and replaced by a fresh variable every time it is instantiated.

22.7 Let-Polymorphism 335

To see why, try entering f0, f1, etc., one at a time, into the OCaml top-level.

See Kfoury, Tiuryn, and Urzyczyn (1994) for further discussion.

A final point worth mentioning is that, in designing full-blown program-

ming languages with let-polymorphism, we need to be a bit careful of the in-

teraction of polymorphism and side-effecting features such as mutable stor-

age cells. A simple example illustrates the danger:

let r = ref (λx. x) in

(r:=(λx:Nat. succ x); (!r)true);

Using the algorithm sketched above, we calculate Ref(X→X) as the principal

type of the right-hand side of the let; since X appears nowhere else, this

type can be generalized to ∀X.Ref(X→X), and we assign this type scheme to

r when we add it to the context. When typechecking the assignment in the

second line, we instantiate this type to Ref(Nat→Nat). When typechecking

the third line, we instantiate it to Ref(Bool→Bool). But this is unsound,

since when the term is evaluated it will end up applying succ to true.

The problem here is that the typing rules have gotten out of sync with

the evaluation rules. The typing rules introduced in this section tell us that,

when we see a let expression, we should immediately substitute the right-

hand side into the body. But the evaluation rules tell us that we may perform

this substitution only after the right-hand side has been reduced to a value.

The typing rules see two uses of the ref constructor, and analyze them under

different assumptions, but at run time only one ref is actually allocated.

We can correct this mismatch in two ways—by adjusting evaluation or typ-

ing. In the former case, the evaluation rule for let would become5

let x=t1 in t2 -→ [x, t1]t2 (E-Let)

Under this strategy, the first step in evaluating our dangerous example from

above would replace r by its definition, yielding

(ref (λx. x)) := (λx:Nat. succ x) in

(!(ref (λx. x))) true;

which is perfectly safe! The first line creates a reference cell initially contain-

ing the identity function, and stores (λx:Nat. succ x) into it. The second

creates another reference containing the identity, extracts its contents, and

applies it to true. However, this calculation also demonstrates that changing

the evaluation rule to fit the typing rule gives us a language with a rather

5. Strictly speaking, we should annotate this rule with a store, as we did in Chapter 13, since

we are talking about a language with references:

let x=t1 in t2 | µ -→ [x, t1]t2 | µ (E-Let)

336 22 Type Reconstruction

strange semantics that no longer matches standard intuitions about call-by-

value evaluation order. (Imperative languages with non-CBV evaluation strate-

gies are not unheard-of [Augustsson, 1984], but they have never become pop-

ular because of the difficulty of understanding and controlling the ordering

of side effects at run time.)

It is better to change the typing rule to match the evaluation rule. Fortu-

nately, this is easy: we just impose the restriction (often called the value re-

striction) that a let-binding can be treated polymorphically—i.e., its free type

variables can be generalized—only if its right-hand side is a syntactic value.

This means that, in the dangerous example, the type assigned to r when we

add it to the context will be X→X, not ∀X.X→X. The constraints imposed by

the second line will force X to be Nat, and this will cause the typechecking of

the third line to fail, since Nat cannot be unified with Bool.

The value restriction solves our problem with type safety, at some cost

in expressiveness: we can no longer write programs in which the right-hand

sides of let expressions can both perform some interesting computation

and be assigned a polymorphic type scheme. What is surprising is that this

restriction makes hardly any difference in practice. Wright (1995) settled this

point by analyzing a huge corpus of code written in an ML dialect—the 1990

definition of Standard ML (Milner, Tofte, and Harper, 1990)—that provided

a more flexible let-typing rule based on weak type variables and observing

that all but a tiny handful of right-hand sides were syntactic values anyway.

This observation more or less closed the argument, and all major languages

with ML-style let-polymorphism now adopt the value restriction.

22.7.1 Exercise [««« 3]: Implement the algorithm sketched in this section. �

22.8 Notes

Notions of principal types for the lambda-calculus go back at least to the

work of Curry in the 1950s (Curry and Feys, 1958). An algorithm for calcu-

lating principal types based on Curry’s ideas was given by Hindley (1969);

similar algorithms were discovered independently by Morris (1968) and Mil-

ner (1978). In the world of propositional logic, the ideas go back still fur-

ther, perhaps to Tarski in the 1920s and certainly to the Meredith cousins in

the 1950s (Lemmon, Meredith, Meredith, Prior, and Thomas, 1957); their first

implementation on a computer was by David Meredith in 1957. Additional

historical remarks on principal types can be found in Hindley (1997).

Unification (Robinson, 1971) is fundamental to many areas of computer

science. Thorough introductions can be found, for example, in Baader and

Nipkow (1998), Baader and Siekmann (1994), and Lassez and Plotkin (1991).

22.8 Notes 337

ML-style let-polymorphism was first described by Milner (1978). A num-

ber of type reconstruction algorithms have been proposed, notably the clas-

sic Algorithm W (Damas and Milner) of Damas and Milner (1982; also see

Lee and Yi, 1998). The main difference between Algorithm W and the pre-

sentation in this chapter is that the former is specialized for “pure type

reconstruction”—assigning principal types to completely untyped lambda-

terms—while we have mixed type checking and type reconstruction, permit-

ting terms to include explicit type annotations that may, but need not, contain

variables. This makes our technical presentation a bit more involved (espe-

cially the proof of completeness, Theorem 22.3.7, where we must be careful

to keep the programmer’s type variables separate from the ones introduced

by the constraint generation rules), but it meshes better with the style of the

other chapters.

A classic paper by Cardelli (1987) lays out a number of implementation

issues. Other expositions of type reconstruction algorithms can be found

in Appel (1998), Aho et al. (1986), and Reade (1989). A particularly elegant

presentation of the core system called mini-ML (Clement, Despeyroux, De-

speyroux, and Kahn, 1986) often forms the basis for theoretical discussions.

Tiuryn (1990) surveys a range of type reconstruction problems.

Principal types should not be confused with the similar notion of prin-

cipal typings. The difference is that, when we calculate principal types, the

context Γ and term t are considered as inputs to the algorithm, while the

principal type T is the output. An algorithm for calculating principal typings

takes just t as input and yields both Γ and T as outputs—i.e., it calculates

the minimal assumptions about the types of the free variables in t. Principal

typings are useful in supporting separate compilation and “smartest recompi-

lation,” performing incremental type inference, and pinpointing type errors.

Unfortunately, many languages, in particular ML, have principal types but not

principal typings. See Jim (1996).

ML-style polymorphism, with its striking combination of power and sim-

plicity, hits a “sweet spot” in the language design space; mixing it with other

sophisticated typing features has often proved quite delicate. The biggest

success story in this arena is the elegant account of type reconstruction for

record types proposed by Wand (1987) and further developed by Wand (1988,

1989b), Remy (1989, 1990; 1992a, 1992b, 1998), and many others. The idea

is to introduce a new kind of variable, called a row variable, that ranges not

over types but over entire “rows” of field labels and associated types. A simple

form of equational unification is used solve constraint sets involving row vari-

ables. See Exercise 22.5.6. Garrigue (1994) and others have developed related

methods for variant types. These techniques have been extended to general

notions of type classes (Kaes, 1988; Wadler and Blott, 1989), constraint types

338 22 Type Reconstruction

(Odersky, Sulzmann, and Wehr, 1999), and qualified types (Jones, 1994b,a),

which form the basis of Haskell’s system of type classes (Hall et al., 1996; Hu-

dak et al., 1992; Thompson, 1999); similar ideas appear in Mercury (Somogyi,

Henderson, and Conway, 1996) and Clean (Plasmeijer, 1998).

Type reconstruction for the more powerful form of impredicative poly-

morphism discussed in Chapter 23 was shown to be undecidable by Wells

(1994). Indeed, several forms of partial type reconstruction for this system

also turn out to be undecidable. §23.6 and §23.8 give more information on

these results and on methods for combining ML-style type reconstruction

with stronger forms of polymorphism such as rank-2 polymorphism.

For the combination of subtyping with ML-style type reconstruction, some

promising initial results have been reported (Aiken and Wimmers, 1993; Eifrig,

Smith, and Trifonov, 1995; Jagannathan and Wright, 1995; Trifonov and Smith,

1996; Odersky, Sulzmann, and Wehr, 1999; Flanagan and Felleisen, 1997; Pot-

tier, 1997), but practical checkers have yet to see widespread use.

Extending ML-style type reconstruction to handle recursive types (Chap-

ter 20) has been shown not to pose significant difficulties (Huet, 1975, 1976).

The only significant difference from the algorithms presented in this chapter

appears in the definition of unification, where we omit the occur check (which

ordinarily ensures that the substitution returned by the unification algorithm

is acyclic). Having done this, to ensure termination we also need to modify the

representation used by the unification algorithm so that it maintains sharing,

e.g., using by destructive operations on (potentially cyclic) pointer structures.

Such representations are common in high-performance implementations.

The mixture of type reconstruction with recursively defined terms, on the

other hand, raises one tricky problem, known as polymorphic recursion. A

simple (and unproblematic) typing rule for recursive function definitions in

ML specifies that a recursive function can be used within the body of its def-

inition only monomorphically (i.e., all recursive calls must have identically

typed arguments and results), while occurrences in the rest of the program

may be used polymorphically (with arguments and results of different types).

Mycroft (1984) and Meertens (1983) proposed a polymorphic typing rule for

recursive definitions that allows recursive calls to a recursive function from

its own body to be instantiated with different types. This extension, often

called the Milner-Mycroft Calculus, was shown to have an undecidable recon-

struction problem by Henglein (1993) and independently by Kfoury, Tiuryn,

and Urzyczyn (1993a); both of these proofs depend on the undecidability

of the (unrestricted) semi-unification problem, shown by Kfoury, Tiuryn, and

Urzyczyn (1993b).

23 Universal Types

In the previous chapter, we studied the simple form of let-polymorphism

found in ML. In this chapter, we consider a more general form of polymor-

phism in the setting of a powerful calculus known as System F .

23.1 Motivation

As we remarked in §22.7, we can write an infinite number of “doubling” func-

tions in the simply typed lambda-calculus...

doubleNat = λf:Nat→Nat. λx:Nat. f (f x);

doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x);

doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x);

Each of these functions is applicable to a different type of argument, but all

share precisely the same behavior (indeed, they share precisely the same pro-

gram text, aside from the typing annotations). If we want apply the doubling

operation to different types of arguments within the same program, we will

need to write out separate definitions of doubleT for each T. This kind of

cut-and-paste programming violates a basic dictum of software engineering:

Abstraction principle: Each significant piece of functionality in a

program should be implemented in just one place in the source code.

Where similar functions are carried out by distinct pieces of code, it

is generally beneficial to combine them into one by abstracting out the

varying parts.

The system studied in most of this chapter is pure System F (Figure 23-1); the examples in

§23.4 use various extensions with previously studied features. The associated OCaml im-

plementation is fullpoly. (The examples involving pairs and lists require the fullomega

checker.)

340 23 Universal Types

Here, the varying parts are the types! What we need, then, are facilities for

abstracting out a type from a term and later instantiating this abstract term

with concrete type annotations.

23.2 Varieties of Polymorphism

Type systems that allow a single piece of code to be used with multiple types

are collectively known as polymorphic systems (poly = many, morph = form).

Several varieties of polymorphism can be found in modern languages (this

classification comes from Strachey, 1967, and Cardelli and Wegner, 1985).

Parametric polymorphism, the topic of this chapter, allows a single piece of

code to be typed “generically,” using variables in place of actual types, and

then instantiated with particular types as needed. Parametric definitions

are uniform: all of their instances behave the same.

The most powerful form of parametric polymorphism is the impredica-

tive or first-class polymorphism developed in this chapter. More common

in practice is the form known as ML-style or let-polymorphism, which re-

stricts polymorphism to top-level let-bindings, disallowing functions that

take polymorphic values as arguments, and obtains in return a convenient

and natural form of automatic type reconstruction (Chapter 22). First-class

parametric polymorphism is also becoming popular in programming lan-

guages, and forms the technical foundation for the powerful module sys-

tems of languages like ML (see Harper and Stone, 2000).

Ad-hoc polymorphism, by contrast, allows a polymorphic value to exhibit

different behaviors when “viewed” at different types. The most common

example of ad-hoc polymorphism is overloading, which associates a single

function symbol with many implementations; the compiler (or the run-

time system, depending on whether overloading resolution is static or dy-

namic) chooses an appropriate implementation for each application of the

function, based on the types of the arguments.

A generalization of function overloading forms the basis for multi-method

dispatch in languages such as CLOS (Bobrow et al., 1988; Kiczales et al.,

1991) and Cecil (Chambers, 1992; Chambers and Leavens, 1994). This mech-

anism has been formalized in the λ-& calculus of Castagna, Ghelli, and

Longo (1995; cf. Castagna, 1997).

A more powerful form of ad-hoc polymorphism known as intensional poly-

morphism (Harper and Morrisett, 1995; Crary, Weirich, and Morrisett, 1998)

permits restricted computation over types at run time. Intensional poly-

morphism is an enabling technology for a variety of advanced implemen-

23.3 System F 341

tation techniques for polymorphic languages, including tag-free garbage

collection, “unboxed” function arguments, polymorphic marshaling, and

space-efficient “flattened” data structures.

Yet more powerful forms of ad-hoc polymorphism can be built from a

typecase primitive, which permits arbitrary pattern-matching on type in-

formation at run time (Abadi, Cardelli, Pierce, and Rémy, 1995; Abadi,

Cardelli, Pierce, and Plotkin, 1991b; Henglein, 1994; Leroy and Mauny,

1991; Thatte, 1990). Language features such as Java’s instanceof test

can be viewed as restricted forms of typecase.

The subtype polymorphism of Chapter 15 gives a single term many types

using the rule of subsumption, allowing us to selectively “forget” informa-

tion about the term’s behavior.

These categories are not exclusive: different forms of polymorphism can be

mixed in the same language. For example, Standard ML offers both parametric

polymorphism and simple overloading of built-in arithmetic operations, but

not subtyping, while Java includes subtyping, overloading, and simple ad-hoc

polymorphism (instanceof), but not (at the time of this writing) parametric

polymorphism. There are several proposals for adding parametric polymor-

phism to Java; the best known of these is GJ (Bracha, Odersky, Stoutamire,

and Wadler, 1998).

The unqualified term “polymorphism” causes a certain amount of confu-

sion between programming language communities. Among functional pro-

gramers (i.e., those who use or design languages like ML, Haskell, etc.), it al-

most always refers to parametric polymorphism. Among object-oriented pro-

grammers, on the other hand, it almost always means subtype polymorphism,

while the term genericity (or generics) is used for parametric polymorphism.

23.3 System F

The system we will be studying in this chapter, commonly called System F ,

was first discovered by Jean-Yves Girard (1972), in the context of proof theory

in logic. A little later, a type system with essentially the same power was de-

veloped, independently, by a computer scientist, John Reynolds (1974), who

called it the polymorphic lambda-calculus. This system has been used ex-

tensively as a research vehicle for foundational work on polymorphism and

as the basis for numerous programming language designs. It is also some-

times called the second-order lambda-calculus, because it corresponds, via

the Curry-Howard correspondence, to second-order intuitionistic logic, which

allows quantification not only over individuals [terms], but also over predi-

cates [types].

342 23 Universal Types

The definition of System F is a straightforward extension of λ→, the simply

typed lambda-calculus. In λ→, lambda-abstraction is used to abstract terms

out of terms, and application is used to supply values for the abstracted

parts. Since we want here a mechanism for abstracting types out of terms and

filling them in later, we introduce a new form of abstraction, written λX.t,

whose parameter is a type, and a new form of application, t [T], in which the

argument is a type expression. We call our new abstractions type abstractions

and the new application construct type application or instantiation.

When, during evaluation, a type abstraction meets a type application, the

pair forms a redex, just as in λ→. We add a reduction rule

(λX.t12) [T2] -→ [X, T2]t12 (E-TappTabs)

analogous to the ordinary reduction rule for abstractions and applications.

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

For example, when the polymorphic identity function

id = λX. λx:X. x;

is applied to Nat by writing id [Nat], the result is [X , Nat](λx:X.x), i.e.,

λx:Nat.x, the identity function on natural numbers.

Finally, we need to specify the type of a polymorphic abstraction. We use

types like Nat→Nat for classifying ordinary functions like λx:Nat.x; we now

need a different form of “arrow type” whose domain is a type, for classifying

polymorphic functions like id. Notice that, for each argument T to which it

is applied, id yields a function of type T→T; that is, the type of the result

of id depends on the actual type that we pass it as argument. To capture

this dependency, we write the type of id as ∀X.X→X. The typing rules for

polymorphic abstraction and application are analogous to the rules for term-

level abstraction and application.

Γ , X ` t2 : T2

Γ ` λX.t2 : ∀X.T2

(T-TAbs)

Γ ` t1 : ∀X.T12

Γ ` t1 [T2] : [X, T2]T12

(T-TApp)

Note that we include the type variable X in the context used by the subderiva-

tion for t. We continue the convention (5.3.4) that the names of (term or type)

variables should be chosen so as to be different from all the names already

bound by Γ , and that lambda-bound type variables may be renamed at will

in order to satisfy this condition. (In some presentations of System F, this

freshness condition is given as an explicit side condition on the T-TAbs rule,

instead of being built into the rules about how contexts are constructed, as

we are doing here.) For the moment, the only role of type variables in contexts

23.3 System F 343

→∀ Based on λ→ (9-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

λX.t type abstraction

t [T] type application

v ::= values:

λx:T.t abstraction value

λX.t type abstraction value

T ::= types:

X type variable

T→T type of functions

∀X.T universal type

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X type variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

t1 -→ t′1

t1 [T2] -→ t′1 [T2]
(E-TApp)

(λX.t12) [T2] -→ [X, T2]t12 (E-TappTabs)

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ , X ` t2 : T2

Γ ` λX.t2 : ∀X.T2

(T-TAbs)

Γ ` t1 : ∀X.T12

Γ ` t1 [T2] : [X, T2]T12

(T-TApp)

Figure 23-1: Polymorphic lambda-calculus (System F)

is to keep track of scopes and make sure that the same type variable is not

added twice to a context. In later chapters, we will annotate type variables

with information of various kinds, such as bounds (Chapter 26) and kinds

(Chapter 29).

Figure 23-1 shows the complete definition of the polymorphic lambda-

calculus, with differences from λ→ highlighted. As usual, this summary de-

fines just the pure calculus, omitting other type constructors such as records,

344 23 Universal Types

base types such as Nat and Bool, and term-language extensions such as let

and fix. These extra constructs can be added straightforwardly to the pure

system, and we will use them freely in the examples that follow.

23.4 Examples

We now develop several examples of programming with polymorphism. To

warm up, we start with a few small but increasingly tricky examples, showing

some of the expressive power of System F. We then review the basic ideas

of “ordinary” polymorphic programming with lists, trees, etc. The last two

subsections introduce typed versions of the Church encodings of simple al-

gebraic datatypes like booleans, numbers, and lists that we saw in Chapter 5

for the untyped lambda-calculus. Although these encodings are of small prac-

tical importance—it is easier to compile good code for these important fea-

tures if they are built into high-level programming languages as primitives—

they make excellent exercises for understanding both the intricacies and the

power of System F. In Chapter 24, we will see some additional applications

of polymorphism in the domain of modular programming and abstract data

types.

Warm-ups

We have seen already how type abstraction and application can be used to

define a single polymorphic identity function

id = λX. λx:X. x;

ñ id : ∀X. X → X

and instantiate it to yield any concrete identity function that may be required:

id [Nat];

ñ <fun> : Nat → Nat

id [Nat] 0;

ñ 0 : Nat

A more useful example is the polymorphic doubling function:

double = λX. λf:X→X. λa:X. f (f a);

ñ double : ∀X. (X→X) → X → X

23.4 Examples 345

The abstraction on the type X allows us to obtain doubling functions for spe-

cific types by instantiating double with different type arguments:

doubleNat = double [Nat];

ñ doubleNat : (Nat→Nat) → Nat → Nat

doubleNatArrowNat = double [Nat→Nat];

ñ doubleNatArrowNat : ((Nat→Nat)→Nat→Nat) →

(Nat→Nat) → Nat → Nat

Once instantiated with a type argument, double can be further applied to an

actual function and argument of appropriate types:

double [Nat] (λx:Nat. succ(succ(x))) 3;

ñ 7 : Nat

Here is a slightly trickier example: polymorphic self-application. Recall that,

in the simply typed lambda-calculus, there is no way to type the untyped term

λx. x x (Exercise 9.3.2). In System F, on the other hand, this term becomes

typable if we give x a polymorphic type and instantiate it appropriately:

selfApp = λx:∀X.X→X. x [∀X.X→X] x;

ñ selfApp : (∀X. X→X) → (∀X. X → X)

As a (slightly) more useful example of self application, we can apply the poly-

morphic double function to itself, yielding a polymorphic quadrupling func-

tion:

quadruple = λX. double [X→X] (double [X]);

ñ quadruple : ∀X. (X→X) → X → X

23.4.1 Exercise [« 3]: Using the typing rules in Figure 23-1, convince yourself that

the terms above have the types given. �

Polymorphic Lists

Most real-world programming with polymorphism is much more pedestrian

than the tricky examples above. As an example of straightforward polymor-

phic programming, suppose our programming language is equipped with a

type constructor List and term constructors for the usual list manipulation

primitives, with the following types.

346 23 Universal Types

ñ nil : ∀X. List X

cons : ∀X. X → List X → List X

isnil : ∀X. List X → Bool

head : ∀X. List X → X

tail : ∀X. List X → List X

When we first introduced lists in §11.12, we used “custom” inference rules to

allow the operations to be applied to lists with elements of any type. Here,

we can give the operations polymorphic types expressing exactly the same

constraints—that is, lists no longer need to be “baked into” the core lan-

guage, but can simply be considered as a library providing several constants

with particular polymorphic types. The same holds for the Ref type and the

primitive operations on reference cells in Chapter 13, and many other com-

mon data and control structures.

We can use these primitives to define our own polymorphic operations on

lists. For example, here is a polymorphic map function that takes a function

from X to Y and a list of Xs and returns a list of Ys.

map = λX. λY.

λf: X→Y.

(fix (λm: (List X) → (List Y).

λl: List X.

if isnil [X] l

then nil [Y]

else cons [Y] (f (head [X] l))

(m (tail [X] l))));
ñ map : ∀X. ∀Y. (X→Y) → List X → List Y

l = cons [Nat] 4 (cons [Nat] 3 (cons [Nat] 2 (nil [Nat])));

ñ l : List Nat

head [Nat] (map [Nat] [Nat] (λx:Nat. succ x) l);

ñ 5 : Nat

23.4.2 Exercise [« 3]: Convince yourself that map really has the type shown. �

23.4.3 Exercise [Recommended, ««]: Using map as a model, write a polymorphic

list-reversing function:

reverse : ∀X. List X → List X.

This exercise is best done on-line. Use the fullomega checker and copy the

contents of the file test.f from the fullomega directory to the top of your

own input file. (The file contains definitions of the List constructor and as-

sociated operations that require the powerful abstraction facilities of System

Fω, discussed in Chapter 29. You do not need to understand exactly how they

work to proceed with the present exercise.) �

23.4 Examples 347

23.4.4 Exercise [«« 3]: Write a simple polymorphic sorting function

sort : ∀X. (X→X→Bool) → (List X) → List X

where the first argument is a comparison function for elements of type X. �

Church Encodings

We saw in §5.2 that a variety of primitive data values such as booleans,

numbers, and lists can be encoded as functions in the pure untyped lambda-

calculus. In this section, we show how these Church encodings can also be

carried out in System F. Readers may want to refer to §5.2 to refresh their

intuitions about Church encodings.

These encodings are interesting for two reasons. First, they give our under-

standing of type abstraction and application a good workout. Second, they

demonstrate that System F, like the pure untyped lambda-calculus, is compu-

tationally a very rich language, in the sense that the pure system can express

a large range of data and control structures. This means that, if we later de-

sign a full-scale programming language with System F as its core, we can add

these features as primitives (for efficiency, and so that we can equip them

with more convenient concrete syntax) without disturbing the fundamental

properties of the core language. This will not be true of all interesting high-

level language features, of course. For example, adding references to System

F, as we did for λ→in Chapter 13, represents a real change in the fundamental

computational nature of the system.

Let us begin with the Church booleans. Recall that, in the untyped lambda-

calculus, we represented the boolean constants true and false by lambda-

terms tru and fls defined like this:

tru = λt. λf. t;

fls = λt. λf. f;

Each of these terms takes two arguments and returns one of them. If we want

to assign a common type to tru and fls, we had better assume that the two

arguments have the same type (since the caller will not know whether it is

interacting with tru or fls), but this type may be arbitrary (since tru and

fls do not need to do anything with their arguments except return one of

them). This leads us to the following type for tru and fls.

CBool = ∀X.X→X→X;

The System-F terms tru and fls are obtained by adding appropriate type

annotations to the untyped versions above.

348 23 Universal Types

tru = λX. λt:X. λf:X. t;

ñ tru : CBool

fls = λX. λt:X. λf:X. f;

ñ fls : CBool

We can write common boolean operations like not by constructing a new

boolean that uses an existing one to decide which of its arguments to return:

not = λb:CBool. λX. λt:X. λf:X. b [X] f t;

ñ not : CBool → CBool

23.4.5 Exercise [Recommended, «]: Write a term and that takes two arguments of

type CBool and computes their conjunction. �

We can play a similar game with numbers. The Church numerals introduced

in §5.2 encode each natural number n as a function that take two arguments

s and z and applies s to z, n times:

c0 = λs. λz. z;

c1 = λs. λz. s z;

c2 = λs. λz. s (s z);

c3 = λs. λz. s (s (s z));

Clearly, the z argument should have the same type as the domain of s, and

the result returned by s should again have the same type. This leads us to the

following type for Church numerals in System F:

CNat = ∀X. (X→X) → X → X;

The elements of this type are obtained by adding appropriate annotations to

the untyped Church numerals:

c0 = λX. λs:X→X. λz:X. z;

ñ c0 : CNat

c1 = λX. λs:X→X. λz:X. s z;

ñ c1 : CNat

c2 = λX. λs:X→X. λz:X. s (s z);

ñ c2 : CNat

A typed successor function on Church numerals can be defined as follows.

23.4 Examples 349

csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z);

ñ csucc : CNat → CNat

That is, csucc n returns an element of CNat that, given s and z, applies s to

z, n times (by applying n to s and z), and then once more. Other arithmetic

operations can be defined similarly. For example, addition can be defined

either in terms of successor,

cplus = λm:CNat. λn:CNat. m [CNat] csucc n;

ñ cplus : CNat → CNat → CNat

or more directly:

cplus = λm:CNat. λn:CNat. λX. λs:X→X. λz:X. m [X] s (n [X] s z);

ñ cplus : CNat → CNat → CNat

If our language also includes primitive numbers (Figure 8-2), then we can

convert from Church numerals to ordinary ones using the following function:

cnat2nat = λm:CNat. m [Nat] (λx:Nat. succ(x)) 0;

ñ cnat2nat : CNat → Nat

This allows us to verify that our operations on Church numerals actually

compute the desired arithmetic functions:

cnat2nat (cplus (csucc c0) (csucc (csucc c0)));

ñ 3 : Nat

23.4.6 Exercise [Recommended, ««]: Write a function iszero that will return tru

when applied to the Church numeral c0 and fls otherwise. �

23.4.7 Exercise [«« 3]: Verify that the terms

ctimes = λm:CNat. λn:CNat. λX. λs:X→X. n [X] (m [X] s);

ñ ctimes : CNat → CNat → CNat

cexp = λm:CNat. λn:CNat. λX. n [X→X] (m [X]);

ñ cexp : CNat → CNat → CNat

have the indicated types. Give an informal argument that they implement the

arithmetic multiplication and exponentiation operators. �

23.4.8 Exercise [Recommended, ««]: Show that the type

350 23 Universal Types

PairNat = ∀X. (CNat→CNat→X) → X;

can be used to represent pairs of numbers, by writing functions

pairNat : CNat→CNat→PairNat;

fstNat : PairNat→CNat;

sndNat : PairNat→CNat;

for constructing elements of this type from pairs of numbers and for access-

ing their first and second components. �

23.4.9 Exercise [Recommended, «««]: Use the functions defined in Exercise 23.4.8

to write a function pred that computes the predecessor of a Church numeral

(returning 0 if its input is 0). Hint: the key idea is developed in the example

in §5.2. Define a function f : PairNat→PairNat that maps the pair (i, j)

into (i + 1, i)—that is, it throws away the second component of its argument,

copies the first component to the second, and increments the first. Then n

applications of f to the starting pair (0,0) yields the pair (n,n − 1), from

which we extract the predecessor of n by projecting the second component. �

23.4.10 Exercise [«««]: There is another way of computing the predecessor function

on Church numerals. Let k stand for the untyped lambda-term λx. λy. x and

i for λx. x. The untyped lambda-term

vpred = λn. λs. λz. n (λp. λq. q (p s)) (k z) i

(from Barendregt, 1992, who attributes it to J. Velmans) computes the pre-

decessor of an untyped Church numeral. Show that this term can be typed

in System F by adding type abstractions and applications as necessary and

annotating the bound variables in the untyped term with appropriate types.

For extra credit, explain why it works! �

Encoding Lists

As a final example, let us extend the Church encodings of numbers to lists.

This is a nice demonstration of the expressive power of pure System F, since it

shows that all of the programming examples in the subsection above on poly-

morphic list manipulation can actually be expressed in the pure language.

(For convenience, we do use the fix construct for defining general recursive

functions, but essentially the same constructions can be carried out without

it. See Exercises 23.4.11 and 23.4.12.)

We saw in Exercise 5.2.8 that lists can be encoded in the untyped lambda-

calculus in a fashion quite similar to the encoding of natural numbers. In

effect, a number in unary notation is like a list of dummy elements. Gen-

eralizing this idea to elements of any type, we arrive at a Church encoding

23.4 Examples 351

for lists, where a list with elements x, y, and z is represented as a function

that, given any function f and starting value v, calculates f x (f y (f z v)).

In OCaml terminology, a list is represented as its own fold_right function.

The type List X of lists with elements of type X is defined as follows:

List X = ∀R. (X→R→R) → R → R;

The nil value for this representation of lists easy to write.1

nil = λX. (λR. λc:X→R→R. λn:R. n) as List X;

ñ nil : ∀X. List X

The cons and isnil operations are also easy:

cons = λX. λhd:X. λtl:List X.

(λR. λc:X→R→R. λn:R. c hd (tl [R] c n)) as List X;

ñ cons : ∀X. X → List X → List X

isnil = λX. λl:List X. l [Bool] (λhd:X. λtl:Bool. false) true;

ñ isnil : ∀X. List X → Bool

For the head operation, we need to work a little harder. The first difficulty

is what to do about head of the empty list. We can address this by recalling

that, if we have a general fixed point operator in the language, we can use it

to construct an expression of any type. In fact, using type abstraction, we can

go further and write a single, uniform function that, given a type X, yields a

function from Unit to X that diverges when applied to unit.

diverge = λX. λ_:Unit. fix (λx:X. x);

ñ diverge : ∀X. Unit → X

Now we can use diverge [X] unit as the “result” of head [X] nil.

head = λX. λl:List X. l [X] (λhd:X. λtl:X. hd) (diverge [X] unit);

ñ head : ∀X. List X → X

Unfortunately, this definition is not yet quite what we want: it will always

diverge, even when applied to non-empty lists. To get the right behavior, we

need to reorganize it a little so that diverge[X] is not actually passed its

Unit argument when it is supplied as an argument to l. This is accomplished

by removing the unit argument and changing the type of the first argument

to l correspondingly:

1. The as annotation here helps the typechecker print the type of nil in a readable form.

As we saw in §11.4, all the typecheckers used in this book perform a simple abbreviation-

collapsing step before printing types, but the collapsing function is not smart enough to deal

automatically with “parametric abbreviations” like List.

352 23 Universal Types

head =

λX. λl:List X.

(l [Unit→X] (λhd:X. λtl:Unit→X. λ_:Unit. hd) (diverge [X]))

unit;

ñ head : ∀X. List X → X

That is, l is applied to a function of type X→(Unit→X)→(Unit→X) and a

base value of type Unit→X, and it constructs a function of type Unit→X. In

the case where l represents the empty list, this result will be diverge[X];

but in the case where l represents a non-empty list, the result will be a func-

tion that takes unit and returns the head element of l. The result from l

is applied to unit at the end to get the actual head element (or, if we are

unlucky, diverge), so that head has the type we expect.

For the tail function, we use the abbreviation Pair X Y (generalizing the

PairNat type from Exercise 23.4.8) for the Church encoding of pairs with

first component of type X and second component of type Y:

Pair X Y = ∀R. (X→Y→R) → R;

The operations on pairs are simple generalizations of the operations on the

type PairNat above:

ñ pair : ∀X. ∀Y. X → Y → Pair X Y

fst : ∀X. ∀Y. Pair X Y → X

snd : ∀X. ∀Y. Pair X Y → Y

Now the tail function can be written like this:

tail =

λX. λl: List X.

(fst [List X] [List X] (

l [Pair (List X) (List X)]

(λhd: X. λtl: Pair (List X) (List X).

pair [List X] [List X]

(snd [List X] [List X] tl)

(cons [X] hd (snd [List X] [List X] tl)))

(pair [List X] [List X] (nil [X]) (nil [X]))));

ñ tail : ∀X. List X → List X

23.4.11 Exercise [««]: Strictly speaking, the examples in this subsection have not

been expressed in pure System F, since we used the fix operator to con-

struct a value to be “returned” when head is applied to an empty list. Write

an alternative version of head that takes an extra parameter to be returned

(instead of diverging) when the list is empty. �

23.5 Basic Properties 353

23.4.12 Exercise [Recommended, «««]: In pure System F (without fix), write a func-

tion insert of type

∀X. (X→X→Bool) → List X → X → List X

that takes a comparison function, a sorted list, and a new element, and inserts

the element into the list at the appropriate point (i.e., after all the elements

smaller than it). Next, use insert to build a sorting function for lists in pure

System F. �

23.5 Basic Properties

The fundamental properties of System F are very similar to those of the sim-

ply typed lambda-calculus. In particular, the proofs of type preservation and

progress are straightforward extensions of the ones we saw in Chapter 9.

23.5.1 Theorem [Preservation]: If Γ ` t : T and t -→ t′, then Γ ` t′ : T. �

Proof: Exercise [Recommended, «««]. �

23.5.2 Theorem [Progress]: If t is a closed, well-typed term, then either t is a value

or else there is some t′ with t -→ t′. �

Proof: Exercise [Recommended, «««]. �

System F also shares with λ→ the property of normalization—the fact that

the evaluation of every well-typed program terminates.2 Unlike the type

safety theorems above, normalization is quite difficult to prove (indeed, it is

somewhat astonishing that it holds at all, considering that we can code things

like sorting functions in the pure language, as we did in Exercise 23.4.12, with-

out resorting to fix). This proof, based on a generalization of the method

presented in Chapter 12, was a major achievement of Girard’s doctoral thesis

(1972; also see Girard, Lafont, and Taylor, 1989). Since then, his proof tech-

nique has been analyzed and reworked by many others; see Gallier (1990).

23.5.3 Theorem [Normalization]: Well-typed System F terms are normalizing. �

2. Indeed, presentations of System F with more permissive operational semantics based on

full beta-reduction have the strong normalization property: every reduction path starting from

a well-typed term is guaranteed to terminate.

354 23 Universal Types

23.6 Erasure, Typability, and Type Reconstruction

As we did for λ→ in §9.5, we can define a type erasure function mapping

System F terms to untyped lambda-terms by stripping out all their type an-

notations (including all type abstractions and applications):

erase(x) = x

erase(λx:T1. t2) = λx. erase(t2)

erase(t1 t2) = erase(t1) erase(t2)

erase(λX. t2) = erase(t2)

erase(t1 [T2]) = erase(t1)

A term M in the untyped lambda-calculus is said to be typable in System F if

there is some well-typed term t such that erase(t) = m. The type reconstruc-

tion problem then asks, given an untyped term m, whether we can find some

well-typed term that erases to m.

Type reconstruction for System F was one of the longest-standing prob-

lems in the programming languages literature, remaining open from the early

1970s until it was finally settled (negatively) by Wells in the early 1990s.

23.6.1 Theorem [Wells, 1994]: It is undecidable whether, given a closed term m of

the untyped lambda-calculus, there is some well-typed term t in System F

such that erase(t) = m. �

Not only full type reconstruction but also various forms of partial type

reconstruction are known to be undecidable for System F. For example, con-

sider the following “partial erasure” function, which leaves intact all typing

annotations except the arguments to type applications:

erasep(x) = x

erasep(λx:T1. t2) = λx:T1. erasep(t2)

erasep(t1 t2) = erasep(t1) erasep(t2)

erasep(λX. t2) = λX. erasep(t2)

erasep(t1 [T2]) = erasep(t1) []

Note that type applications are still marked (with empty square brackets) in

the erased terms; we can see where they must occur, but not what type must

be supplied.

23.6.2 Theorem [Boehm 1985, 1989]: It is undecidable whether, given a closed term

s in which type applications are marked but the arguments are omitted, there

is some well-typed System F term t such that erasep(t) = s. �

Boehm showed that this form of type reconstruction was just as hard as

higher-order unification, hence undecidable. Interestingly, this negative re-

sult led directly to a useful partial type reconstruction technique (Pfenning,

23.6 Erasure, Typability, and Type Reconstruction 355

1988, 1993a) based on Huet’s earlier work on efficient semi-algorithms for

higher-order unification (Huet, 1975). Later improvements in this line of de-

velopment have included using a more refined algorithm for higher-order

constraint solving (Dowek, Hardin, Kirchner, and Pfenning, 1996), eliminat-

ing the troublesome possibilities of nontermination or generation of non-

unique solutions. Experience with related algorithms in languages such as

LEAP (Pfenning and Lee, 1991), Elf (Pfenning, 1989), and FX (O’Toole and Gif-

ford, 1989) has shown them to be quite well behaved in practice.

A different approach to partial type reconstruction was sparked by Perry’s

observation that first-class existential types (see Chapter 24) can be inte-

grated with ML’s datatype mechanism (Perry, 1990); the idea was further

developed by Läufer and Odersky (Läufer, 1992; Läufer and Odersky, 1994).

In essence, datatype constructors and destructors can be regarded as ex-

plicit type annotations, marking where values must be injected into and pro-

jected from disjoint union types, where recursive types must be folded and

unfolded, and (when existentials are added) where packing and unpacking

must occur. This idea was extended to include first-class (impredicative) uni-

versal quantifiers by Rémy (1994). A more recent proposal by Odersky and

Läufer (1996), further developed by Garrigue and Rémy (1997), conservatively

extends ML-style type reconstruction by allowing programmers to explicitly

annotate function arguments with types, which may (unlike the annotations

that can be inferred automatically) contain embedded universal quantifiers,

thus partly bridging the gap between ML and more powerful impredicative

systems. This family of approaches to type reconstruction has the advantage

of relative simplicity and clean integration with the polymorphism of ML.

A pragmatic approach to partial type reconstruction for systems involving

both subtyping and impredicative polymorphism, called local type inference

(or local type reconstruction), was proposed by Pierce and Turner (1998; also

see Pierce and Turner, 1997; Hosoya and Pierce, 1999). Local type inference

has appeared in several recent language designs, including GJ (Bracha, Oder-

sky, Stoutamire, and Wadler, 1998) and Funnel (Odersky and Zenger, 2001),

the latter introducing a more powerful form called colored local type inference

(Odersky, Zenger, and Zenger, 2001).

A simpler but less predictable greedy type inference algorithm was pro-

posed by Cardelli (1993); similar algorithms have also been used in proof-

checkers for dependent type theories, such as NuPrl (Howe, 1988) and Lego

(Pollack, 1990). The idea here is that any type annotation may be omitted

by the programmer: a fresh unification variable X will be generated for each

one by the parser. During typechecking, the subtype-checking algorithm may

be asked to check whether some type S is a subtype T, where both S and T

may contain unification variables. Subtype-checking proceeds as usual until a

356 23 Universal Types

subgoal of the form X <: T or T <: X is encountered, at which point X is instan-

tiated to T, thus satisfying the immediate constraint in the simplest possible

way. However, setting X to T may not be the best possible choice, and this

may cause later subtype-checks for types involving X to fail when a different

choice would have allowed them to succeed; but, again, practical experience

with this algorithm in Cardelli’s implementation and in an early version of

the Pict language (Pierce and Turner, 2000) shows that the algorithm’s greedy

choice is correct in nearly all cases. However, when it goes wrong, the greedy

algorithm’s behavior can be quite puzzling to the programmer, yielding mys-

terious errors far from the point where a suboptimal instantiation is made.

23.6.3 Exercise [««««]: The normalization property implies that the untyped term

omega = (λx. x x) (λy. y y) cannot be typed in System F, since reduction

of omega never reaches a normal form. However, it is possible to give a more

direct, “combinatorial” proof of this fact, using just the rules defining the

typing relation.

1. Let us call a System F term exposed if it is a variable, an abstraction

λx:T.t, or an application t s (i.e., if it is not a type abstraction λX.t or

type application t [S]).

Show that if t is well typed (in some context) and erase(t) = m, then there

is some exposed term s such that erase(s) = m and s is well typed (possibly

in a different context).

2. Write λX.t as shorthand for a nested sequence of type abstractions of

the form λX1. . .λXn.t. Similarly, write t [A] for a nested sequence of type

applications ((t [A1]) . . .[An−1]) [An] and ∀X.T for a nested sequence

of polymorphic types∀X1. . .∀Xn.T. Note that these sequences are allowed

to be empty. For example, if X is the empty sequence of type variables, then

∀X.T is just T.

Show that if erase(t) = m and Γ ` t : T, then there exists some s of the

form λX. (u [A]), for some sequence of type variables X, some sequence

of types A, and some exposed term u, with erase(s) = m and Γ ` s : T.

3. Show that if t is an exposed term of type T (under Γ) and erase(t) = m n,

then t has the form s u for some terms s and u such that erase(s) = m and

erase(u) = n, with Γ ` s : U→T and Γ ` u : U.

4. Suppose x:T ∈ Γ . Show that if Γ ` u : U and erase(u) = x x, then either

(a) T = ∀X.Xi , where Xi ∈ X, or else

(b) T = ∀X1X2.T1→T2, where [X1X2 , A]T1 = [X1 , B](∀Z.T1→T2) for

some sequences of types A and B with |A| = |X1X2| and |B| = |X1|.

23.7 Erasure and Evaluation Order 357

5. Show that if erase(s) = λx.m and Γ ` s : S, then S has the form∀X.S1→S2,

for some X, S1, and S2.

6. Define the leftmost leaf of a type T as follows:

leftmost-leaf(X) = X

leftmost-leaf(S→T) = leftmost-leaf(S)

leftmost-leaf(∀X.S) = leftmost-leaf(S).

Show that if [X1X2 , A](∀Y.T1) = [X1 , B](∀Z.(∀Y.T1)→T2), then it

must be the case that leftmost-leaf(T1) = Xi for some Xi ∈ X1X2.

7. Show that omega is not typable in System F. �

23.7 Erasure and Evaluation Order

The operational semantics given to System F in Figure 23-1 is a type-passing

semantics: when a polymorphic function meets a type argument, the type is

actually substituted into the body of the function. The ML implementation of

System F in Chapter 25 does exactly this.

In a more realistic interpreter or compiler for a programming language

based on System F, this manipulation of types at run time could impose a

significant cost. Moreover, it is easy to see that type annotations play no sig-

nificant role at run time, in the sense that no run-time decisions are made on

the basis of types: we can take a well-typed program, rewrite its type annota-

tions in an arbitrary way, and obtain a program that behaves just the same.

For these reasons, many polymorphic languages instead adopt a type-erasure

semantics, where, after the typechecking phase, all the types are erased and

the resulting untyped terms are interpreted or compiled to machine code.3

However, in a full-blown programming language, which may include side-

effecting features such as mutable reference cells or exceptions, the type-

erasure function needs to be defined a little more delicately than the full era-

sure function in §23.6. For example, if we extend System F with an exception-

raising primitive error (§14.1), then the term

let f = (λX.error) in 0;

3. In some languages, the presence of features like casts (§15.5) forces a type-passing imple-

mentation. High-performance implementations of these languages typically attempt to main-

tain only a vestigial form of type information at run time, e.g., passing types only to polymor-

phic functions where they may actually be used.

358 23 Universal Types

evaluates to 0 because λX.error is a syntactic value and the error in its

body is never evaluated, while its erasure

let f = error in 0;

raises an exception when evaluated.4 What this shows is that type abstrac-

tions do play a significant semantic role, since they stop evaluation under

a call-by-value evaluation strategy and hence can postpone or prevent the

evaluation of side-effecting primitives.

We can repair this discrepancy by introducing a new form of erasure ap-

propriate for call-by-value evaluation, in which we erase a type abstraction to

a term-abstraction

erasev(x) = x

erasev(λx:T1. t2) = λx. erasev(t2)

erasev(t1 t2) = erasev(t1) erasev(t2)

erasev(λX. t2) = λ_. erasev(t2)

erasev(t1 [T2]) = erasev(t1) dummyv

where dummyv is some arbitrary untyped value, such as unit.5 The appropri-

ateness of this new erasure function is expressed by the observation that it

“commutes” with untyped evaluation, in the sense that erasure and evalua-

tion can be performed in either order:

23.7.2 Theorem: If erasev(t) = u, then either (1) both t and u are normal forms

according to their respective evaluation relations, or (2) t -→ t′ and u -→ u′,

with erasev(t
′) = u′. �

23.8 Fragments of System F

The elegance and power of System F have earned it a central role in theoret-

ical studies of polymorphism. For language design, however, the loss of type

4. This is related to the problem we saw with the unsound combination of references and

ML-style let-polymorphism in §22.7. The generalization of the let-body in that example corre-

sponds to the explicit type abstraction here.

23.7.1 Exercise [««]: Translate the unsound example on page 335 into System F extended with ref-

erences (Figure 13-1). �

5. In contrast, the value restriction that we imposed in order to recover soundness of ML-style

type reconstruction in the presence of side effects in §22.7 does erase type-abstractions—

generalizing a type variable is essentially the opposite of erasing a type abstraction—but en-

sures soundness by permitting such generalizations only when the inferred type abstraction

would occur immediately adjacent to a term abstraction or other syntactic value-constructor,

since these also stop evaluation.

23.9 Parametricity 359

reconstruction is sometimes considered to be too heavy a price to pay for

a feature whose full power is seldom used. This has led to various propos-

als for restricted fragments of System F with more tractable reconstruction

problems.

The most popular of these is the let-polymorphism of ML (§22.7), which

is sometimes called prenex polymorphism because it can be viewed as a frag-

ment of System F in which type variables range only over quantifier-free types

(monotypes) and in which quantified types (polytypes, or type schemes) are not

allowed to appear on the left-hand sides of arrows. The special role of let in

ML makes the correspondence slightly tricky to state precisely; see Jim (1995)

for details.

Another well-studied restriction of System F is rank-2 polymorphism, in-

troduced by Leivant (1983) and further investigated by many others (see Jim,

1995, 1996). A type is said to be of rank 2 if no path from its root to a ∀

quantifier passes to the left of 2 or more arrows, when the type is drawn

as a tree. For example, (∀X.X→X)→Nat is of rank 2, as are Nat→Nat and

Nat→(∀X.X→X)→Nat→Nat, but ((∀X.X→X)→Nat)→Nat is not. In the rank-

2 system, all types are restricted to be of rank 2. This system is slightly more

powerful than the prenex (ML) fragment, in the sense that it can assign types

to more untyped lambda-terms.

Kfoury and Tiuryn (1990) proved that the complexity of type reconstruc-

tion for the rank-2 fragment of System F is identical to that of ML (i.e.,

DExptime-complete). Kfoury and Wells (1999) gave the first correct type re-

construction algorithm for the rank 2 system and showed that type recon-

struction for ranks 3 and higher of System F is undecidable.

The rank-2 restriction can be applied to other powerful type construc-

tors besides quantifiers. For example, intersection types (see §15.7) can be

restricted to rank 2 by excluding types in which an intersection appears to

the left of 2 or more arrows (Kfoury, Mairson, Turbak, and Wells, 1999). The

rank-2 fragments of System F and of the first-order intersection type system

are closely related. Indeed, Jim (1995) showed that they can type exactly the

same untyped terms.

23.9 Parametricity

Recall from §23.4 how we defined the type CBool of Church booleans

CBool = ∀X.X→X→X;

and the constants tru and fls:

tru = λX. λt:X. λf:X. t;

360 23 Universal Types

ñ tru : CBool

fls = λX. λt:X. λf:X. f;

ñ fls : CBool

Given the type CBool, we can actually write the definitions of tru and fls

rather mechanically, simply by looking at the structure of the type. Since

CBool begins with a ∀, any value of type CBool must be a type abstraction,

so tru and fls must both begin with a λX. Then, since the body of CBool is

an arrow type X→X→X, every value of this type must take two arguments of

type X—i.e., the bodies of tru and fls must each begin λt:X.λf:X. Finally,

since the result type of CBool is X, any value of type CBool must return an

element of type X. But since X is a parameter, the only values of this type

that we can possibly return are the bound variables t and f—we have no

other way of obtaining or constructing values of this type ourselves. In other

words, tru and fls are essentially the only inhabitants of the type CBool.

Strictly speaking, CBool contains some other terms like (λb:CBool.b) tru,

but it is intuitively clear that every one of them must behave like either tru

or fls.

This observation is a simple consequence of a powerful principle known as

parametricity, which formalizes the uniform behavior of polymorphic pro-

grams. Parametricity was introduced by Reynolds (1974, 1983) and has been

further explored, along with related notions, by Reynolds (1984, Reynolds and

Plotkin, 1993), Bainbridge et al. (1990), Ma (1992), Mitchell (1986), Mitchell

and Meyer (1985), Hasegawa (1991), Pitts (1987, 1989, 2000), Abadi, Cardelli,

Curien, and Plotkin (Abadi, Cardelli, and Curien, 1993; Plotkin and Abadi,

1993; Plotkin, Abadi, and Cardelli, 1994), Wadler (1989, 2001), and others.

See Wadler (1989) for an expository introduction.

23.10 Impredicativity

The polymorphism of System F is often called impredicative. In general, a

definition (of a set, a type, etc.) is called “impredicative” if it involves a quan-

tifier whose domain includes the very thing being defined. For example, in

System F, the type variable X in the type T = ∀X.X→X ranges over all types,

including T itself (so that, for example, we can instantiate a term of type T at

type T, yielding a function from T to T). The polymorphism found in ML, on

the other hand, is often called predicative (or stratified), because the range of

type variables is restricted to monotypes, which do not contain quantifiers.

The terms “predicative” and “impredicative” originate in logic. Quine (1987)

offers a lucid summary of their history:

23.11 Notes 361

In exchanges with Henri Poincaré . . . Russell attributed [Russell’s] paradox

tentatively to what he called a vicious-circle fallacy. The “fallacy” consisted

in specifying a class by a membership condition that makes reference di-

rectly or indirectly to a range of classes one of which is the very class that

is being specified. For instance the membership condition behind Russell’s

Paradox is non-self-membership: x not a member of x. The paradox comes

of letting the x of the membership condition be, among other things, the

very class that is being defined by the membership condition. Russell and

Poincaré came to call such a membership condition impredicative, and dis-

qualified it as a means of specifying a class. The paradoxes of set theory,

Russell’s and others, were thus dismantled. . .

Speaking of terminology, whence “predicative” and “impredicative”? Our

tattered platitude about classes and membership conditions was, in Rus-

sell’s phrase, that every predicate determines a class; and then he accom-

modates the tattering of the platitude by withdrawing the title of predi-

cate from such membership conditions as were no longer to be seen as

determining classes. “Predicative” thus did not connote the hierarchical

approach in particular, or the metaphor of progressive construction; that

was just Russell and Poincaré’s particular proposal of what membership

conditions to accept as class-productive, or “predicative.” But the tail soon

came to wag the dog. Today predicative set theory is constructive set the-

ory, and impredicative definition is strictly as explained in the foregoing

paragraph, regardless of what membership conditions one may choose to

regard as determining classes.

23.11 Notes

Further reading on System F can be found in Reynolds’s introductory article

(1990) and his Theories of Programming Languages (1998b).

24 Existential Types

Having examined the role of universal quantifiers in type systems (Chap-

ter 23), it is natural to wonder whether existential quantifiers might also be

useful in programming. Indeed they are, offering an elegant foundation for

data abstraction and information hiding.

24.1 Motivation

Existential types are fundamentally no more complicated than universal types

(in fact, we will see in §24.3 that existentials can straightforwardly be encoded

in terms of universals). However, the introduction and elimination forms for

existential types are syntactically a bit heavier than the simple type abstrac-

tion and application associated with universals, and some people find them

slightly puzzling initially. The following intuitions may be helpful in getting

through this phase.

The universal types in Chapter 23 can be viewed in two different ways. A

logical intuition is that an element of the type ∀X.T is a value that has type

[X , S]T for all choices of S. This intuition corresponds to a type-erasure

view of behavior: for example, the polymorphic identity function λX.λx:X.x

erases to the untyped identity function λx.x, which maps an argument from

any type S to a result of the same type. By contrast, a more operational intu-

ition is that an element of∀X.T is a function mapping a type S to a specialized

term with type [X , S]T. This intuition corresponds to our definition of Sys-

tem F in Chapter 23, where the reduction of a type application is considered

an actual step of computation.

Similarly, there are two different ways of looking at an existential type,

written {∃X,T}. The logical intuition is that an element of {∃X,T} is a value

The system studied in most of this chapter is System F (Figure 23-1) with existentials (24-1).

The examples also use records (11-7) and numbers (8-2). The associated OCaml implementa-

tion is fullpoly.

364 24 Existential Types

of type [X , S]T, for some type S. The operational intuition, on the other

hand, is that an element of {∃X,T} is a pair, written {*S,t}, of a type S and

a term t of type [X, S]T.

We will emphasize the operational view of existential types in this chap-

ter, because it provides a closer analogy between existentials and the mod-

ules and abstract data types found in programming languages. Our concrete

syntax for existential types reflects this analogy: we write {∃X,T}—the curly

braces emphasizing that an existential value is a form of tuple—instead of

the more standard notation ∃X.T.

To understand existential types, we need to know two things: how to build

(or introduce, in the jargon of §9.4) elements that inhabit them, and how to

use (or eliminate) these values in computations.

An existentially typed value is introduced by pairing a type with a term,

written {*S,t}.1 A useful concrete intuition is to think of a value {*S,t}

of type {∃X,T} as a simple form of package or module with one (hidden)

type component and one term component.2 The type S is often called the

hidden representation type, or sometimes (to emphasize a connection with

logic, cf. §9.4) the witness type of the package. For example, the package p =

{*Nat, {a=5, f=λx:Nat. succ(x)}} has the existential type {∃X, {a:X,

f:X→X}}. The type component of p is Nat, and the value component is a

record containing a field a of type X and a field f of type X→X, for some X

(namely Nat).

The same package p also has the type {∃X, {a:X, f:X→Nat}}, since its

right-hand component is a record with fields a and f of type X and X→Nat,

for some X (namely Nat). This example shows that, in general, the typechecker

cannot make an automatic decision about which existential type a given pack-

age belongs to: the programmer must specify which one is intended. The

simplest way to do this is just to add an annotation to every package that ex-

plicitly gives its intended type. So the full introduction form for existentials

will look like this,

p = {*Nat, {a=5, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→X}};

ñ p : {∃X, {a:X,f:X→X}}

1. We mark the type component of the pair with a * to avoid confusion with ordinary term-

tuples (§11.7). Another common notation for existential introduction is pack X=S with t.

2. Obviously, one could imagine generalizing these modules to many type and/or term com-

ponents, but let’s stick with just one of each to keep the notation tractable. The effect of

multiple type components can be achieved by nesting single-type existentials, while the effect

of multiple term components can be achieved by using a tuple or record as the right-hand

component:

{*S1, *S2, t1, t2}
def
= {*S1, {*S2, {t1, t2}}}

24.1 Motivation 365

or (the same package with a different type):

p1 = {*Nat, {a=5, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}};

ñ p1 : {∃X, {a:X,f:X→Nat}}

The type annotation introduced by as is similar to the ascription construct

introduced in §11.4, which allows any term to be annotated with its intended

type. We are essentially incorporating a single ascription as part of the con-

crete syntax of the package construct. The typing rule for existential intro-

duction is as follows:

Γ ` t2 : [X, U]T2

Γ ` {*U,t2} as {∃X,T2} : {∃X,T2}
(T-Pack)

One thing to notice about this rule is that packages with different hidden

representation types can inhabit the same existential type. For example:

p2 = {*Nat, 0} as {∃X,X};

ñ p2 : {∃X, X}

p3 = {*Bool, true} as {∃X,X};

ñ p3 : {∃X, X}

Or, more usefully:

p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}};

ñ p4 : {∃X, {a:X,f:X→Nat}}

p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}};

ñ p5 : {∃X, {a:X,f:X→Nat}}

24.1.1 Exercise [«]: Here are three more variations on the same theme:

p6 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→X}};

ñ p6 : {∃X, {a:X,f:X→X}}

p7 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:Nat→X}};

ñ p7 : {∃X, {a:X,f:Nat→X}}

p8 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:Nat, f:Nat→Nat}};

ñ p8 : {∃X, {a:Nat,f:Nat→Nat}}

In what ways are these less useful than p4 and p5? �

366 24 Existential Types

→ ∀ ∃ Extends System F (23-1)

New syntactic forms

t ::= ... terms:

{*T,t} as T packing

let {X,x}=t in t unpacking

v ::= ... values:

{*T,v} as T package value

T ::= ... types:

{∃X,T} existential type

New evaluation rules t -→ t′

let {X,x}=({*T11,v12} as T1) in t2

-→ [X, T11][x, v12]t2

(E-UnpackPack)

t12 -→ t′12

{*T11,t12} as T1

-→ {*T11,t
′
12} as T1

(E-Pack)

t1 -→ t′1

let {X,x}=t1 in t2

-→ let {X,x}=t′1 in t2

(E-Unpack)

New typing rules Γ ` t : T

Γ ` t2 : [X, U]T2

Γ ` {*U,t2} as {∃X,T2}

: {∃X,T2}

(T-Pack)

Γ ` t1 : {∃X,T12}

Γ , X, x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2

(T-Unpack)

Figure 24-1: Existential types

The analogy with modules also offers a helpful intuition for the existen-

tial elimination construct. If an existential package corresponds to a module,

then package elimination is like an open or import directive: it allows the

components of the module to be used in some other part of the program,

but holds abstract the identity of the module’s type component. This can be

achieved with a kind of pattern-matching binding:

Γ ` t1 : {∃X,T12} Γ , X, x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2

(T-Unpack)

That is, if t1 is an expression that yields an existential package, then we

can bind its type and term components to the pattern variables X and x and

use them in computing t2. (Another common concrete syntax for existential

elimination is open t1 as {X,x} in t2.)

For example, take the package p4, of type {∃X, {a:X, f:X→Nat}}, defined

above. The elimination expression

let {X,x}=p4 in (x.f x.a);

ñ 1 : Nat

24.1 Motivation 367

opens p4 and uses the fields of its body (x.f and x.a) to compute a numeric

result. The body of the elimination form can also involve the type variable X:

let {X,x}=p4 in (λy:X. x.f y) x.a;

ñ 1 : Nat

The fact that the package’s representation type is held abstract during the

typechecking of the body means that the only operations allowed on x are

those warranted by its “abstract type” {a:X,f:X→Nat}. In particular, we are

not allowed to use x.a concretely as a number:

let {X,x}=p4 in succ(x.a);

ñ Error: argument of succ is not a number

This restriction makes good sense, since we saw above that a package with

the same existential type as p4 might use either Nat or Bool (or anything

else) as its representation type.

There is another, more subtle, way in which typechecking of the existen-

tial elimination construct may fail. In the rule T-Unpack, the type variable X

appears in the context in which t2’s type is calculated, but does not appear

in the context of the rule’s conclusion. This means that the result type T2

cannot contain X free, since any free occurrences of X will be out of scope in

the conclusion.

let {X,x}=p in x.a;

ñ Error: Scoping error!

This point is discussed in more detail in §25.5.

The computation rule for existentials is straightforward:

let {X,x}=({*T11,v12} as T1) in t2

-→ [X, T11][x , v12]t2

(E-UnpackPack)

If the first subexpression of the let has already been reduced to a concrete

package, then we may substitute the components of this package for the vari-

ables X and x in the body t2. In terms of the analogy with modules, this rule

can be viewed as a linking step, in which symbolic names (X and x) referring to

the components of a separately compiled module are replaced by the actual

contents of the module.

Since the type variable X is substituted away by this rule, the resulting

program actually has concrete access to the package’s internals. This is just

another example of a phenomenon we have seen several times: expressions

can become “more typed” as computation proceeds—in particular an ill-typed

expression can reduce to a well-typed one.

The rules defining the extension of System F with existential types are sum-

marized in Figure 24-1.

368 24 Existential Types

24.2 Data Abstraction with Existentials

The introductory chapter (§1.2) argued that the uses of type systems go far

beyond their role in detecting small-scale programming errors like 2+true:

they also offer crucial support for programming in the large. In particular,

types can be used to enforce not only the abstractions built into the language,

but also programmer-defined abstractions—i.e., not only protecting the ma-

chine from the program, but protecting parts of the program from each

other.3 This section considers two different styles of abstraction—classical

abstract data types, and objects—using existential types as a common frame-

work for discussion.

Unlike the object encodings that we have already encountered in Chap-

ter 18, all the examples in this section are purely functional programs. This

is purely an expository choice: mechanisms for modularity and abstraction

are almost completely orthogonal to the statefulness or statelessness of the

abstractions being defined. (Exercises 24.2.2 and 24.2.4 illustrate this point

by developing stateful versions of some of the purely functional examples

in the text.) The reasons for preferring purely functional examples here are

that (1) this choice implies that our examples live in a simpler and more

economical formal framework, and (2) working with purely functional pro-

grams sometimes makes the typing problems more interesting (and their

solutions correspondingly more revealing). The reason for this is that, in im-

perative programming, mutable variables provide a “side-channel” allowing

direct communication between distant parts of a program. In purely func-

tional programs, all information that passes between different parts of the

program must go via the arguments and results of functions, where it is “vis-

ible” to the type system. This is particularly true in the case of objects, and

it will force us to postpone treatment of some important features (subtyping

and inheritance) until Chapter 32, where we will have some more powerful

type-theoretic machinery at our disposal.

Abstract Data Types

A conventional abstract data type (or ADT) consists of (1) a type name A, (2)

a concrete representation type T, (3) implementations of some operations for

creating, querying, and manipulating values of type T, and (4) an abstraction

boundary enclosing the representation and operations. Inside this bound-

3. For the sake of fairness, we should note that types are not the only way of protecting

programmer-defined abstractions. In untyped languages, similar effects can be achieved using

function closures, objects, or special-purpose constructs such as MzScheme’s units (Flatt and

Felleisen, 1998).

24.2 Data Abstraction with Existentials 369

ary, elements of the type are viewed concretely (with type T). Outside, they

are viewed abstractly, with type A. Values of type A may be passed around,

stored in data structures, etc., but not directly examined or changed—the

only operations allowed on A are those provided by the ADT.

For example, here is a declaration of an abstract data type of purely func-

tional counters, in a pseudocode notation similar to Ada (U.S. Dept. of De-

fense, 1980) or Clu (Liskov et al., 1981).

ADT counter =

type Counter

representation Nat

signature

new : Counter,

get : Counter→Nat,

inc : Counter→Counter;

operations

new = 1,

get = λi:Nat. i,

inc = λi:Nat. succ(i);

counter.get (counter.inc counter.new);

The abstract type name is Counter; its concrete representation is Nat. The

implementations of the operations deal with Counter objects concretely, as

Nats: new is just the constant 1; the inc operation is the successor function;

get is the identity. The signature section specifies how these operations are

to be used externally, replacing some instances of Nat in their concrete types

by Counter. The abstraction boundary extends from the ADT keyword to the

terminating semicolon; in the remainder of the program (i.e., the last line),

the association between Counter and Nat is broken, so that the only thing

that can be done with the constant counter.new is to use it as an argument

to counter.get or counter.inc.

We can translate this pseudocode almost symbol for symbol into our cal-

culus with existentials. We first create an existential package containing the

internals of the ADT:

counterADT =

{*Nat,

{new = 1,

get = λi:Nat. i,

inc = λi:Nat. succ(i)}}

as {∃Counter,

{new: Counter,

get: Counter→Nat,

inc: Counter→Counter}};

370 24 Existential Types

ñ counterADT : {∃Counter,

{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

We then open the package, introducing the type variable Counter as a place-

holder for the hidden representation type of the package and a term variable

counter providing access to the operations:

let {Counter,counter} = counterADT in

counter.get (counter.inc counter.new);

ñ 2 : Nat

The version using existential types is slightly harder on the eye, compared to

the syntactically sugared pseudocode, but the two are identical in structure.

In general, the body of the let that opens the existential package contains

the whole remainder of the program:

let {Counter,counter} = <counter package> in

<rest of program>

In the remainder, the type name Counter can be used just like the base types

built into the language. We can define functions that operate on counters:

let {Counter,counter}=counterADT in

let add3 = λc:Counter. counter.inc (counter.inc (counter.inc c)) in

counter.get (add3 counter.new);

ñ 4 : Nat

We can even define new abstract data types whose representation involves

counters. For example, the following program defines an ADT of flip-flops,

using a counter as its (not particularly efficient) representation type:

let {Counter,counter} = counterADT in

let {FlipFlop,flipflop} =

{*Counter,

{new = counter.new,

read = λc:Counter. iseven (counter.get c),

toggle = λc:Counter. counter.inc c,

reset = λc:Counter. counter.new}}

as {∃FlipFlop,

{new: FlipFlop, read: FlipFlop→Bool,

toggle: FlipFlop→FlipFlop, reset: FlipFlop→FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

ñ false : Bool

24.2 Data Abstraction with Existentials 371

In this way, a large program can be broken up into a long sequence of ATD

declarations, each using the types and operations provided by its predeces-

sors to implement its own, and packaging these up for its successors as a

clean, well-defined abstraction.

A key property of the kind of information hiding we are doing here is rep-

resentation independence. We can substitute an alternative implementation

of the Counter ADT—for example, one where the internal representation is a

record containing a Nat rather than just a single Nat,

counterADT =

{*{x:Nat},

{new = {x=1},

get = λi:{x:Nat}. i.x,

inc = λi:{x:Nat}. {x=succ(i.x)}}}

as {∃Counter,

{new: Counter, get: Counter→Nat, inc: Counter→Counter}};

ñ counterADT : {∃Counter,

{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

in complete confidence that the whole program will remain typesafe, since

we are guaranteed that the rest of the program cannot access instances of

Counter except using get and inc.

Experience has shown that a programming style based on abstract data

types can yield huge improvements in robustness and maintainability of large

systems. There are several reasons for this. First, this style limits the scope

of changes to the program. As we saw just above, we can replace one imple-

mentation of an ADT by another, possibly changing both its concrete repre-

sentation type and the implementations of its operations, without affecting

the rest of the program, because the typing rules for existential packages

ensure that the rest of the program cannot depend on the ADT’s internal rep-

resentation. Second, it encourages programmers to limit the dependencies

between the parts of a program by making the signatures of ADTs as small

as possible. Finally, and perhaps most importantly, by making the signatures

of the operations explicit, it forces programmers to think about designing

abstractions.

24.2.1 Exercise [Recommended, «««]: Follow the model of the above example to

define an abstract data type of stacks of numbers, with operations new, push,

top (returning the current top element), pop (returning a new stack with-

out the top element), and isempty. Use the List type introduced in Exer-

cise 23.4.3 as the underlying representation. Write a simple main program

that creates a stack, pushes a couple of numbers onto it, and gets its top

372 24 Existential Types

element. This exercise is best done on-line. Use the fullomega checker and

copy the contents of the file test.f (which contains definitions of the List

constructor and associated operations) to the top of your own input file. �

24.2.2 Exercise [Recommended, ««]: Build an ADT of mutable counters, using the

reference cells defined in Chapter 13. Change new from a constant to a func-

tion taking a Unit argument and returning a Counter, and change the re-

sult type of the inc operation to Unit instead of Counter. (The fullomega

checker provides references in addition to existentials.) �

Existential Objects

The “pack and then open” idiom that we saw in the last subsection is the

hallmark of ADT-style programming using existential packages. A package

defines an abstract type and its associated operations, and we open each

package immediately after it is built, binding a type variable for the abstract

type and exposing the ADT’s operations abstractly. In this section, we show

how a simple form of object-style data abstraction can also be viewed as a

different programming idiom based on existentials. This object model is de-

veloped further in Chapter 32.

We will again use simple counters as our running example, as we did both

in the existential ADTs above and in our earlier encounters with objects in

Chapters 18 and 19. We again choose a purely functional style, where sending

the message inc to a counter does not change its internal state in-place, but

rather returns a fresh counter object with incremented internal state.

A counter object comprises two basic components: a number (its internal

state), and a pair of methods, get and inc, that can be used to manipulate the

state. We also need to ensure that the only way that the state can be queried

or updated is by using one of these two methods. This can be accomplished

by wrapping the state and methods in an existential package, abstracting the

type of the state. For example, a counter object holding the value 5 might be

written

c = {*Nat,

{state = 5,

methods = {get = λx:Nat. x,

inc = λx:Nat. succ(x)}}}

as Counter;

where:

Counter = {∃X, {state:X, methods: {get:X→Nat, inc:X→X}}};

24.2 Data Abstraction with Existentials 373

To use a method of a counter object, we open the existential and apply the

appropriate element of its methods to its state field. For example, to get the

current value of c we can write:

let {X,body} = c in body.methods.get(body.state);

ñ 5 : Nat

More generally, we can define a little function that “sends the get message”

to any counter:

sendget = λc:Counter.

let {X,body} = c in

body.methods.get(body.state);

ñ sendget : Counter → Nat

Invoking the inc method of a counter object is a little more complicated. If

we simply do the same as for get, the typechecker complains

let {X,body} = c in body.methods.inc(body.state);

ñ Error: Scoping error!

because the type variable X appears free in the type of the body of the let. In-

deed, what we’ve written doesn’t make intuitive sense either, since the result

of the inc method is a bare internal state, not an object. To satisfy both the

typechecker and our informal understanding of what invoking inc should do,

we must take this fresh internal state and repackage it as a counter object,

using the same record of methods and the same internal state type as in the

original object:

c1 = let {X,body} = c in

{*X,

{state = body.methods.inc(body.state),

methods = body.methods}}

as Counter;

More generally, to “send the inc message” to a counter, we can write:

sendinc = λc:Counter.

let {X,body} = c in

{*X,

{state = body.methods.inc(body.state),

methods = body.methods}}

as Counter;

ñ sendinc : Counter → Counter

374 24 Existential Types

More complex operations on counters can be implemented in terms of these

two basic operations:

add3 = λc:Counter. sendinc (sendinc (sendinc c));

ñ add3 : Counter → Counter

24.2.3 Exercise [Recommended, «««]: Implement FlipFlop objects with Counter

objects as their internal representation type, using the FlipFlop ADT above

as a model. �

24.2.4 Exercise [Recommended, ««]: Use the fullomega checker to implement a

stateful variant of Counter objects, following Exercise 24.2.2. �

Objects vs. ADTs

The examples in the previous section do not constitute a full-blown model

of object-oriented programming. Many of the features that we saw in Chap-

ters 18 and 19, including subtyping, classes, inheritance, and recursion via

self and super, are missing here. We will come back to modeling these fea-

tures in Chapter 32, when we have added some necessary refinements to our

type system. But there are already several interesting comparisons to be made

between these simple objects and the ADTs discussed previously.

At the coarsest level, the two programming idioms fall at opposite ends of a

spectrum: when programming with ADTs, packages are opened immediately

after they are built; on the other hand, when packages are used to model

objects they are kept closed as long as possible—until the moment when they

must be opened so that one of the methods can be applied to the internal

state.

A consequence of this difference is that “the abstract type of counters”

refers to different things in the two styles. In an ADT-style program, the

counter values manipulated by client code such as the add3 function are el-

ements of the underlying representation type (e.g., simple numbers). In an

object-style program, each counter is a whole package—including not only

a number, but also the implementations of the get and inc methods. This

stylistic difference is reflected in the fact that, in the ADT style, the type

Counter is a bound type variable introduced by the let construct, while in

the object style Counter stands for the whole existential type

{∃X, {state:X, methods: {get:X→Nat,inc:X→X}}}.

Thus, at run time, all the counter values generated from the counter ADT are

just bare elements of the same internal representation type, and there is a sin-

gle implementation of the counter operations that works on this internal rep-

resentation. By contrast, each counter object carries its own representation

24.2 Data Abstraction with Existentials 375

type together with its own set of methods that work for this representation

type.

These differences between objects and ADTs lead to contrasting pragmatic

advantages. One obvious one is that, since each object chooses its own repre-

sentation and carries its own operations, a single program can freely intermix

many different implementations of the same object type. This is particularly

convenient in the presence of subtyping and inheritance: we can define a sin-

gle, general class of objects and then produce many different refinements,

each with its own slightly (or completely) different representation. Since in-

stances of these refined classes all share the same general type, they can be

manipulated by the same generic code, stored together in lists, etc.

For example, a user-interface library may define a generic Window class,

with subclasses like TextWindow, ContainerWindow, ScrollableWindow,

TitledWindow, DialogBox, etc. Each of these subclasses will include its own

particular instance variables (e.g., a TextWindow may use a String instance

variable to represent its current contents, whereas a ContainerWindow might

use a list of Window objects), and provide specialized implementations of op-

erations like repaint and handleMouseEvent. Defining Window as an ADT,

on the other hand, leads to a less flexible structure. The concrete representa-

tion type of Window will need to include a variant type (§11.10) with one case

for each specific sort of window, carrying the specialized data relevant to that

type of window. Operations like repaint will perform a case on the variant

and execute the appropriate specialized code. If there are many special forms

of windows, this monolithic declaration of the Window ADT can easily grow

to be quite large and unwieldy.

A second major pragmatic difference between objects and ADTs concerns

the status of binary operations—operations that accept two or more argu-

ments of the same abstract type. To discuss this point coherently, we need to

distinguish between two kinds of binary operations:

• Some binary operations can be implemented entirely in terms of the pub-

licly available operations on two abstract values. For example, to imple-

ment an equality operation for counters, all we need to do is ask each for

its current value (using get) and compare the two numbers that we get

back—i.e., the equal operation can just as well live outside the abstrac-

tion boundary that protects the concrete representation of counters. We

call such operations weak binary operations.

• Other binary operations cannot be implemented without concrete, privi-

leged access to the representations of both abstract values. For example,

suppose we are implementing an abstraction representing sets of num-

bers. After scouring several algorithms textbooks, we choose a concrete

376 24 Existential Types

representation of sets as labeled trees obeying some particular complex

invariant. An efficient implementation of the union operation on two sets

will need to view both of them concretely, as trees. However, we do not

want to expose this concrete representation anywhere in the public inter-

face to our set abstraction. So we will need to arrange for union to have

privileged access to both of its arguments that is not available to ordi-

nary client code—i.e., the union operation must live inside the abstraction

boundary. We call such operations strong binary operations.

Weak binary operations are an easy case for both of the styles of abstraction

we are considering, since it does not make much difference whether we place

them inside or outside of the abstraction boundary. If we choose to place

them outside, then they may simply be defined as free-standing functions

(taking either objects or values of an ADT, as appropriate). Placing them in-

side an ADT is exactly the same (they will then have concrete access to the

representations of their arguments, even though they don’t really need it).

Placing a weak binary operation inside of an object is only slightly more de-

manding, since the type of the object now becomes recursive:4

EqCounter = {∃X, {state:X, methods: {get:X→Nat, inc:X→X,

eq:X→EqCounter→Bool}}}

.

Strong binary operations, on the other hand, cannot be expressed as meth-

ods of objects in our model. We can express their types just as we did for

weak binary methods above:

NatSet = {∃X, {state:X, methods: {empty:X, singleton:Nat→X,

member:X→Nat→Bool,

union:X→NatSet→X}}}

.

But there is no satisfactory way to implement an object of this type: all we

know about the second argument of the union operation is that it provides

the operations of NatSet, but these do not give us any way to find out what

its elements are so that we can compute the union.

24.2.5 Exercise [«]: Why can’t we use the type

NatSet = {∃X, {state:X, methods: {empty:X, singleton:Nat→X,

member:X→Nat→Bool,

union:X→X→X}}}

instead? �

4. This sort of recursion in object types interacts with inheritance in some tricky ways. See

Bruce et al. (1996).

24.3 Encoding Existentials 377

In summary, the single representations of ADTs directly support binary

operations, while the multiple representations of objects give up binary meth-

ods in return for useful flexibility. These advantages are complementary; nei-

ther style dominates the other.

One caveat should be added to this discussion. These comparisons apply

to the simple, “purist” model of objects presented earlier in the chapter. The

classes in mainstream object-oriented languages like C++ and Java are de-

signed to allow some forms of strong binary methods, and are actually best

described as a kind of compromise between the pure objects and pure ADTs

that we have seen in this chapter. In these languages, the type of an object

is exactly the name of the class from which it was instantiated, and this type

is considered distinct from the names of other classes, even if they provide

exactly the same operations (cf. §19.3). That is, a given object type in these

languages has a single implementation given by the corresponding class dec-

laration. Moreover, subclasses in these languages can add instance variables

only to those inherited from superclasses. These constraints mean that every

object belonging to type C is guaranteed to have all the instance variables

defined by the (unique) declaration of class C (and possibly some more). It

now makes sense for a method of such an object to take another C as an ar-

gument and concretely access its instance variables, as long as it uses only

instance variables defined by C. This permits strong binary operations such as

set union to be defined as methods. “Hybrid” object models of this sort have

been formalized by Pierce and Turner (1993) and Katiyar et al. (1994), and

elaborated in more detail by Fisher and Mitchell (Fisher and Mitchell, 1996,

1998; Fisher, 1996b,a).

24.3 Encoding Existentials

The encoding of pairs as a polymorphic type in §23.4 suggests a similar en-

coding for existential types in terms of universal types, using the intuition

that an element of an existential type is a pair of a type and a value:

{∃X,T}
def
= ∀Y. (∀X. T→Y) → Y.

That is, an existential package is thought of as a data value that, given a

result type and a continuation, calls the continuation to yield a final result.

The continuation takes two arguments—a type X and a value of type T—and

uses them in computing the final result.

Given this encoding of existential types, the encoding of the packaging and

unpackaging constructs is essentially forced. To encode a package

{*S,t} as {∃X,T}

378 24 Existential Types

we must use S and t to build a value of type ∀Y. (∀X. T→Y) → Y. This type

begins with a universal quantifier, the body of which is an arrow type. An

element of this type should therefore begin with two abstractions:

{*S,t} as {∃X,T}
def
= λY. λf:(∀X.T→Y). ...

To complete the job, we need to return a result of type Y; clearly, the only

way to do this is to apply f to some appropriate arguments. First, we supply

the type S (this is a natural choice, being the only type we have lying around

at the moment):

{*S,t} as {∃X,T}
def
= λY. λf:(∀X.T→Y). f [S] ...

Now, the type application f [S] has type [X , S](T→Y), i.e., ([X , S]T)→Y.

We can thus supply t (which, by rule T-Pack, has type [X , S]T) as the next

argument:

{*S,t} as {∃X,T}
def
= λY. λf:(∀X.T→Y). f [S] t

The type of the whole application f [S] t is now Y, as required.

To encode the unpacking construct let {X,x}=t1 in t2, we proceed simi-

larly. First, the typing rule T-Unpack tells us that t1 should have some type

{∃X,T11}, that t2 should have type T2 (under an extended context binding

X and x:T11), and that T2 is the type we expect for the whole let...in...

expression.5 As in the Church encodings in §23.4, the intuition here is that

the introduction form ({*S,t}) is encoded as an active value that “performs

its own elimination.” So the encoding of the elimination form here should

simply take the existential package t1 and apply it to enough arguments to

yield a result of the desired type T2:

let {X,x}=t1 in t2

def
= t1 ...

The first argument to t1 should be the desired result type of the whole ex-

pression, i.e., T2:

let {X,x}=t1 in t2

def
= t1 [T2] ...

Now, the application t1 [T2] has type (∀X. T11→T2) → T2. That is, if we can

now supply another argument of type (∀X.T11→T2), we will be finished. Such

5. Strictly speaking, the fact that the translation requires these extra bits of type information

not present in the syntax of terms means that what we are translating is actually typing deriva-

tions, not terms. We have seen a similar situation in the definition of the coercion semantics for

subtyping in §15.6.

24.4 Notes 379

an argument can be obtained by abstracting the body t2 on the variables X

and x:

let {X,x}=t1 in t2

def
= t1 [T2] (λX. λx:T11. t2).

This finishes the encoding.

24.3.1 Exercise [Recommended, «« 3]: Take a blank piece of paper and, without

looking at the above encoding, regenerate it from scratch. �

24.3.2 Exercise [«««]: What must we prove to be confident that this encoding of

existentials is correct? �

24.3.3 Exercise [««««]: Can we go the other direction, encoding universal types in

terms of existential types? �

24.4 Notes

The correspondence between ADTs and existential types was first developed

by Mitchell and Plotkin (1988), who also noticed the connection with objects.

Pierce and Turner (1994) elaborated this connection in detail—see Chapter 32

for details and further citations. The tradeoffs between objects and ADTs

have been discussed by Reynolds (1975), Cook (1991), Bruce et al. (1996) and

many others. In particular, Bruce et al. (1996) is an extended discussion of

binary methods.

We have seen how existential types offer natural type-theoretic foundations

for a simple form of abstract data types. To account for the (related, but

much more powerful) module systems found in languages like ML, a variety

of more sophisticated mechanisms have been studied. Good starting points

for reading in this area are Cardelli and Leroy (1990), Leroy (1994), Harper

and Lillibridge (1994), Lillibridge (1997), Harper and Stone (2000), and Crary

et al. (2002).

Type structure is a syntactic discipline for enforcing levels of abstraction.

—John Reynolds (1983)

25 An ML Implementation of System F

We now extend our implementation of λ→ from Chapter 10 to include the uni-

versal and existential types from Chapters 23 and 24. Since the rules defining

this system are syntax directed (like λ→ itself, but unlike calculi with subtyp-

ing or equi-recursive types), its OCaml realization is quite straightforward.

The most interesting extension to the implementation of λ→ is a representa-

tion for types that may include variable bindings (in quantifiers). For these,

we use the technique of de Bruijn indices introduced in Chapter 6.

25.1 Nameless Representation of Types

We begin by extending the syntax of types with type variables and universal

and existential quantifiers.

type ty =

TyVar of int * int

| TyArr of ty * ty

| TyAll of string * ty

| TySome of string * ty

The conventions here are exactly the same as for the representation of terms

in §7.1. Type variables consist of two integers: the first specifies the distance

to the variable’s binder, while the second, as a consistency check, specifies

the expected total size of the context. Quantifiers are annotated with a string

name for the variable they bind, as a hint for the printing functions.

We next extend contexts to carry bindings for type variables in addition to

term variables, by adding a new constructor to the binding type:

type binding =

NameBind

| VarBind of ty

| TyVarBind

382 25 An ML Implementation of System F

As in our earlier implementations, the NameBind binder is used only by the

parsing and printing functions. The VarBind constructor carries a type, as be-

fore. The new TyVarBind constructor carries no additional data value, since

(unlike term variables) type variables in this system are not annotated with

any additional assumptions. In a system with bounded quantification (Chap-

ter 26) or higher kinds (Chapter 29), we would add an appropriate annotation

to each TyVarBind.

25.2 Type Shifting and Substitution

Since types now contain variables, we need to define functions for shifting

and substitution of types.

25.2.1 Exercise [«]: Using the term-shifting function in Definition 6.2.1 (page 79)

as a model, write down a mathematical definition of an analogous function

that shifts the variables in types. �

In §7.2, we showed shifting and substitution for terms as two separate

functions, but remarked that the implementation available from the book’s

web site actually uses a generic “mapping” function to perform both tasks. A

similar mapping function can be used to define shifting and substitution for

types. Let us look, now, at these mapping functions.

The basic observation is that shifting and substitution have exactly the

same behavior on all constructors except variables. If we abstract out their

behavior on variables, then they become identical. For example, here is the

specialized shifting function for types that we get by mechanically transcrib-

ing the solution to Exercise 25.2.1 into OCaml:

let typeShiftAbove d c tyT =

let rec walk c tyT = match tyT with

TyVar(x,n) → if x>=c then TyVar(x+d,n+d) else TyVar(x,n+d)

| TyArr(tyT1,tyT2) → TyArr(walk c tyT1,walk c tyT2)

| TyAll(tyX,tyT2) → TyAll(tyX,walk (c+1) tyT2)

| TySome(tyX,tyT2) → TySome(tyX,walk (c+1) tyT2)

in walk c tyT

The arguments to this function include an amount d by which free variables

should be shifted, a cutoff c below which we should not shift (to avoid shifting

variables bound by quantifiers within the type), and a type tyT to be shifted.

Now, if we abstract out the TyVar clause from typeShiftAbove into a new

argument onvar and drop the argument d, which was only mentioned in the

TyVar clause, we obtain a generic mapping function

25.3 Terms 383

let tymap onvar c tyT =

let rec walk c tyT = match tyT with

TyArr(tyT1,tyT2) → TyArr(walk c tyT1,walk c tyT2)

| TyVar(x,n) → onvar c x n

| TyAll(tyX,tyT2) → TyAll(tyX,walk (c+1) tyT2)

| TySome(tyX,tyT2) → TySome(tyX,walk (c+1) tyT2)

in walk c tyT

from which we can recover the shifting function by supplying the TyVar

clause (as a function abstracted on c, x, and n) as a parameter:

let typeShiftAbove d c tyT =

tymap

(fun c x n → if x>=c then TyVar(x+d,n+d) else TyVar(x,n+d))

c tyT

It is also convenient to define a specialized version of typeShiftAbove, to

be used when the initial cut-off is 0:

let typeShift d tyT = typeShiftAbove d 0 tyT

We can also instantiate tymap to implement the operation of substituting

a type tyS for the type variable numbered j in a type tyT:

let typeSubst tyS j tyT =

tymap

(fun j x n → if x=j then (typeShift j tyS) else (TyVar(x,n)))

j tyT

When we use type substitution during typechecking and evaluation, we will al-

ways be substituting for the 0th (outermost) variable, and we will want to shift

the result so that that variable disappears. The helper function typeSubstTop

does this for us.

let typeSubstTop tyS tyT =

typeShift (-1) (typeSubst (typeShift 1 tyS) 0 tyT)

25.3 Terms

At the level of terms, the work to be done is similar. We begin by extending

the term datatype from Chapter 10 with the introduction and elimination

forms for universal and existential types.

type term =

TmVar of info * int * int

| TmAbs of info * string * ty * term

384 25 An ML Implementation of System F

| TmApp of info * term * term

| TmTAbs of info * string * term

| TmTApp of info * term * ty

| TmPack of info * ty * term * ty

| TmUnpack of info * string * string * term * term

The definitions of shifting and substitution for terms are similar to those

in Chapter 10. However, let us write them here in terms of a common generic

mapping function, as we did for types in the previous section. The mapping

function looks like this:

let tmmap onvar ontype c t =

let rec walk c t = match t with

TmVar(fi,x,n) → onvar fi c x n

| TmAbs(fi,x,tyT1,t2) → TmAbs(fi,x,ontype c tyT1,walk (c+1) t2)

| TmApp(fi,t1,t2) → TmApp(fi,walk c t1,walk c t2)

| TmTAbs(fi,tyX,t2) → TmTAbs(fi,tyX,walk (c+1) t2)

| TmTApp(fi,t1,tyT2) → TmTApp(fi,walk c t1,ontype c tyT2)

| TmPack(fi,tyT1,t2,tyT3) →

TmPack(fi,ontype c tyT1,walk c t2,ontype c tyT3)

| TmUnpack(fi,tyX,x,t1,t2) →

TmUnpack(fi,tyX,x,walk c t1,walk (c+2) t2)

in walk c t

Note that tmmap takes four arguments—one more than tymap. To see why,

notice that terms may contain two different types of variables: term variables

as well as type variables embedded in type annotations in terms. So during

shifting, for example, there are two kinds of “leaves” where we may need

to do some real work: term variables and types. The ontype parameter tells

the term mapper what to do when processing a term constructor contain-

ing a type annotation, as in the TmAbs case. If we were dealing with a larger

language, there would be several more such cases.

Term shifting can be defined by giving tmmap appropriate arguments.

let termShiftAbove d c t =

tmmap

(fun fi c x n → if x>=c then TmVar(fi,x+d,n+d)

else TmVar(fi,x,n+d))

(typeShiftAbove d)

c t

let termShift d t = termShiftAbove d 0 t

On term variables, we check the cutoff and construct a new variable, just

as we did in typeShiftAbove. For types, we call the type shifting function

defined in the previous section.

25.4 Evaluation 385

The function for substituting one term into another is similar.

let termSubst j s t =

tmmap

(fun fi j x n → if x=j then termShift j s else TmVar(fi,x,n))

(fun j tyT → tyT)

j t

Note that type annotations are not changed by termSubst (types cannot con-

tain term variables, so a term substitution will never affect them).

We also need a function for substituting a type into a term—used, for ex-

ample, in the evaluation rule for type applications:

(λX.t12) [T2] -→ [X, T2]t12 (E-TappTabs)

This one can also be defined using the term mapper:

let rec tytermSubst tyS j t =

tmmap (fun fi c x n → TmVar(fi,x,n))

(fun j tyT → typeSubst tyS j tyT) j t

This time, the function that we pass to tmmap for dealing with term variables

is the identity (it just reconstructs the original term variable); when we reach

a type annotation, we perform a type-level substitution on it.

Finally, as we did for types, we define convenience functions packaging the

basic substitution functions for use by eval and typeof.

let termSubstTop s t =

termShift (-1) (termSubst 0 (termShift 1 s) t)

let tytermSubstTop tyS t =

termShift (-1) (tytermSubst (typeShift 1 tyS) 0 t)

25.4 Evaluation

The extensions to the eval function are straightforward transcriptions of the

evaluation rules introduced in Figures 23-1 and 24-1. The hard work is done

by the substitution functions defined in the previous section.

let rec eval1 ctx t = match t with

...

| TmTApp(fi,TmTAbs(_,x,t11),tyT2) →

tytermSubstTop tyT2 t11

| TmTApp(fi,t1,tyT2) →

let t1’ = eval1 ctx t1 in

TmTApp(fi, t1’, tyT2)

386 25 An ML Implementation of System F

| TmUnpack(fi,_,_,TmPack(_,tyT11,v12,_),t2) when isval ctx v12 →

tytermSubstTop tyT11 (termSubstTop (termShift 1 v12) t2)

| TmUnpack(fi,tyX,x,t1,t2) →

let t1’ = eval1 ctx t1 in

TmUnpack(fi,tyX,x,t1’,t2)

| TmPack(fi,tyT1,t2,tyT3) →

let t2’ = eval1 ctx t2 in

TmPack(fi,tyT1,t2’,tyT3)

...

25.4.1 Exercise [«]: Why is the termShift needed in the first TmUnpack case? �

25.5 Typing

The new clauses of the typeof function also follow directly from the typing

rules for type abstraction and application and for packing and opening exis-

tentials. We show the full definition of typeof, so that the new TmTAbs and

TmTApp clauses may be compared with the old clauses for ordinary abstrac-

tion and application.

let rec typeof ctx t =

match t with

TmVar(fi,i,_) → getTypeFromContext fi ctx i

| TmAbs(fi,x,tyT1,t2) →

let ctx’ = addbinding ctx x (VarBind(tyT1)) in

let tyT2 = typeof ctx’ t2 in

TyArr(tyT1, typeShift (-1) tyT2)

| TmApp(fi,t1,t2) →

let tyT1 = typeof ctx t1 in

let tyT2 = typeof ctx t2 in

(match tyT1 with

TyArr(tyT11,tyT12) →

if (=) tyT2 tyT11 then tyT12

else error fi "parameter type mismatch"

| _ → error fi "arrow type expected")

| TmTAbs(fi,tyX,t2) →

let ctx = addbinding ctx tyX TyVarBind in

let tyT2 = typeof ctx t2 in

TyAll(tyX,tyT2)

| TmTApp(fi,t1,tyT2) →

let tyT1 = typeof ctx t1 in

(match tyT1 with

TyAll(_,tyT12) → typeSubstTop tyT2 tyT12

| _ → error fi "universal type expected")

25.5 Typing 387

| TmPack(fi,tyT1,t2,tyT) →

(match tyT with

TySome(tyY,tyT2) →

let tyU = typeof ctx t2 in

let tyU’ = typeSubstTop tyT1 tyT2 in

if (=) tyU tyU’ then tyT

else error fi "doesn’t match declared type"

| _ → error fi "existential type expected")

| TmUnpack(fi,tyX,x,t1,t2) →

let tyT1 = typeof ctx t1 in

(match tyT1 with

TySome(tyY,tyT11) →

let ctx’ = addbinding ctx tyX TyVarBind in

let ctx” = addbinding ctx’ x (VarBind tyT11) in

let tyT2 = typeof ctx” t2 in

typeShift (-2) tyT2

| _ → error fi "existential type expected")

The most interesting new clause is the one for TmUnpack. It involves the

following steps. (1) We check the subexpression t1 and ensure that it has an

existential type {∃X.T11}. (2) We extend the context Γ with a type-variable

binding X and a term-variable binding x:T11, and check that t2 has some

type T2. (3) We shift the indices of free variables in T2 down by two, so that it

makes sense with respect to the original Γ . (4) We return the resulting type as

the type of the whole let...in... expression.

Clearly, if X occurs free in T2, then the shift in step (3) will yield a nonsen-

sical type containing free variables with negative indices; typechecking must

fail at this point. We can ensure this by redefining typeShiftAbove so that

it notices when it is about to construct a type variable with a negative index

and signals an error instead of returning nonsense.

let typeShiftAbove d c tyT =

tymap

(fun c x n → if x>=c then

if x+d<0 then err "Scoping error!"

else TyVar(x+d,n+d)

else TyVar(x,n+d))

c tyT

This check will report a scoping error whenever the type that we calculate

for the body t2 of an existential elimination expression let {X,x}=t1 in t2

contains the bound type variable X.

let {X,x}=({*Nat,0} as {∃X,X}) in x;
ñ Error: Scoping error!

26 Bounded Quantification

Many of the interesting issues in programming languages arise from interac-

tions between features that are relatively straightforward when considered

individually. This chapter introduces bounded quantification, which arises

when polymorphism and subtyping are combined, substantially increasing

both the expressive power of the system and its metatheoretic complexity.

The calculus we will be studying, called F<: (“F sub”), has played a central role

in programming language research since it was developed in the mid ’80s, in

particular in studies on the foundations of object-oriented programming.

26.1 Motivation

The simplest way of combining subtyping and polymorphism is to take them

as completely orthogonal features—i.e., to consider a system that is essen-

tially the union of the systems from Chapters 15 and 23. This system is the-

oretically unproblematic, and is useful for all of the reasons that subtyping

and polymorphism are individually. However, once we have both features in

the same language, it is tempting to mix them in more interesting ways. To

illustrate, let us consider a very simple example—we will see others in §26.3

and some larger and more pragmatic case studies in Chapters 27 and 32.

Suppose f is the identity function on records with a numeric field a:

f = λx:{a:Nat}. x;

ñ f : {a:Nat} → {a:Nat}

If ra is a record with an a field,

The system studied in most of this chapter is pure F<: (Figure 26-1). The examples also use

records (11-7) and numbers (8-2). The associated OCaml implementations are fullfsub and

fullfomsub. (The fullfsub checker suffices for most of the examples; fullfomsub is needed

for the ones involving type abbreviations with parameters, such as Pair.)

390 26 Bounded Quantification

ra = {a=0};

then we can apply f to ra—in any of the type systems that we have seen in

previous chapters—yielding a record of the same type.

f ra;

ñ {a=0} : {a:Nat}

Similarly, if we define a larger record rab with two fields, a and b,

rab = {a=0, b=true};

we can also apply f to rab by using the rule of subsumption (T-Sub, Figure 15-

1) to promote the type of rab to {a:Nat} to match the type expected by f.

f rab;

ñ {a=0, b=true} : {a:Nat}

However, the result type of this application has only the field a, which means

that a term like (f rab).b will be judged ill typed. In other words, by passing

rab through the identity function, we have lost the ability to access its b field!

Using the polymorphism of System F, we can write f in a different way:

fpoly = λX. λx:X. x;

ñ fpoly : ∀X. X → X

The application of fpoly to rab (and an appropriate type argument) yields

the desired result:

fpoly [{a:Nat, b:Bool}] rab;

ñ {a=0, b=true} : {a:Nat, b:Bool}

But in making the type of x into a variable, we have given up some information

that we might have wanted to use. For example, suppose we want to write a

different version of f that returns a pair of its original argument and the

numeric successor of its a field.

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)};

ñ f2 : {a:Nat} → {orig:{a:Nat}, asucc:Nat}

Again, using subtyping, we can apply f2 to both ra and rab, losing the b field

in the second case.

f2 ra;

26.2 Definitions 391

ñ {orig={a=0}, asucc=1} : {orig:{a:Nat}, asucc:Nat}

f2 rab;

ñ {orig={a=0,b=true}, asucc=1} : {orig:{a:Nat}, asucc:Nat}

But this time polymorphism offers us no solution. If we replace the type of x

by a variable X as before, we lose the constraint that x must be a record with

an a field, which is required to compute the asucc field of the result.

f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};

ñ Error: Expected record type

The fact about the operational behavior of f2 that we want to express in its

type is that it takes an argument of any record type R that includes a numeric

a field and returns as its result a record containing a field of type R and a

field of type Nat. We can use the subtype relation to express this concisely:

f2 takes an argument of any subtype R of the type {a:Nat} and returns a

record containing a field of type R and a field of type Nat. This intuition can

be formalized by introducing a subtyping constraint on the bound variable X

of f2poly.

f2poly = λX<:{a:Nat}. λx:X. {orig=x, asucc=succ(x.a)};

ñ f2poly : ∀X<:{a:Nat}. X → {orig:X, asucc:Nat}

This so-called bounded quantification is the characteristic feature of Sys-

tem F<:.

26.2 Definitions

Formally, F<: is obtained by combining the types and terms of System F from

Chapter 23 with the subtype relation from Chapter 15 and refining univer-

sal quantifiers to carry subtyping constraints. Bounded existential quantifiers

can be defined similarly, as we shall see in §26.5.

There are actually two reasonable ways of defining the subtyping relation

of F<:, differing in their formulation of the rule for comparing bounded quan-

tifiers (S-All): a more tractable but less flexible version called the kernel rule,

and a more expressive but technically somewhat problematic full subtyping

rule. We discuss both versions in detail in the following subsections, intro-

ducing the kernel variant in the first several subsections and then the full

variant in §26-1. When we need to be precise about which variant we are talk-

ing about, we call the versions of the whole system with these rules kernel F<:

and full F<:, respectively. The unqualified name F<: refers to both systems.

Figure 26-1 presents the full definition of kernel F<:, with differences from

previous systems highlighted.

392 26 Bounded Quantification

→ ∀ <: Top Based on System F (23-1) and simple subtyping (15-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

λX <:T .t type abstraction

t [T] type application

v ::= values:

λx:T.t abstraction value

λX <:T .t type abstraction value

T ::= types:

X type variable

Top maximum type

T→T type of functions

∀X <:T .T universal type

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X <:T type variable binding

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

t1 -→ t′1

t1 [T2] -→ t′1 [T2]
(E-TApp)

(λX <:T11 .t12) [T2] -→ [X, T2]t12

(E-TappTabs)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

Subtyping Γ ` S <: T

Γ ` S <: S (S-Refl)

Γ ` S <: U Γ ` U <: T

Γ ` S <: T
(S-Trans)

Γ ` S <: Top (S-Top)

X<:T ∈ Γ

Γ ` X <: T
(S-TVar)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1→S2 <: T1→T2

(S-Arrow)

Γ , X<:U1 ` S2 <: T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

(S-All)

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ , X <:T1 ` t2 : T2

Γ ` λX <:T1 .t2 : ∀X <:T1 .T2

(T-TAbs)

Γ ` t1 : ∀X <:T11 .T12 Γ ` T2 <: T11

Γ ` t1 [T2] : [X, T2]T12

(T-TApp)

Γ ` t : S Γ ` S <: T

Γ ` t : T
(T-Sub)

Figure 26-1: Bounded quantification (kernel F<:)

26.2 Definitions 393

Bounded and Unbounded Quantification

One point that is immediately obvious from this figure is that the syntax of

F<: provides only bounded quantification: the ordinary, unbounded quantifi-

cation of pure System F has disappeared. The reason for this is that we do not

need it: a bounded quantifier whose bound is Top ranges over all subtypes of

Top—that is, over all types. So we recover unbounded quantification as an

abbreviation:

∀X.T
def
= ∀X<:Top.T

We use this abbreviation frequently below.

Scoping

An important technical detail that is not obvious in Figure 26-1 concerns

the scoping of type variables. Obviously, whenever we talk about a typing

statement of the form Γ ` t : T, we intend that the free type variables in

t and T should be in the domain of Γ . But what about free type variables

appearing in the types inside Γ? In particular, which of the following contexts

should be considered to be well-scoped?

Γ1 = X<:Top, y:X→Nat

Γ2 = y:X→Nat, X<:Top

Γ3 = X<:{a:Nat,b:X}

Γ4 = X<:{a:Nat,b:Y}, Y<:{c:Bool,d:X}

Γ1 is certainly well-scoped: it introduces a type variable X and then a term

variable y whose type involves X. A term that might give rise to this context

during typechecking would have the form λX<:Top. λy:X→Nat. t, and it is

clear that the X in the type of y is bound by the enclosing λ. On the other

hand, by the same reasoning Γ2 looks wrong, since in the sort of term that

would give rise to it—e.g., λy:X→Nat. λX<:Top. t—is it not clear what the

intended scope of X is.

Γ3 is a more interesting case. We could argue that it is clear, in a term like

λX<:{a:Nat,b:X}. t, where the second X is bound. All we need to do is

to regard the scope of the binding for X as including its own upper bound

(and everything to the right of the binding, as usual). The variety of bounded

quantification incorporating this refinement is called F-bounded quantifica-

tion (Canning, Cook, Hill, Olthoff, and Mitchell, 1989b). F-bounded quantifica-

tion often appears in discussions of types for object-oriented programming,

and has been used in the GJ language design (Bracha, Odersky, Stoutamire,

and Wadler, 1998). However, its theory is somewhat more complex than that

of ordinary F<: (Ghelli, 1997; Baldan, Ghelli, and Raffaetà, 1999), and it only

394 26 Bounded Quantification

becomes really interesting when recursive types are also included in the sys-

tem (no non-recursive type X could satisfy a constraint like X<:{a:Nat,b:X}).

Yet more general contexts like Γ4, permitting mutual recursion between

type variables via their upper bounds, are not unheard of. In such calculi,

each new variable binding is generally allowed to introduce an arbitrary set

of inequations involving the new variable and all the existing ones.

We will not consider F-bounded quantification further in this book, and will

take all of Γ2, Γ3, and Γ4 to be ill-scoped. More formally, we will require that,

whenever we mention a type T in a context, the free variables of T should be

bound in the portion of the context to the left of where T appears.

Subtyping

Type variables in F<: have associated bounds (just as ordinary term variables

have associated types), and we must keep track of these bounds during both

subtyping and typechecking. We do this by changing the type bindings in

contexts to include an upper bound for each type variable. These bounds are

used during subtyping to justify steps of the form “the type variable X is a

subtype of the type T because we assumed it was.”

X<:T ∈ Γ

Γ ` X <: T
(S-TVar)

Adding this rule implies that subtyping now becomes a three-place relation—

that is, every subtyping statement will now have the form Γ ` S <: T, pro-

nounced “S is a subtype of T under assumptions Γ .” We complete this refine-

ment by adding contexts to all the other subtyping rules (see Figure 26-1).

Besides the new rule for variables, we must also add a subtyping rule

for comparing quantified types (S-All). Figure 26-1 gives the simpler vari-

ant, called the kernel rule, in which the bounds of the two quantifiers being

compared must be identical.

Γ ` U1 :: K1 Γ , X<:U1 ` S2 <: T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

(S-All)

The term “kernel” comes from Cardelli and Wegner’s original paper (1985),

where this variant of F<: was called Kernel Fun.

26.2.1 Exercise [« 3]: Draw a subtyping derivation tree showing that B→Y <: X→B

under the context Γ = B<:Top, X<:B, Y<:X. �

Typing

We must also refine the typing rules for ordinary universal types. These ex-

tensions are straightforward: in the introduction rule for bounded quanti-

26.2 Definitions 395

→ ∀ <: Top full Extends F<: (26-1)

New subtyping rules Γ ` S <: T

Γ ` T1 <: S1 Γ , X<: T1 ` S2 <: T2

Γ ` ∀X<: S1 .S2 <: ∀X<: T1 .T2

(S-All)

Figure 26-2: “Full” bounded quantification

fiers, we carry the bound from the abstraction into the context during the

typechecking of the body,

Γ , X<:T ` t2 : T2

Γ ` λX<:T.t2 : ∀X<:T.T2

(T-TAbs)

and in the elimination rule we check that the supplied type argument actually

satisfies the bound:

Γ ` t1 : ∀X<:T11.T12

Γ ` T2 <: T11

Γ ` t1 [T2] : [X, T2]T12

(T-TApp)

Full F<:

In kernel F<:, two quantified types can be compared only if their upper bounds

are identical. If we think of a quantifier as a sort of arrow type (whose ele-

ments are functions from types to terms), then the kernel rule corresponds to

a “covariant” restriction of the standard subtyping rule for arrows, in which

the domain of an arrow type is not allowed to vary in subtypes:

S2 <: T2

U→S2 <: U→T2

This restriction looks rather unnatural, both for arrows and for quantifiers.

This analogy suggests that we should refine the kernel S-All rule to allow

contravariant subtyping in the “left-hand side” of bounded quantifiers, as

shown in Figure 26-2.

Intuitively, the full version of S-All can be understood as follows. A type

T = ∀X<:T1.T2 describes a collection of functions from types to values, each

mapping subtypes of T1 to instances of T2. If T1 is a subtype of S1, then the

domain of T is smaller than that of S = ∀X<:S1.S2, so S is a stronger con-

straint and describes a smaller collection of polymorphic values. Moreover,

if, for each type U that is an acceptable argument to the functions in both col-

lections (i.e., one that satisfies the more stringent requirement U <: T1), the

396 26 Bounded Quantification

U-instance of S2 is a subtype of the U-instance of T2, then S is a “pointwise

stronger” constraint and again describes a smaller collection of values.

The system with just the kernel subtyping rule for quantified types is called

Kernel F<:. The same system with the full quantifier subtyping rule is called

Full F<:. The bare name F<: refers ambiguously to both systems.

26.2.2 Exercise [« 3]: Give a couple of examples of pairs of types that are related

by the subtype relation of full F<: but are not subtypes in kernel F<:. �

26.2.3 Exercise [««««]: Can you find any useful examples with this property? �

26.3 Examples

This section presents some small examples of programming in F<:. These ex-

amples are intended to illustrate the properties of the system, rather than

to demonstrate its practical application; larger and more sophisticated ex-

amples will be found in later chapters (27 and 32). All the examples in this

chapter work in both kernel and full F<:.

Encoding Products

In §23.4, we gave an encoding of pairs of numbers in System F. This encoding

can easily be generalized to pairs of arbitrary types: the elements of the type

Pair T1 T2 = ∀X. (T1→T2→X) → X;

represent pairs of T1 and T2. The constructor pair and the destructors fst

and snd are defined as follows. (The ascription in the definition of pair helps

the typechecker print its type in a readable form.)

pair = λX. λY. λx:X. λy:Y. (λR. λp:X→Y→R. p x y) as Pair X Y;

ñ pair : ∀X. ∀Y. X → Y → Pair X Y

fst = λX. λY. λp: Pair X Y. p [X] (λx:X. λy:Y. x);

ñ fst : ∀X. ∀Y. Pair X Y → X

snd = λX. λY. λp: Pair X Y. p [Y] (λx:X. λy:Y. y);

ñ snd : ∀X. ∀Y. Pair X Y → Y

Clearly, the same encoding can be used in F<:, since F<: contains all the fea-

tures of System F. What is more interesting, though, is that this encoding also

26.3 Examples 397

has some natural subtyping properties. In fact, the expected subtyping rule

for pairs

Γ ` S1 <: T1 Γ ` S2 <: T2

Γ ` Pair S1 S2 <: Pair T1 T2

follows directly from the encoding.

26.3.1 Exercise [« 3]: Show this. �

Encoding Records

It is interesting to observe that records and record types—including their

subtyping laws—can actually be encoded in pure F<:. The encoding presented

here was discovered by Cardelli (1992).

We begin by defining flexible tuples as follows. They are “flexible” because

they can be expanded on the right during subtyping, unlike ordinary tuples.

26.3.2 Definition: For each n ≥ 0 and types T1 through Tn, let

{Ti
i∈1..n}

def
= Pair T1 (Pair T2 ... (Pair Tn Top)...).

In particular, {}
def
= Top. Similarly, for terms t1 through tn, let

{ti
i∈1..n}

def
= pair t1 (pair t2 ... (pair tn top)...),

where we elide the type arguments to pair, for the sake of brevity. (The

term top here is just some arbitrary element of Top—i.e., an arbitrary closed,

well-typed term.) The projection t.n (again eliding type arguments) is:

fst (snd (snd... (snd
︸ ︷︷ ︸

n−1 times

t)...) �

From this abbreviation, we immediately obtain the following rules for subtyp-

ing and typing of flexible tuples.

Γ ` i∈1..nSi <: Ti

Γ ` {Si
i∈1..n+k} <: {Ti

i∈1..n}

Γ ` i∈1..nti : Ti

Γ ` {ti
i∈1..n} : {Ti

i∈1..n}

Γ ` t : {Ti
i∈1..n}

Γ ` t.i : Ti

Now, let L be a countable set of labels, with a fixed total ordering given by

the bijective function label-with-index : N→ L. We define records as follows.

398 26 Bounded Quantification

26.3.3 Definition: Let L be a finite subset of L and let Sl be a type for each l ∈ L.

Let m be the maximal index of any element of L, and

Ŝi =

{

Sl if label-with-index(i) = l ∈ L

Top if label-with-index(i) ∉ L.

The record type {l:Sl
l∈L} is defined as the flexible tuple {Ŝi

i∈1..m}. Similarly,

if tl is a term for each l : L, then

t̂i =

{

tl if label-with-index(i) = l ∈ L

top if label-with-index(i) ∉ L.

The record value {l=tl
l∈L} is {t̂i

i∈1..m}. The projection t.l is just the tuple

projection t.i, where label-with-index(i) = l. �

This encoding validates the expected rules for typing and subtyping of

records (rules S-RcdWidth, S-RcdDepth, S-RcdPerm, T-Rcd, and T-Proj from

Figures 15-2 and 15-3). However, its interest is mainly theoretical—from a

practical standpoint, the reliance on a global ordering of all field labels is

a serious drawback: it means that, in a language with separate compilation,

numbers cannot be assigned to labels on a module-by-module basis, but must

instead be assigned all at once, i.e., at link time.

Church Encodings with Subtyping

As a final illustration of the expressiveness of F<:, let’s look at what happens

when we add bounded quantification to the encoding of Church numerals in

System F (§23.4). There, the type of Church numerals was:

CNat = ∀X. (X→X) → X → X;

An intuitive anthropomorphic reading of this type is: “Tell me a result type T;

now give me a function on T and a ‘base element’ of T, and I’ll give you back

another element of T formed by iterating the function you gave me n times

over the base element you gave.”

We can generalize this by adding two bounded quantifiers and refining the

types of the parameters s and z.

SNat = ∀X<:Top. ∀S<:X. ∀Z<:X. (X→S) → Z → X;

Intuitively, this type reads: “Give me a generic result type X and two subtypes

S and Z. Now give me a function that maps from the whole set X into the

subset S and an element of the special set Z, and I’ll return you an element of

X formed by iterating the function n times over the base element.”

To see why this is interesting, consider this slightly different type:

26.3 Examples 399

SZero = ∀X<:Top. ∀S<:X. ∀Z<:X. (X→S) → Z → Z;

Although SZero has almost the same form as SNat, it says something much

stronger about the behavior of its elements, since it promises that its final

result will be an element of Z, not just of X. In fact, there is just one way that

this can happen—namely by yielding the argument z itself. In other words,

the value

szero = λX. λS<:X. λZ<:X. λs:X→S. λz:Z. z;

ñ szero : SZero

is the only inhabitant of the type SZero (in the sense that every other element

of SZero behaves the same as szero). Since SZero is a subtype of SNat, we

also have szero : SNat.

On the other hand, the similar type

SPos = ∀X<:Top. ∀S<:X. ∀Z<:X. (X→S) → Z → S;

has more inhabitants; for example,

sone = λX. λS<:X. λZ<:X. λs:X→S. λz:Z. s z;

stwo = λX. λS<:X. λZ<:X. λs:X→S. λz:Z. s (s z);

sthree = λX. λS<:X. λZ<:X. λs:X→S. λz:Z. s (s (s z));

and so on. Indeed, SPos is inhabited by all the elements of SNat except zsero.

We can similarly refine the typings of operations defined on Church nu-

merals. For example, the type system can be used to check that the successor

function always returns a positive number:

ssucc = λn:SNat.

λX. λS<:X. λZ<:X. λs:X→S. λz:Z.

s (n [X] [S] [Z] s z);

ñ ssucc : SNat → SPos

Similarly, by refining the types of its parameters, we can write the function

plus in such a way that the typechecker gives it the type SPos→SPos→SPos.

spluspp = λn:SPos. λm:SPos.

λX. λS<:X. λZ<:X. λs:X→S. λz:Z.

n [X] [S] [S] s (m [X] [S] [Z] s z);

ñ spluspp : SPos → SPos → SPos

26.3.4 Exercise [««]: Write another variant of plus, identical to the one above ex-

cept for type annotations, that has type SZero→SZero→SZero. Write one

with type SPos→SNat→SPos. �

400 26 Bounded Quantification

The previous example and exercise raise an interesting point. Clearly, we

don’t want to write several different versions of plus with different names

and then have to decide which to apply based on the expected types of its

arguments: we want to have a single version of plus whose type contains all

these possibilities—something like

plus : SZero→SZero→SZero

∧ SNat→SPos→SPos

∧ SPos→SNat→SPos

∧ SNat→SNat→SNat

where t : S∧T means “t has both type S and type T.” The desire to support

this kind of overloading has led to the study of systems combining intersec-

tion types (§15.7) with bounded quantification. See Pierce (1997b).

26.3.5 Exercise [Recommended, ««]: Following the model of SNat and friends, gen-

eralize the type CBool of Church booleans (§23.4) to a type SBool and two

subtypes STrue and SFalse. Write a function notft with type SFalse→STrue

and a similar one nottf with type STrue→SFalse. �

26.3.6 Exercise [« 3]: We observed in the introduction to this chapter that sub-

typing and polymorphism can be combined in a more straightforward and

orthogonal way than is done in F<:. We start with System F (perhaps enriched

with records, etc.) and add a subtype relation (as in the simply typed lambda-

calculus with subtyping) but leave quantification unbounded. The only exten-

sion to the subtype relation is a covariant subtyping rule for the bodies of

ordinary quantifiers:

S <: T

∀X.S <: ∀X.T

Which examples in this chapter can be formulated in this simpler system? �

26.4 Safety

The type preservation property can be established quite directly for both the

kernel and full variants of F<:. We give proofs in detail here for kernel F<:; the

argument for full F<: is very similar. When we consider subtyping and type-

checking algorithms in Chapter 28, however, the two variants will turn out

to be more different than the basic arguments in this chapter might suggest.

We will find many points where the full system is much more complex to

analyze than the kernel system, or indeed where the full system lacks useful

properties (including decidable typechecking!) enjoyed by the kernel system.

26.4 Safety 401

We begin with some preliminary technical facts about the typing and sub-

type relations. Their proofs proceed by routine induction on derivations.

26.4.1 Lemma [Permutation]: Suppose that Γ is a well-formed context and that ∆ is

a permutation of Γ—that is, ∆ has the same bindings as Γ , and their ordering

in ∆ preserves the scopes of type variables from Γ , in the sense that, if one

binding in Γ introduces a type variable that is mentioned in another binding

further to the right, then these bindings appear in the same order in ∆.

1. If Γ ` t : T, then ∆ ` t : T.

2. If Γ ` S <: T, then ∆ ` S <: T. �

26.4.2 Lemma [Weakening]:

1. If Γ ` t : T and Γ , x:U is well formed, then Γ , x:U ` t : T.

2. If Γ ` t : T and Γ , X<:U is well formed, then Γ , X<:U ` t : T.

3. If Γ ` S <: T and Γ , x:U is well formed, then Γ , x:U ` S <: T.

4. If Γ ` S <: T and Γ , X<:U is well formed, then Γ , X<:U ` S <: T. �

26.4.3 Exercise [«]: Where does the proof of weakening rely on permutation? �

26.4.4 Lemma [Strengthening for term variables in subtyping derivations]:

If Γ , x:T, ∆ ` S <: T, then Γ , ∆ ` S <: T. �

Proof: Obvious: typing assumptions play no role in subtype derivations. �

As usual, the proof of type preservation relies on several lemmas relating

substitution with the typing and subtype relations.

26.4.5 Lemma [Narrowing]:

1. If Γ , X<:Q, ∆ ` S <: T and Γ ` P <: Q, then Γ , X<:P, ∆ ` S <: T.

2. If Γ , X<:Q, ∆ ` t : T and Γ ` P <: Q, then Γ , X<:P, ∆ ` t : T.

These properties are often called narrowing because they involve restricting

(narrowing) the range of the variable X. �

Proof: Exercise [«]. �

Next, we have the usual lemma relating substitution and the typing relation.

26.4.6 Lemma [Substitution preserves typing]: If Γ , x:Q, ∆ ` t : T and Γ ` q : Q,

then Γ , ∆ ` [x, q]t : T. �

402 26 Bounded Quantification

Proof: Induction on a derivation of Γ , x:Q, ∆ ` t : T, using the properties

above. �

Since we may substitute types for type variables during reduction, we also

need a lemma relating type substitution and typing. The proof of this lemma

(specifically, the T-Sub case) depends on a new lemma relating substitution

and subtyping.

26.4.7 Definition: We write [X, S]Γ for the context obtained by substituting S for

X in the right-hand sides of all of the bindings in Γ . �

26.4.8 Lemma [Type substitution preserves subtyping]: If Γ , X<:Q, ∆ ` S <: T

and Γ ` P <: Q, then Γ , [X, P]∆ ` [X, P]S <: [X, P]T. �

Note that we need to substitute for X only in the part of the environment

that follows the binding of X, since our conventions about scoping require

that the types to the left of the binding of X do not contain X.

Proof: By induction on a derivation of Γ , X<:Q, ∆ ` S <: T. The only interest-

ing cases are the last two:

Case S-TVar: S = Y Y<:T ∈ (Γ , X<:Q, ∆)

There are two subcases to consider. If Y ≠ X, then the result is immediate from

S-TVar. On the other hand, if Y = X, then we have T = Q and [X, P]S = Q, so

the result follows by S-Refl.

Case S-All: S = ∀Z<:U1.S2 T = ∀Z<:U1.T2

Γ , X<:Q, ∆, Z<:U1 ` S2 <: T2

By the induction hypothesis, Γ , [X , P]∆, Z<:[X , P]U1 ` [X , P]S2 <: [X ,

P]T2. By S-All, Γ , [X , P]∆ ` ∀Z<:[X , P]U1.[X , P]S2 <: ∀Z<:[X ,

P]U1.[X , P]T2, that is, Γ , [X , P]∆ ` [X , P](∀Z<:U1.S2) <: [X ,

P](∀Z<:U1.T2), as required. �

A similar lemma relates type substitution and typing.

26.4.9 Lemma [Type substitution preserves typing]: If Γ , X<:Q, ∆ ` t : T and

Γ ` P <: Q, then Γ , [X, P]∆ ` [X, P]t : [X, P]T. �

Proof: By induction on a derivation of Γ , X<:Q, ∆ ` t : T. We give just the

interesting cases.

Case T-TApp: t = t1 [T2] Γ , X<:Q, ∆ ` t1 : ∀Z<:T11.T12

T = [Z, T2]T12

By the induction hypothesis, Γ , [X, P]∆ ` [X, P]t1 : [X, P](∀Z<:T11.T12),

i.e, Γ , [X , P]∆ ` [X , P]t1 : ∀Z<:T11.[X, P]T12. By T-TApp, Γ , [X , P]∆ `

[X , P]t1 [[X , P]T2] : [Z , [X , P]T2]([X , P]T12), i.e., Γ , [X , P]∆ `

[X, P](t1 [T2]) : [X, P]([Z, T2]T12).

26.4 Safety 403

Case T-Sub: Γ , X<:Q, ∆ ` t : SΓ , X<:Q, ∆ ` S <: T

By the induction hypothesis, Γ , [X , P]∆ ` [X , P]t : [X , P]T. By the

preservation of subtyping under substitution (Lemma 26.4.8), we have Γ , [X,

P]∆ ` [X, P]S <: [X, P]T, and the result follows by T-Sub. �

Next, we establish some simple structural properties of subtyping.

26.4.10 Lemma [Inversion of the subtype relation, from right to left]:

1. If Γ ` S <: X, then S is a type variable.

2. If Γ ` S <: T1→T2, then either S is a type variable or else S has the form

S1→S2, with Γ ` T1 <: S1 and Γ ` S2 <: T2.

3. If Γ ` S <: ∀X<:U1.T2, then either S is a type variable or else S has the

form ∀X<:U1.S2 with Γ , X<:U1 ` S2 <: T2. �

Proof: Part (1) is an easy induction on subtyping derivations. The only inter-

esting case is the rule S-Trans, which proceeds by two uses of the induction

hypothesis, first on the right premise and then on the left premise. The argu-

ments for the other parts are similar, using part (1) in the transitivity cases. �

26.4.11 Exercise [Recommended, ««]: Show the following “left to right inversion”

properties:

1. If Γ ` S1→S2 <: T, then either T = Top or else T = T1→T2 with Γ ` T1 <: S1

and Γ ` S2 <: T2.

2. If Γ ` ∀X<:U.S2 <: T, then either T = Top or else T = ∀X<:U.T2 with

Γ , X<:U ` S2 <: T2.

3. If Γ ` X <: T, then either T = Top or T = X or Γ ` S <: T with X<:S ∈ Γ .

4. If Γ ` Top <: T, then T = Top. �

Lemma 26.4.10 is used, in turn, to establish one straightforward structural

property of the typing relation that is needed in the critical cases of the type

preservation proof.

26.4.12 Lemma:

1. If Γ ` λx:S1.s2 : T and Γ ` T <: U1→U2, then Γ ` U1 <: S1 and there is

some S2 such that Γ , x:S1 ` s2 : S2 and Γ ` S2 <: U2.

2. If Γ ` λX<:S1.s2 : T and Γ ` T <: ∀X<:U1.U2, then U1 = S1 and there is

some S2 such that Γ , X<:S1 ` s2 : S2 and Γ , X<:S1 ` S2 <: U2. �

404 26 Bounded Quantification

Proof: Straightforward induction on typing derivations, using Lemma 26.4.10

for the induction case (rule T-Sub). �

With these facts in hand, the proof of type preservation is straightforward.

26.4.13 Theorem [Preservation]: If Γ ` t : T and t -→ t′, then Γ ` t′ : T. �

Proof: By induction on a derivation of Γ ` t : T. All of the cases are straight-

forward, using the facts established above.

Case T-Var, T-Abs, T-TAbs: t = x, t = λx:T1.t2, or t = λX<:U.t

These case cannot actually arise, since we assumed t -→ t′ and there are no

evaluation rules for variables, abstractions, or type abstractions.

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 T = T12 Γ ` t2 : T11

By the definition of the evaluation relation, there are three subcases:

Subcase: t1 -→ t′1 t′ = t′1 t2

Then the result follows from the induction hypothesis and T-App.

Subcase: t1 is a value t2 -→ t′2 t′ = t1 t
′
2

Ditto.

Subcase: t1 = λx:U11.u12 t′ = [x, t2]u12

By Lemma 26.4.12, Γ , x:U11 ` u12 : U12 for some U12 with Γ ` T11 <:

U11 and Γ ` U12 <: T12. By the preservation of typing under substitution

(Lemma 26.4.6), Γ ` [x , t2]u12 : U12, from which we obtain Γ ` [x ,

t2]u12 : T12 by T-Sub.

Case T-TApp: t = t1 [T2] Γ ` t : ∀X<:T11.T12

T = [X, T2]T12 Γ ` T2 <: T11

By the definition of the evaluation relation, there are two subcases:

Subcase: t1 -→ t′1 t′ = t′1 [T2]

The result follows from the induction hypothesis and T-TApp.

Subcase: t1 = λX<:U11.u12 t′ = [X, T2]u12

By Lemma 26.4.12, U11 = T11 and Γ , X<:U11 ` u12 : U12 with Γ , X<:U11 `

U12 <: T12. By the preservation of typing under substitution (Lemma 26.4.6),

Γ ` [X , T2]u12 : [X , T2]U12, from which Γ ` [X , T2]u12 : [X , T2]T12

follows by Lemma 26.4.8 and T-Sub.

26.4 Safety 405

Case T-Sub: Γ ` t : S Γ ` S <: T

By the induction hypothesis, Γ ` t′ : S, and the result follows by T-Sub. �

The progress theorem for F<: is a straightforward extension of the one for

the simply typed lambda-calculus with subtyping. As always, we begin by

recording a canonical forms property telling us the possible shapes of closed

values of arrow and quantifier types.

26.4.14 Lemma [Canonical Forms]:

1. If v is a closed value of type T1→T2, then v has the form λx:S1.t2.

2. If v is a closed value of type ∀X<:T1.T2, then v has the form λX<:T1.t2. �

Proof: Both parts proceed by induction on typing derivations; we give the

argument just for the second part. By inspection of the typing rules, it is

clear that the final rule in a derivation of ` v : ∀X<:T1.T2 must be either

T-TAbs or T-Sub. If it is T-TAbs, then the desired result is immediate from

the premise of the rule. So suppose the last rule is T-Sub. From the premises

of this rule, we have ` v : S and S <: ∀X<:T1.T2. From the inversion lemma

(26.4.10), we know that S has the form ∀X<:T1→S2. The result now follows

from the induction hypothesis. �

With this in hand, the proof of progress is straightforward.

26.4.15 Theorem [Progress]: If t is a closed, well-typed F<: term, then either t is a

value or else there is some t′ with t -→ t′. �

Proof: By induction on typing derivations. The variable case cannot occur

because t is closed. The two cases for lambda-abstractions are immediate,

since both term and type abstractions are values. The cases for application,

type application, and subsumption are more interesting; we show just the

latter two (term application is similar to type application).

Case T-TApp: t = t1 [T2] ` t1 : ∀X<:T11.T12

Γ ` T2 <: T11 T = [X, T2]T12

By the induction hypothesis, either t1 is a value or else it can make a step of

evaluation. If t1 can take a step, then rule E-TApp1 applies to t. Otherwise,

if t1 is a value, then part (2) of the canonical forms lemma (26.4.14) tells us

that t1 has the form λX<:T11.t12, so rule E-TAppTAbs applies to t.

Case T-Sub: Γ ` t : S Γ ` S <: T

The result follows directly from the induction hypothesis. �

26.4.16 Exercise [««« 3]: Extend the argument in this section to full F<:. �

406 26 Bounded Quantification

→ ∀ <: Top ∃ Extends F<: (26-1) and unbounded existentials (24-1)

New syntactic forms

T ::= ... types:

{∃X <:T ,T} existential type

New subtyping rules Γ ` S <: T

Γ , X<:U ` S2 <: T2

Γ ` {∃X<:U,S2} <: {∃X<:U,T2}
(S-Some)

New typing rules Γ ` t : T

Γ ` t2 : [X, U]T2 Γ ` U <: T1

Γ ` {*U,t2} as {∃X <:T1 ,T2}

: {∃X <:T1 ,T2}

(T-Pack)

Γ ` t1 : {∃X <:T11 ,T12}

Γ , X <:T11 , x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2

(T-Unpack)

Figure 26-3: Bounded existential quantification (kernel variant)

26.5 Bounded Existential Types

We can add bounds to existential types (Chapter 24) just as we have done for

universal types, obtaining bounded existentials as shown in Figure 26-3. As

with bounded universals, the subtyping rule S-Some comes in two flavors, one

where the bounds of the two quantifiers being compared must be identical,

and one where they may be different.

26.5.1 Exercise [«]: What is the full variant of S-Some? �

26.5.2 Exercise [«]: In pure System F with records and existential types (but no

subtyping), how many different ways can you find of choosing T to make

{*Nat, {a=5,b=7}} as T;

well typed? If we add subtyping and bounded existentials, do we get more? �

We saw in §24.2 how ordinary existentials can be used to implement ab-

stract data types. When we add bounds to existential quantifiers, we obtain

a corresponding refinement at the level of ADTs, dubbed partially abstract

types by Cardelli and Wegner (1985). The key intuition is that a bounded exis-

tential reveals some of the structure of its representation type to the outside

world, while keeping the exact identity of the representation type hidden.

For example, suppose we implement an ADT of counters as in §24.2, but

add the bound Counter<:Nat to the type annotation.

counterADT =

{*Nat, {new = 1, get = λi:Nat. i, inc = λi:Nat. succ(i)}}

as {∃Counter<:Nat,

{new: Counter, get: Counter→Nat, inc: Counter→Counter}};

26.5 Bounded Existential Types 407

ñ counterADT : {∃Counter<:Nat,

{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

We can use this counter ADT exactly as we did before, binding its type and

term components to the variables Counter and counter and then using the

fields of counter to perform operations on counters

let {Counter,counter} = counterADT in

counter.get (counter.inc (counter.inc counter.new));

ñ 3 : Nat

Moreover, we are now permitted to use Counter values directly as numbers:

let {Counter,counter} = counterADT in

succ (succ (counter.inc counter.new));

ñ 4 : Nat

On the other hand, we are still not able to use numbers as Counters:

let {Counter,counter} = counterADT in

counter.inc 3;

ñ Error: parameter type mismatch

In effect, in this version of the counter abstraction, we have chosen to make it

easier for the outside world to use counters by revealing their representation,

while retaining control over how counters can be created.

26.5.3 Exercise [«««]: Suppose we want to define two abstract data types, Counter

and ResetCounter, such that (1) both ADTs provide operations new, get, and

inc, (2) ResetCounter additionally provides a reset operation that takes a

counter and returns a new counter set to some fixed value, say 1, (3) clients

of the two ADTs are allowed to use a ResetCounter in place of a Counter

(i.e., we have ResetCounter <: Counter), and (4) nothing more is revealed to

clients about how counters and reset counters are represented. Can this be

accomplished using bounded existential packages? �

We can make a similar refinement of our encodings of objects in terms

of existentials from §24.2. There, the witness types of existential packages

were used to represent the types of the internal states of objects, which were

records of instance variables. By using a bounded existential in place of an

unbounded one, we can reveal the names and types of some, but not all, of

an object’s instance variables to the outside world. For example, here is a

counter object with a partially visible internal state that shows just its x field

while restricting the visibility of its (not very interesting) private field:

408 26 Bounded Quantification

c = {*{x:Nat, private:Bool},

{state = {x=5, private=false},

methods = {get = λs:{x:Nat}. s.x,

inc = λs:{x:Nat,private:Bool}.

{x=succ(s.x), private=s.private}}}}

as {∃X<:{x:Nat}, {state:X, methods: {get:X→Nat, inc:X→X}}};
ñ c : {∃X<:{x:Nat}, {state:X,methods:{get:X→Nat,inc:X→X}}}

As with our partially abstract counter ADT above, such a counter object gives

us the choice of accessing its value either by invoking its get method or by

directly reaching inside and looking at the x field of its state.

26.5.4 Exercise [««]: Show how to extend the encoding of existentials in terms of

universals from §24.3 to an encoding of bounded existentials in terms of

bounded universals. Check that the subtyping rule S-Some follows from the

encoding and the subtyping rules for bounded universals. �

26.6 Notes

CLU (Liskov et al., 1977, 1981; Schaffert, 1978; Scheifler, 1978) appears to

have been the earliest language with typesafe bounded quantification. CLU’s

notion of parameter bounds is essentially quantification-bounded quantifica-

tion (§26.2) generalized to multiple type parameters.

The idea of bounded quantification in the form presented here was in-

troduced by Cardelli and Wegner (1985) in the language Fun. Their “Kernel

Fun” calculus corresponds to our kernel F<:. Based on earlier informal ideas

by Cardelli and formalized using techniques developed by Mitchell (1984b),

Fun integrated Girard-Reynolds polymorphism (Girard, 1972; Reynolds, 1974)

with Cardelli’s first-order calculus of subtyping (1984). The original Fun was

simplified and slightly generalized by Bruce and Longo (1990), and again by

Curien and Ghelli (1992), yielding the calculus we call full F<:. The most com-

prehensive paper on bounded quantification is the survey by Cardelli, Martini,

Mitchell, and Scedrov (1994).

F<: and its relatives have been studied extensively by programming lan-

guage theorists and designers. Cardelli and Wegner’s survey paper gives the

first programming examples using bounded quantification; more are devel-

oped in Cardelli’s study of power kinds (1988a). Curien and Ghelli (1992,

Ghelli, 1990) address a number of syntactic properties of F<:. Semantic as-

pects of closely related systems have been studied by Bruce and Longo (1990),

Martini (1988), Breazu-Tannen, Coquand, Gunter, and Scedrov (1991), Car-

done (1989), Cardelli and Longo (1991), Cardelli, Martini, Mitchell, and Sce-

drov (1994), Curien and Ghelli (1992, 1991), and Bruce and Mitchell (1992).

26.6 Notes 409

F<: has been extended to include record types and richer notions of inher-

itance by Cardelli and Mitchell (1991), Bruce (Bruce, 1991), Cardelli (1992),

and Canning, Cook, Hill, Olthoff, and Mitchell (1989b). Bounded quantifica-

tion also plays a key role in Cardelli’s programming language Quest (1991,

Cardelli and Longo, 1991), in the Abel language developed at HP Labs (Can-

ning, Cook, Hill, and Olthoff, 1989a; Canning, Cook, Hill, Olthoff, and Mitchell,

1989b; Canning, Hill, and Olthoff, 1988; Cook, Hill, and Canning, 1990), and

in more recent designs such as GJ (Bracha, Odersky, Stoutamire, and Wadler,

1998), Pict (Pierce and Turner, 2000), and Funnel (Odersky, 2000).

The effect of bounded quantification on Church encodings of algebraic

datatypes (§26.3) was considered by Ghelli (1990) and by Cardelli, Martini,

Mitchell, and Scedrov (1994).

An extension of F<: with intersection types (§15.7) was studied by Pierce

(1991b, 1997b). A variant of the system with higher kinds was applied to

the modeling of object-oriented languages with multiple inheritance by Com-

pagnoni and Pierce (1996); its metatheoretic properties were analyzed by

Compagnoni (1994).

27 Case Study: Imperative Objects, Redux

Chapter 18 developed a collection of idioms in a simply typed calculus with

records, references, and subtyping, modeling the core of an imperative object-

oriented programming style. At the end of that chapter (in §18.12) we spent

some effort in improving the run-time efficiency of our objects by moving the

work of building an object’s method table from method invocation time to ob-

ject creation time. In this chapter, we use bounded quantification to further

improve the efficiency of the model.

The key idea in §18.12 was to pass a reference to the “self method ta-

ble” to a class when we call it. The class uses this reference in defining its

own methods, and we later back-patch the reference to point to the com-

pleted method table returned by the class. For example, if SetCounter and

SetCounterRep are the public interface and the internal representation type

of a class of counter objects with get, set, and inc methods,

SetCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit};

CounterRep = {x: Ref Nat};

then we can implement a class of set counters like this:

setCounterClass =

λr:CounterRep. λself: Source SetCounter.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (!self).set

(succ ((!self).get unit))};

ñ setCounterClass : CounterRep → (Source SetCounter) → SetCounter

We use the type Source SetCounter instead of Ref SetCounter for the self

parameter because, when we define a subclass of setCounterClass, this new

The examples in this chapter are terms of F<: with records (Figure 15-3), and references (13-1).

The associated OCaml implementation is fullfsubref.

412 27 Case Study: Imperative Objects, Redux

class’s self will have a different type. For example, if InstrCounter and

InstrCounterRep are the interface and representation types for a class of

instrumented counter objects,

InstrCounter = {get:Unit→Nat, set:Nat→Unit,

inc:Unit→Unit, accesses:Unit→Nat};

InstrCounterRep = {x: Ref Nat, a: Ref Nat};

then we can define the class itself as follows:

instrCounterClass =

λr:InstrCounterRep. λself: Source InstrCounter.

let super = setCounterClass r self in

{get = super.get,

set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = λ_:Unit.

!(r.a)};

ñ instrCounterClass : InstrCounterRep →

(Source InstrCounter) → InstrCounter

The type of the self parameter here is Source InstrCounter, and we need

to be able coerce from Source InstrCounter to Source SetCounter in or-

der to pass this self as the self argument of setCounterClass when we

build super. The covariant Source constructor permits this coercion, whereas

the invariant Ref constructor would not.

However, as we observed at the end of §18.12, the efficiency of this model

of classes is still not optimal. Since the same method table is associated with

every object instantiated from a given class, we ought to be able to build this

table just once, at class creation time, and re-use it every time an object is

created. This would more accurately reflect the implementation conventions

of real-world object-oriented languages, where an object does not carry any

methods but just a pointer to a data structure representing its class, which is

where the methods are actually stored.1

Another way of saying the same thing is to observe that the order of param-

eters to the classes above (first instance variables, then self) is backwards:

1. In fact, real-world object oriented-languages go one step further. Rather than calculating and

storing a complete method table, each class stores just the methods that it adds or overrides

with respect to its superclass. So the method table in our sense never gets built at all—at

method invocation time, we simply walk up the class hierarchy, starting from the actual class

of the receiver object, until we find a definition of the method we want. This kind of run-time

search poses tricky problems for a static type analysis, and we will not deal with it here.

27 Case Study: Imperative Objects, Redux 413

the self parameter is needed to build the class table, but the record of in-

stance variables r is not used until a method is actually called. If self were

the first argument, then we could compute the method table before being

passed the r argument; we could partially apply the class, once, to its self

argument, perform this computation once and for all, and make multiple

copies of the resulting method table by applying it to multiple records of in-

stance variables. Concretely, we would like to rewrite the setCounterClass

like this:

setCounterClass =

λself: Source (CounterRep→SetCounter).

λr:CounterRep.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (!self r).set

(succ ((!self r).get unit))};

ñ setCounterClass : (Source (CounterRep→SetCounter)) →

CounterRep → SetCounter

There are three significant differences between this version and the previous

one. First, the new version takes self before r. Second, the type of self

has changed from SetCounter to CounterRep→SetCounter. This change is

forced by the first, since the type of self must be the same as the type of the

method table returned by the class. And third, every use of !self in the body

of the class becomes (!self r). This change is forced by the second one.

The instantiation function for our new counters is defined like this:

newSetCounter =

let m = ref (λr:CounterRep. error as SetCounter) in

let m’ = setCounterClass m in

(m := m’;

λ_:Unit. let r = {x=ref 1} in m’ r);

ñ newSetCounter : Unit → SetCounter

Notice that the first three lines of this definition are evaluated just once,

when newSetCounter is defined. Evaluation stops at the trivial abstraction

on the last line, which can then be applied over and over to create objects;

each time, it will allocate storage for a fresh record r of instance variables

and instantiate the method table m′ with r to yield a fresh object.

Unfortunately, by rearranging setCounterClass in this way, we have in-

troduced a contravariant occurrence of the state type CounterRep, and this

comes back to haunt us when we try to define a subclass of setCounterClass.

414 27 Case Study: Imperative Objects, Redux

instrCounterClass =

λself: Source (InstrCounterRep→InstrCounter).

let super = setCounterClass self in

λr:InstrCounterRep.

{get = (super r).get,

set = λi:Nat. (r.a:=succ(!(r.a)); (super r).set i),

inc = (super r).inc,

accesses = λ_:Unit. !(r.a)};

ñ Error: parameter type mismatch

The mismatch arises in the definition of super, where we instantiate the su-

perclass setCounterClass with the same self that was passed to the sub-

class. Unfortunately, the present self is (a reference to) a function of type

InstrCounterRep→InstrCounter, which is not a subtype of CounterRep→

SetCounter because the left-hand sides of the arrows are the wrong way

around.

We can address this difficulty by rewriting setCounterClass once more,

this time using bounded quantification.

setCounterClass =

λR<:CounterRep.

λself: Source(R→SetCounter).

λr: R.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (!self r).set (succ((!self r).get unit))};

ñ setCounterClass : ∀R<:CounterRep.

(Source (R→SetCounter)) → R → SetCounter

What this change accomplishes is that it makes setCounterClass a bit less

demanding about the self parameter it is passed. Anthropomorphizing a

little, we could characterize the previous version of setCounterClass as

saying to its environment, “Please pass me a self parameter that accepts a

CounterRep as a parameter, and I will use it to build a method table that also

expects a CounterRep parameter.” The new version, says, instead, “Please

tell me the representation type R for an object that we are building; this type

must have at least an x field, because I need to use it. Then give me a (ref-

erence to a) self that accepts R as a parameter and returns a method table

with at least the methods of the SetCounter interface, and I will build and

return another of the same kind.”

We can see the effect of this change most clearly when we define the sub-

class instrCounterClass.

27 Case Study: Imperative Objects, Redux 415

instrCounterClass =

λR<:InstrCounterRep.

λself: Source(R→InstrCounter).

λr: R.

let super = setCounterClass [R] self in

{get = (super r).get,

set = λi:Nat. (r.a:=succ(!(r.a)); (super r).set i),

inc = (super r).inc,

accesses = λ_:Unit. !(r.a)};

ñ instrCounterClass : ∀R<:InstrCounterRep.

(Source (R→InstrCounter)) →

R → InstrCounter

The reason this definition works where the previous one failed lies in the

different uses of subsumption in the expression bound to super, where we

promote the type of self to make it acceptable to the superclass. Previously,

we were trying to show

Source(InstrCounterRep→InstrCounter)

<: Source(CounterRep→SetCounter),

which was false. Now all we have to show is

Source(R→InstrCounter) <: Source(R→SetCounter),

which is true.

The object creation functions for our new encoding of classes are very

similar to the old ones. For example, here is the creator for the instrumented

counter subclass.

newInstrCounter =

let m = ref (λr:InstrCounterRep. error as InstrCounter) in

let m’ = instrCounterClass [InstrCounterRep] m in

(m := m’;

λ_:Unit. let r = {x=ref 1, a=ref 0} in m’ r);

ñ newInstrCounter : Unit → InstrCounter

The only difference is that we need to instantiate instrCounterClass with

the actual type InstrCounterRep of the instance variable record. As before,

the first three lines are executed just once, at the point when the binding of

newInstrCounter is made.

Finally, here are a few tests to demonstrate that our counters are behaving

the way we expect.

416 27 Case Study: Imperative Objects, Redux

ic = newInstrCounter unit;

ic.inc unit;

ic.get unit;

ñ 2 : Nat

ic.accesses unit;

ñ 1 : Nat

27.1 Exercise [Recommended, «««]: Our new encoding of classes relies on the

covariance of the Source type constructor. Is it possible to achieve the same

efficiency (i.e., to give a well-typed encoding of classes with the same op-

erational behavior) in a language with just bounded quantification and the

invariant Ref constructor? �

28 Metatheory of Bounded Quantification

In this chapter we develop subtyping and typechecking algorithms for F<:.

We study both the kernel and the full variants of the system, which behave

somewhat differently. Some properties are enjoyed by both but harder to

prove for the full variant, while others are lost outright in full F<:—the price

we pay for the extra expressiveness of this system.

We first present a typechecking algorithm that works for both systems in

§28.1 and §28.2. Then we consider subtype checking, taking first the kernel

system in §28.3 and then the full system in §28.4. §28.5 continues the discus-

sion of subtyping in full F<:, focusing on the surprising fact that the subtype

relation is undecidable. §28.6 shows that the kernel system has joins and

meets, while the full system does not. §28.7 touches on some issues raised

by bounded existentials, and §28.8 considers the effects of adding a minimal

Bot type.

28.1 Exposure

In the typechecking algorithm in §16.2 for the simply typed lambda-calculus

with subtyping, the key idea was to calculate a minimal type for each term

from the minimal types of its subterms. We can use the same basic idea for

F<:, but we need to take into account one small complication arising from the

presence of type variables in the system. Consider the term

f = λX<:Nat→Nat. λy:X. y 5;

ñ f : ∀X<:Nat→Nat. X → Nat

This term is clearly well typed, since the type of the variable y in the applica-

tion y 5 can be promoted to Nat→Nat by T-Sub. But the minimal type of y is

The system studied in this chapter is pure F<: (Figure 26-1). The corresponding implementa-

tion is purefsub; the fullfsub implementation also includes existentials (24-1) and several

extensions from Chapter 11.

418 28 Metatheory of Bounded Quantification

→ ∀ <: Top

Exposure Γ ñ̀ T ⇑ T′

X<:T ∈ Γ Γ ñ̀ T ⇑ T′

Γ ñ̀ X ⇑ T′
(XA-Promote)

T is not a type variable

Γ ñ̀ T ⇑ T
(XA-Other)

Figure 28-1: Exposure Algorithm for F<:

X, which is not an arrow type. In order to find the minimal type of the whole

application, we need to find the smallest arrow type that y possesses—i.e.,

the minimal arrow type that is a supertype of the type variable X. Not too

surprisingly, we can find this type by promoting the minimal type of y until

it becomes something other than a type variable.

Formally, we write Γ ` S ⇑ T (pronounced “S exposes to T under Γ”) to mean

“T is the least nonvariable supertype of S.” Exposure is defined by repeated

promotion of variables, as shown in Figure 28-1.

It is easy to see that these rules define a total function. Moreover, the result

of exposing a type is always the least supertype that has some shape other

than a variable. For example, if Γ = X<:Top, Y<:Nat→Nat, Z<:Y, W<:Z, then:

Γ ` Top ⇑ Top Γ ` Y ⇑ Nat→Nat Γ ` W ⇑ Nat→Nat

Γ ` X ⇑ Top Γ ` Z ⇑ Nat→Nat

The essential properties of exposure can be summarized as follows.

28.1.1 Lemma [Exposure]: Suppose Γ ` S ⇑ T. Then:

1. Γ ` S <: T.

2. If Γ ` S <: U and U is not a variable, then Γ ` T <: U. �

Proof: Part (1) goes by induction on a derivation of Γ ` S ⇑ T, part (2) by

induction on a derivation of Γ ` S <: U. �

28.2 Minimal Typing

The algorithm for calculating minimal types is now built along the same lines

as the one for the simply typed lambda-calculus with subtyping, with one

additional twist: when we typecheck an application, we calculate the minimal

type of the left-hand side and then expose this type to obtain an arrow type, as

28 Metatheory of Bounded Quantification 419

→ ∀ <: Top Extends λ
<:

(16-3)

Algorithmic typing Γ ñ̀ t : T

x:T ∈ Γ

Γ ñ̀ x : T
(TA-Var)

Γ , x:T1
ñ̀ t2 : T2

Γ ñ̀ λx:T1.t2 : T1→T2

(TA-Abs)

Γ ñ̀ t1 : T1 Γ ñ̀ T1 ⇑ (T11→T12)

Γ ñ̀ t2 : T2 Γ ñ̀ T2 <: T11

Γ ñ̀ t1 t2 : T12

(TA-App)

Γ , X <:T1
ñ̀ t2 : T2

Γ ñ̀ λX <:T1 .t2 : ∀X <:T1 .T2

(TA-TAbs)

Γ ñ̀ t1 : T1 Γ ñ̀ T1 ⇑ ∀X<:T11.T12

Γ ñ̀ T2 <: T11

Γ ñ̀ t1 [T2] : [X, T2]T12

(TA-TApp)

Figure 28-2: Algorithmic typing for F<:

shown in Figure 28-2. If the exposure of the left-hand side does not yield an

arrow type, then rule TA-App does not apply and the application is ill-typed.

Similarly, we typecheck a type application by exposing its left-hand side to

obtain a quantified type.

The soundness and completeness of this algorithm with respect to the

original typing rules are easy to show. We give the proof for kernel F<: (the

argument for full F<: is similar; cf. Exercise 28.2.3).

28.2.1 Theorem [Minimal typing]:

1. If Γ ñ̀ t : T, then Γ ` t : T.

2. If Γ ` t : T, then Γ ñ̀ t : M with Γ ` M <: T. �

Proof: Part (1) is a straightforward induction on algorithmic derivations,

using part (1) of Lemma 28.1.1 for the application cases. Part (2) goes by

induction on a derivation of Γ ` t : T, with a case analysis on the final rule

used in the derivation. The most interesting cases are those for T-App and

T-TApp.

Case T-Var: t = x x:T ∈ Γ

By TA-Var, Γ ñ̀ x : T. By S-Refl, Γ ` T <: T.

Case T-Abs: t = λx:T1.t2 Γ , x:T1 ` t2 : T2 T = T1→T2

By the induction hypothesis, Γ , x:T1
ñ̀ t2 : M2 for some M2 with Γ , x:T1 `

M2 <: T2—i.e., with Γ ` M2 <: T2, since subtyping does not depend on term

variable bindings in the context (Lemma 26.4.4). By TA-Abs, Γ ñ̀ t : T1→M2.

By S-Refl and S-Arrow, Γ ` T1→M2 <: T1→T2.

420 28 Metatheory of Bounded Quantification

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 T = T12 Γ ` t2 : T11

From the induction hypothesis, we obtain Γ ñ̀ t1 : M1 and Γ ñ̀ t2 : M2, with

Γ ` M1 <: T11→T12 and Γ ` M2 <: T11. Let N1 be the least nonvariable supertype

of M1—i.e., Γ ` M1 ⇑ N1. By part (2) of Lemma 28.1.1, Γ ` N1 <: T11→T12. Since

we know that N1 is not a variable, the inversion lemma for the subtype relation

(26.4.10) tells us that N1 = N11→N12, with Γ ` T11 <: N11 and Γ ` N12 <: T12. By

transitivity, Γ ` M2 <: N11, so rule TA-App applies to give us Γ ñ̀ t1 t2 : N12,

which satisfies the requirements.

Case T-TAbs: t = λX<:T1.t2 Γ , X<:T1 ` t2 : T2 T = ∀X<:T1.T2

By the induction hypothesis, Γ , X<:T1
ñ̀ t2 : M2 for some M2 with Γ , X<:T1 `

M2 <: T2. By TA-TAbs, Γ ñ̀ t : ∀X<:T1.M2. By S-All, Γ ` ∀X<:T1.M2 <:

∀X<:T1.T2.

Case T-TApp: t = t1 [T2] Γ ` t1 : ∀X<:T11.T12

T = [X, T2]T12 Γ ` T2 <: T11

By the induction hypothesis, we have Γ ñ̀ t1 : M1, with Γ ` M1 <: ∀X<:T11.T12.

Let N1 be the least nonvariable supertype of M1—i.e., Γ ` M1 ⇑ N1. By the ex-

posure lemma (28.1.1), Γ ` N1 <: ∀X<:T11.T12. But we know that N1 is not

a variable, so the inversion lemma for the subtype relation (26.4.10) tells us

that N1 = ∀X<:T11.N12, with Γ , X<:T11 ` N12 <: T12. Rule TA-TApp gives us

Γ ñ̀ t1 [T2] : [X, T2]N12, and the preservation of subtyping under substitu-

tion (Lemma 26.4.8) yields Γ ` [X, T2]N12 <: [X, T2]T12 = T.

Case T-Sub: Γ ` t : S Γ ` S <: T

By the induction hypothesis, Γ ñ̀ t : M with Γ ` M <: S. By transitivity,

Γ ` M <: T. �

28.2.2 Corollary [Decidability of typing]: The kernel F<: typing relation is de-

cidable, given a decision procedure for the subtype relation. �

Proof: For any Γ and t, we can check whether there is some T such that Γ `

t : T by using the algorithmic typing rules to generate a proof of Γ ñ̀ t : T.

If we succeed, then this T is also a type for t in the original typing relation,

by part (1) of 28.2.1. If not, then part (2) of 28.2.1 implies that t has no

type in the original typing relation. Finally, note that the algorithmic typing

rules correspond to a terminating algorithm, since they are syntax directed

(at most one applies to a given term t) and they always reduce the size of t

when read from bottom to top. �

28.2.3 Exercise [««]: Where do the proofs above need to be changed for full F<:? �

28 Metatheory of Bounded Quantification 421

28.3 Subtyping in Kernel F<:

In §16.1, we remarked that the declarative subtype relation for the simply

typed lambda-calculus with subtyping is not syntax directed—i.e., it cannot be

read directly as a subtyping algorithm—for two reasons: (1) the conclusions

of S-Refl and S-Trans overlap with the other rules (so, reading the rules

from bottom to top, we would not know which one to try to apply), and (2)

the premises of S-Trans mention a metavariable that does not appear in the

conclusion (which a naive algorithm would have to somehow “guess”). We

saw that these problems can be fixed by simply dropping the two offending

rules from the system, but that, before doing so, we must fix up the system a

little by combining the three separate record subtyping rules into one.

For kernel F<:, the story is similar. Again, the offending rules are S-Refl and

S-Trans, and we obtain an algorithm by dropping these rules and fixing up

the remaining rules a little to account for the essential uses of the dropped

rules.

In the simply typed lambda-calculus with subtyping, there were no essen-

tial uses of the reflexivity rule—we could just drop it without changing the

set of derivable subtyping statements (Lemma 16.1.2, part 1). In F<:, on the

other hand, subtyping statements of the form Γ ` X <: X can be proved only

by reflexivity. So, when we remove the full reflexivity rule, we should add in

its place a restricted reflexivity axiom that applies only to variables.

Γ ` X <: X

Similarly, to eliminate S-Trans, we must first understand which of its uses

are essential. Here, the interesting interaction is with the S-TVar rule, which

allows assumptions about type variables to be used in deriving subtyping

statements. For example, if Γ = W<:Top, X<:W, Y<:X, Z<:Y, then the statement

Γ ` Z <: W cannot be proved if S-Trans is removed from the system. An in-

stance of S-Trans whose left-hand subderivation is an instance of the axiom

S-TVar, as in

Z <: Y ∈ Γ
(S-TVar)

Γ ` Z <: Y

...

Γ ` Y <: W
(S-Trans)

Γ ` Z <: W

cannot, in general, be eliminated.

Fortunately, derivations of this form are the only essential uses of transi-

tivity in subtyping. This observation can be made precise by introducing a

new subtyping rule

X<:U ∈ Γ Γ ` U <: T

Γ ` X <: T

422 28 Metatheory of Bounded Quantification

→ ∀ <: Top Extends λ
<:

(16-2)

Algorithmic subtyping Γ ñ̀ S <: T

Γ ñ̀ S <: Top (SA-Top)

Γ ñ̀ X <: X (SA-Refl-TVar)

X<:U ∈ Γ Γ ñ̀ U <: T

Γ ñ̀ X <: T
(SA-Trans-TVar)

Γ ñ̀ T1 <: S1 Γ ñ̀ S2 <: T2

Γ ñ̀ S1→S2 <: T1→T2

(SA-Arrow)

Γ , X<:U1
ñ̀ S2 <: T2

Γ ñ̀ ∀X<:U1.S2 <:∀X<:U1.T2

(SA-All)

Figure 28-3: Algorithmic subtyping for kernel F<:

that captures exactly this pattern of variable lookup followed by transitivity,

and showing that replacing the transitivity and variable rules by this one does

not change the set of derivable subtyping statements.

These changes lead us to the algorithmic subtype relation for kernel F<:,

shown in Figure 28-3. We add an arrowhead to the turnstile symbol in al-

gorithmic typing statements so that we can distinguish them from original

typing statements in discussions involving both.

The fact that the new SA-Refl-TVar and SA-Trans-TVar rules are suffi-

cient replacements for the old reflexivity and transitivity rules is captured by

the next two lemmas.

28.3.1 Lemma [Reflexivity of the algorithmic subtype relation]: Γ ñ̀ T <: T is

provable for every Γ and T. �

Proof: By induction on T. �

28.3.2 Lemma [Transitivity of the algorithmic subtype relation]: If Γ ñ̀ S <:

Q and Γ ñ̀ Q <: T, then Γ ñ̀ S <: T. �

Proof: By induction on the sum of the sizes of the two derivations. Given two

derivations, we proceed by a case analysis of the final rules in both.

If the right-hand derivation is an instance of SA-Top, then we are done,

since Γ ` S <: Top by SA-Top. If the left-hand derivation is an instance of

SA-Top, then Q = Top and by looking at the algorithmic rules we see that the

right-hand derivation must also be an instance of SA-Top.

If either derivation is an instance of SA-Refl-TVar, then we are again done

since the other derivation is exactly the desired result.

If the left-hand derivation ends with an instance of SA-Trans-TVar, then

S = Y with Y<:U ∈ Γ and we have a subderivation with conclusion Γ ` U <: Q.

28 Metatheory of Bounded Quantification 423

By the induction hypothesis, Γ ñ̀ U <: T, and, by SA-Trans-TVar again, Γ ñ̀

Y <: T, as required.

If the left-hand derivation ends with an instance of SA-Arrow, then we

have S = S1→S2 and Q = Q1→Q2, with subderivations Γ ñ̀ Q1 <: S1 and

Γ ñ̀ S2 <: Q2. But since we have already considered the case where the right-

hand derivation is SA-Top, the only remaining possibility is that this deriva-

tion also ends with SA-Arrow; we therefore have T = T1→T2 and two more

subderivations Γ ñ̀ T1 <: Q1 and Γ ñ̀ Q2 <: T2. We now apply the induction

hypothesis twice, obtaining Γ ñ̀ T1 <: S1 and Γ ñ̀ S2 <: T2. SA-Arrow now

yields Γ ñ̀ S1→S2 <: T1→T2, as required.

If the case where the left-hand derivation ends with an instance of SA-All,

the argument is similar. We have S = ∀X<:U1.S2 and Q = ∀X<:U1.Q2, with

a subderivation Γ , X<:U1
ñ̀ S2 <: Q2. But again, since we have already con-

sidered the case where the right-hand derivation is SA-Top, it must end with

SA-All; so T = ∀X<:U1.T2 with a subderivation Γ , X<:U1
ñ̀ Q2 <: T2. We apply

the induction hypothesis to obtain Γ , X<:U1
ñ̀ S2 <: T2, and SA-All to obtain

Γ ñ̀ ∀X<:U1.S2 <: ∀X<:U1.T2. �

28.3.3 Theorem [Soundness and completeness of algorithmic subtyping]: Γ `

S <: T iff Γ ñ̀ S <: T. �

Proof: Both directions proceed by induction on derivations. Soundness (⇐)

is routine. Completeness (⇒) relies on Lemmas 28.3.1 and 28.3.2. �

Finally, we need to check that the subtyping rules define an algorithm that

is total—i.e., that terminates on all inputs. We do this by assigning a weight

to each subtyping statement and checking that the algorithmic rules all have

conclusions with strictly greater weight than their premises.

28.3.4 Definition: The weight of a type T in a context Γ , written weightΓ (T), is

defined as follows:

weightΓ (X) = weightΓ1(U)+ 1 if Γ = Γ1, X<:U, Γ2
weightΓ (Top) = 1

weightΓ (T1→T2) = weightΓ (T1)+weightΓ (T2)+ 1

weightΓ (∀X<:T1.T2) = weightΓ , X<:T1
(T2)+ 1

The weight of a subtyping statement Γ ` S <: T is the maximum weight of S

and T in Γ . �

28.3.5 Theorem: The subtyping algorithm terminates on all inputs. �

Proof: The weight of the conclusion in an instance of any of the algorithmic

subtyping rules is strictly greater than the weight of any of the premises. �

28.3.6 Corollary: Subtyping in kernel F<: is decidable. �

424 28 Metatheory of Bounded Quantification

→ ∀ <: Top full Extends 28-3

Algorithmic subtyping Γ ñ̀ S <: T

Γ ñ̀ S <: Top (SA-Top)

Γ ñ̀ X <: X (SA-Refl-TVar)

X<:U ∈ Γ Γ ñ̀ U <: T

Γ ñ̀ X <: T
(SA-Trans-TVar)

Γ ñ̀ T1 <: S1 Γ ñ̀ S2 <: T2

Γ ñ̀ S1→S2 <: T1→T2

(SA-Arrow)

Γ ñ̀ T1 <: S1 Γ , X<: T1
ñ̀ S2 <: T2

Γ ñ̀ ∀X<: S1 .S2 <:∀X<: T1 .T2

(SA-All)

Figure 28-4: Algorithmic subtyping for full F<:

28.4 Subtyping in Full F<:

The subtype checking algorithm for full F<:, summarized in Figure 28-4, is

nearly the same as for kernel F<:: the only change is replacing SA-All with its

more flexible variant. As with kernel F<:, the soundness and completeness of

this algorithmic relation with respect to the original subtype relation follow

directly from the fact that the algorithmic relation is reflexive and transitive.

For reflexivity, the argument is exactly the same as before, but transitivity

is a bit more delicate. To see why, recall the proof of transitivity for kernel

F<: from the previous section (Lemma 28.3.2). The idea there was to take

two subtyping derivations ending with the statements Γ ` S <: Q and Γ `

Q <: T, and to show how to rearrange and reassemble their subderivations to

construct a derivation of Γ ` S <: T without using the transitivity rule, given

(as an induction hypothesis) that it is possible to do the same with pairs of

smaller derivations. Now, suppose we have two derivations ending with the

new SA-All rule:
...

Γ ` Q1 <: S1

...

Γ , X<:Q1 ` S2 <: Q2

Γ ` ∀X<:S1.S2 <: ∀X<:Q1.Q2

...

Γ ` T1 <: Q1

...

Γ , X<:T1 ` Q2 <: T2

Γ ` ∀X<:Q1.Q2 <: ∀X<:T1.T2

Following the pattern of the earlier proof, we would like to use the induction

hypothesis to combine the left- and right-hand subderivations and finish with

a single use of SA-All with the conclusion Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2. For

the left-hand subderivations, there is no problem; the induction hypothesis

gives us a transitivity-free derivation of Γ ` T1 <: S1. For the right-hand

subderivations, however, the induction hypothesis does not apply because

the contexts in the subderivations are different—the upper bound for X is Q1

in one and T1 in the other.

28 Metatheory of Bounded Quantification 425

Fortunately, we know a way to make the contexts the same: the narrowing

property from Chapter 26 (Lemma 26.4.5) tells us that a valid subtyping state-

ment remains valid if we replace a bound in the context by one of its subtypes.

So it would seem we can just narrow the subderivation of Γ , X<:Q1 ` S2 <: Q2

to Γ , X<:T1 ` S2 <: Q2, thereby enabling the induction hypothesis.

However, we need to be a little careful. Lemma 26.4.5 shows that we can

take any derivation and construct a derivation with a narrowed conclusion,

but it does not guarantee that the new derivation will be the same size as

the old one. Indeed, if we examine the lemma’s proof, it is clear that narrow-

ing generally yields a bigger derivation, since it involves splicing in a copy of

an arbitrarily large derivation at each place where the S-TVar axiom is used

to look up the variable being narrowed. Moreover, this splicing operation in-

volves creating new instances of transitivity, which is precisely the rule that

we are trying to show is admissible in the present system.

The solution to these difficulties is to prove transitivity and narrowing to-

gether, using an induction hypothesis based on the size of the intermediate

type Q in the transitivity property and the original bound Q in the narrowing

property.

We preface this argument with an easy lemma recording the fact that per-

muting the order or adding fresh type variable bindings to the context does

not invalidate any derivable subtyping statements.

28.4.1 Lemma [Permutation and weakening]:

1. Suppose that Γ is a well-formed permutation of Γ (cf. 26.4.1). If Γ ñ̀ S <: T,

then ∆ ñ̀ S <: T.

2. If Γ ñ̀ S <: T and dom(∆)∩ dom(Γ) = ∅, then Γ , ∆ ñ̀ S <: T. �

Proof: Routine inductions. Part (1) is used in the SA-All case of part (2). �

28.4.2 Lemma [Transitivity and narrowing for full F<:]:

1. If Γ ñ̀ S <: Q and Γ ñ̀ Q <: T, then Γ ñ̀ S <: T.

2. If Γ , X<:Q, ∆ ñ̀ M <: N and Γ ñ̀ P <: Q then Γ , X<:P, ∆ ñ̀ M <: N. �

Proof: The two parts are proved simultaneously, by induction on the size of

Q. At each stage of the induction, the argument for part (2) assumes that part

(1) has been established already for the Q in question; part (1) uses part (2)

only for strictly smaller Qs.

1. We proceed by an inner induction on the size of the first given derivation,

with a case analysis on the final rules in both derivations. All but one of the

426 28 Metatheory of Bounded Quantification

cases are like the proof of Lemma 28.3.2; the difference is in the SA-All

case.

If the right-hand derivation is an instance of SA-Top, then we are done,

since Γ ` S <: Top by SA-Top. If the left-hand derivation is an instance of

SA-Top, then Q = Top, and, inspecting the algorithmic rules, we see that

the right-hand derivation must also be an instance of SA-Top. If either

derivation is an instance of SA-Refl-TVar, then we are again done, since

the other derivation is exactly the desired result.

If the left-hand derivation ends with an instance of SA-Trans-TVar, then

we have S = Y with Y<:U ∈ Γ and a subderivation of Γ ` U <: Q. By the

inner induction hypothesis, Γ ñ̀ U <: T, and, by SA-Trans-TVar again,

Γ ñ̀ Y <: T, as required.

If the left-hand derivation ends with an instance of SA-Arrow or SA-All,

then, since we have already considered the case where the right-hand

derivation ends with SA-Top, it must end with the same rule as the left.

If this rule is SA-Arrow, then we have S = S1→S2, Q = Q1→Q2, and T =

T1→T2, with subderivations Γ ñ̀ Q1 <: S1, Γ ñ̀ S2 <: Q2, Γ ñ̀ T1 <: Q1, and

Γ ñ̀ Q2 <: T2. We apply part (1) of the outer induction hypothesis twice

(noting that Q1 and Q2 are both smaller than Q) to obtain Γ ñ̀ T1 <: S1 and

Γ ñ̀ S2 <: T2, and then use SA-Arrow to obtain Γ ñ̀ S1→S2 <: T1→T2.

In the case where the two derivations end with SA-All, we have S =

∀X<:S1.S2, Q = ∀X<:Q1.Q2, and T = ∀X<:T1.T2, with

Γ ñ̀ Q1 <: S1 Γ , X<:Q1
ñ̀ S2 <: Q2

Γ ñ̀ T1 <: Q1 Γ , X<:T1
ñ̀ Q2 <: T2

as subderivations. By part (1) of the outer induction hypothesis (Q1 being

smaller than Q), we can combine the two subderivations for the bounds

to obtain Γ ñ̀ T1 <: S1. For the bodies, we need to work a little harder,

since the two contexts do not quite agree. We first use part (2) of the outer

induction hypothesis (noting again that Q1 is smaller than Q) to narrow the

bound of X in the derivation of Γ , X<:Q1
ñ̀ S2 <: Q2, obtaining Γ , X<:T1

ñ̀

S2 <: Q2. Now part (1) of the outer induction hypothesis applies (Q2 being

smaller than Q), yielding Γ , X<:T1
ñ̀ S2 <: T2. Finally, by SA-All, Γ ñ̀

∀X<:S1.S2 <: ∀X<:T1.T2.

2. We again proceed by an inner induction on the size of the first given

derivation, with a case analysis on the final rule of this derivation. Most

of the cases proceed by straightforward use of the inner induction hy-

pothesis. The interesting case is SA-Trans-TVar with M = X and we have

28 Metatheory of Bounded Quantification 427

Γ , X<:Q, ∆ ñ̀ Q <: N as a subderivation. Applying the inner induction hy-

pothesis to this subderivation yields Γ , X<:P, ∆ ñ̀ Q <: N. Also, applying

weakening (Lemma 28.4.1, part 2) to the second given derivation yields

Γ , X<:P, ∆ ñ̀ P <: Q. Now, by part (1) of the outer induction hypothesis

(with the same Q), we have Γ , X<:P, ∆ ñ̀ P <: N. Rule SA-Trans-TVar yields

Γ , X<:P, ∆ ñ̀ X <: N, as required. �

28.4.3 Exercise [«««« 3]: There is another reasonable variant of the quantifier

subtyping rule that is a bit more flexible than the kernel F<: rule but sub-

stantially less so than the full F<: rule:

Γ ` S1 <: T1 Γ ` T1 <: S1 Γ , X<:T1 ` S2 <: T2

Γ ` ∀X<:S1.S2 <: ∀X<:T1.T2

(S-All)

This rule is close to the kernel F<: variant, but instead of requiring that the

bounds of the two quantifiers be syntactically identical, it demands only that

they be equivalent—each a subtype of the other. The difference between the

kernel rule and this one actually appears only when we enrich the language

with some construct whose subtyping rules generate non-trivial equivalence

classes, such as records. For example, in pure kernel F<: with records, the type

∀X<:{a:Top,b:Top}.X would not be a subtype of ∀X<:{b:Top,a:Top}.X,

whereas with the above rule it would be. Is subtyping decidable for the system

with this rule? �

28.5 Undecidability of Full F<:

We established in the previous section that the algorithmic subtyping rules

for full F<: are sound and complete—that is, that the smallest relation closed

under these rules contains the same statements as the smallest relation closed

under the original declarative rules. This leaves the question of whether an

algorithm implementing these rules terminates on all inputs. Unfortunately—

and, to many people at the time this was discovered, quite surprisingly—it

does not.

28.5.1 Exercise [«]: If the algorithmic rules for full F<: do not define an algorithm

that always terminates, then clearly the proof of termination for the kernel

F<: algorithm cannot be carried over to the rules for the full system. Precisely

where does it break down? �

Here is an example, due to Ghelli (1995), that makes the subtyping algo-

rithm diverge. We first define the following abbreviation:

¬S
def
= ∀X<:S.X.

428 28 Metatheory of Bounded Quantification

The crucial property of the ¬ operator is that it allows the left- and right-hand

sides of subtyping statements to be swapped.

28.5.2 Fact: Γ ` ¬S <: ¬T iff Γ ` T <: S. �

Proof: Exercise [«« 3]. �

Now, define a type T as follows:

T = ∀X<:Top. ¬(∀Y<:X.¬Y).

If we use the algorithmic subtyping rules bottom-to-top to attempt to con-

struct a subtyping derivation for the statement

X0<:T ñ̀ X0 <: ∀X1<:X0.¬X1

we end up in an infinite regress of larger and larger subgoals:

X0<:T ñ̀ X0 <: ∀X1<:X0.¬X1

X0<:T ñ̀ ∀X1<:Top. ¬(∀X2<:X1.¬X2) <: ∀X1<:X0.¬X1

X0<:T, X1<:X0
ñ̀ ¬(∀X2<:X1.¬X2) <: ¬X1

X0<:T, X1<:X0
ñ̀ X1 <: ∀X2<:X1.¬X2

X0<:T, X1<:X0
ñ̀ X0 <: ∀X2<:X1.¬X2

etc.

The renaming steps necessary to maintain the well-formedness of the con-

text when new variables are added are performed tacitly here, choosing new

names so as to clarify the pattern of regress. The crucial trick is the “re-

bounding” that occurs, for instance, between the second and third lines,

where the bound of X1 on the left-hand side changes from Top in line 2 to

X0 in line 3. Since the whole left-hand side in line 2 is itself the upper-bound

of X0, this re-bounding creates a cyclic pattern where longer and longer chains

of variables in the context must be traversed on each loop. (The reader is cau-

tioned not to look for semantic intuitions behind this example; in particular,

¬T is a negation only in a syntactic sense.)

Worse yet, not only does this particular algorithm fail to terminate on some

inputs, it can be shown (Pierce, 1994) that there is no algorithm that is sound

and complete for the original full F<: subtype relation and that terminates on

all inputs. The proof of this fact is too large for this book. However, to get a

sense of its flavor, let’s look at one more example.

28.5.3 Definition: The positive and negative occurrences in a type T are defined as

follows. T itself is a positive occurrence in T. If T1→T2 is a positive (respec-

tively, negative) occurrence, then T1 is a negative (resp. positive) occurrence

28 Metatheory of Bounded Quantification 429

and T2 is a positive (negative) occurrence. If ∀X<:T1.T2 is a positive (respec-

tively, negative) occurrence, then T1 is a negative (resp. positive) occurrence

and T2 is a positive (negative) occurrence. The positive and negative occur-

rences in a subtyping statement Γ ` S <: T are defined as follows: the type S

and the bounds of type variables in Γ are negative occurrences. The type T is

a positive occurrence. �

The words “positive” and “negative” come from logic. According to the well-

known Curry-Howard correspondence between propositions and types (§9.4),

the type S→T corresponds to the logical proposition S ⇒ T, which, by the

definition of logical implication, is equivalent to ¬S ∨ T. The subproposition

S here is obviously in a “negative” position—that is, inside of an odd number

of negations—if and only if the whole implication appears inside an even

number of negations. Note that a positive occurrence in T corresponds to a

negative occurrence in ¬T.

28.5.4 Fact: If X occurs only positively in S and negatively in T, then X<:U ` S <: T

iff ` [X, U]S <: [X, U]T. �

Proof: Exercise [«« 3]. �

Now, let T be the following type

T = ∀X0<:Top.∀X1<:Top.∀X2<:Top.

¬(∀Y0<:X0.∀Y1<:X1.∀Y2<:X2.¬X0)

and consider the subtyping statement

` T <: ∀X0<:T.∀X1<:P.∀X2<:Q.

¬(∀Y0<:Top.∀Y1<:Top.∀Y2<:Top.

¬(∀Z0<:Y0.∀Z1<:Y2.∀Z2<:Y1. U)).

We can think of this statement as a description of the state of a simple com-

puter. The variables X1 and X2 are the “registers” of this machine. Their cur-

rent contents are the types P and Q. The “instruction stream” of the machine

is the third line: the first instruction is encoded in the bounds (Y2 and Y1—

note their order) of the variables Z1 and Z2, and the unspecified type U is the

remaining instructions in the program. The type T, the nested negations, and

the bound variables X0 and Y0 here play much the same role as their coun-

terparts in the simpler example above: they allow us to “turn the crank” and

get back to a subgoal of the same shape as the original goal. One turn of the

crank will correspond to one cycle of our machine.

In this example, the instruction at the front of the instruction stream en-

codes the command “switch the contents of registers 1 and 2.” To see this,

430 28 Metatheory of Bounded Quantification

we use the two facts stated above to calculate as follows. (The values P and Q

in the two registers are highlighted, to make them easier to follow.)

` T

<: ∀X0<:T.∀X1<: P .∀X2<: Q .

¬(∀Y0<:Top.∀Y1<:Top.∀Y2<:Top.

¬(∀Z0<:Y0.∀Z1<:Y2.∀Z2<:Y1. U))

iff ` ¬(∀Y0<:T.∀Y1<: P .∀Y2<: Q .¬T)

<: ¬(∀Y0<:Top.∀Y1<:Top.∀Y2<:Top.

¬(∀Z0<:Y0.∀Z1<:Y2.∀Z2<:Y1. U))

by Fact 28.5.4

iff ` (∀Y0<:Top.∀Y1<:Top.∀Y2<:Top.

¬(∀Z0<:Y0.∀Z1<:Y2.∀Z2<:Y1. U))

<: (∀Y0<:T.∀Y1<: P .∀Y2<: Q .¬T) by Fact 28.5.2

iff ` ¬(∀Z0<:T.∀Z1<: Q .∀Z2<: P . U))

<: ¬T by Fact 28.5.4

iff ` T

<: (∀Z0<:T.∀Z1<: Q .∀Z2<: P . U)) by Fact 28.5.2

Note that, at the end of the derivation, not only have the values P and Q

switched places, but the instruction that caused this to happen has been used

up in the process, leaving U at the front of the instruction stream to be “ex-

ecuted” next. By choosing a value of U that begins in the same way as the

instruction we just executed

U = ¬(∀Y0<:Top.∀Y1<:Top.∀Y2<:Top.

¬(∀Z0<:Y0.∀Z1<:Y2.∀Z2<:Y1. U′))

we can perform another swap and return the registers to their original state

before continuing with U′. Alternatively, we can choose other values for U that

cause different sorts of behavior. For example, if

U = ¬(∀Y0<:Top.∀Y1<:Top.∀Y2<:Top.

¬(∀Z0<:Y0.∀Z1<:Y1.∀Z2<:Y2. Y1))

then, on the next cycle of the machine, the current value of register 1, i.e.,

Q, will appear in the position of U—in effect, performing an “indirect branch”

through register 1 to the stream of instructions represented by Q. Condi-

tional constructs and arithmetic (successor, predecessor, and zero-test) can

be encoded using a generalization of this trick.

Putting all of this together, we arrive at a proof of undecidability via a

reduction from two-counter machines—a simple variant on ordinary Turing

machines, consisting of a finite control and two counters, each holding a nat-

ural number—to subtyping statements.

28 Metatheory of Bounded Quantification 431

28.5.5 Theorem [Pierce, 1994]: For each two-counter machineM , there exists a sub-

typing statement S(M) such that S(M) is derivable in full F<: iff the execution

of M halts. �

Thus, if we could decide whether any subtype statement is provable, then

we could also decide whether any given two-counter machine will eventually

halt. Since the halting problem for two-counter machines is undecidable (cf.

Hopcroft and Ullman, 1979), so is the subtyping problem for full F<:.

We should emphasize, again, that the undecidability of the subtype rela-

tion does not imply that the semi-algorithm for subtyping developed in §28.4

is either unsound or incomplete. If the statement Γ ` S <: T is provable ac-

cording to the declarative subtyping rules, then the algorithm will definitely

terminate and yield true. If Γ ` S <: T is not provable according to the declar-

ative subtyping rules, then the algorithm will either diverge or yield false.

The point is that a given subtyping statement may fail to be provable from

the algorithmic rules in two different ways: either by generating an infinite

sequence of subgoals (meaning that there is no finite derivation with this

conclusion) or else by leading to an obvious inconsistency like Top <: S→T.

The subtyping algorithm can detect one of these cases, but not the other.

Does the undecidability of full F<: mean that the system is useless in prac-

tice? Actually, it is generally held that the undecidability of F<: is not, per se,

a terribly serious deficiency. For one thing, it has been shown (Ghelli, 1995)

that, in order to cause the subtype checker to diverge, we must present it

with a goal with three quite special properties, each one of which is diffi-

cult to imagine programmers creating by accident. Also, there are a number

of popular languages whose typechecking or type reconstruction problems

are, in principle, either extremely expensive—like ML and Haskell, as we saw

in §22.7—or even undecidable, like C++ and λProlog (Felty, Gunter, Hannan,

Miller, Nadathur, and Scedrov, 1988). In fact, experience has shown the lack of

joins and meets mentioned in the following section (cf. Exercise 28.6.3) to be a

significantly more problematic shortcoming of full F<:than its undecidability.

28.5.6 Exercise [««««]: (1) Define a variant of full F<: with no Top type but with

both X<:T and X bindings for variables (i.e., with both bounded and un-

bounded quantification); this variant is called completely bounded quantifica-

tion. (2) Show that the subtype relation for this system is decidable. (3) Does

this restriction offer a satisfactory solution to the basic problems raised in

this section? In particular, does it work for languages with additional features

such as numbers, records, variants, etc.? �

432 28 Metatheory of Bounded Quantification

→ ∀ <: Top

Γ ` S ∨ T =

T if Γ ` S <: T

S if Γ ` T <: S

J if S = X

X<:U ∈ Γ

Γ ` U ∨ T = J

J if T = X

X<:U ∈ Γ

Γ ` S ∨ U = J

M1→J2 if S = S1→S2

T = T1→T2

Γ ` S1 ∧ T1 = M1

Γ ` S2 ∨ T2 = J2

∀X<:U1.J2 if S = ∀X<:U1.S2

T = ∀X<:U1.T2

Γ , X<:U1 ` S2 ∨ T2 = J2

Top otherwise

Γ ` S ∧ T =

S if Γ ` S <: T

T if Γ ` T <: S

J1→M2 if S = S1→S2

T = T1→T2

Γ ` S1 ∨ T1 = J1

Γ ` S2 ∧ T2 = M2

∀X<:U1.M2 if S = ∀X<:U1.S2

T = ∀X<:U1.T2

Γ , X<:U1 ` S2 ∧ T2 = M2

fail otherwise

Figure 28-5: Join and meet algorithms for kernel F<:

28.6 Joins and Meets

We saw in §16.3 that a desirable property of languages with subtyping is

the existence of a join for every pair of types S and T—that is, a type J that

is minimal among all the common supertypes of S and T. We show in this

section that the subtype relation of kernel F<: does indeed have a join for

every S and T, as well as a meet for every S and T with at least one subtype in

common, by giving algorithms for calculating them. (On the other hand, both

of these properties fail for full F<:; see Exercise 28.6.3.)

We write Γ ` S ∨ T = J for “J is the join of S and T in context Γ” and

Γ ` S ∧ T = M for “M is the meet of S and T in Γ .” The algorithms for calculating

these relations are defined simultaneously, in Figure 28-5. Note that some of

the cases in each definition overlap; to read the definitions as deterministic

algorithms, we stipulate that the first clause that applies is always chosen.

It is easy to check that ∨ and ∧ are total functions, in the sense that ∨

always returns a type and ∧ either returns a type or fails. We just observe

that the total weight (cf. Definition 28.3.4) of S and T with respect to Γ is

always reduced in recursive calls.

28 Metatheory of Bounded Quantification 433

Now let us verify that these definitions actually calculate joins and meets.

The argument is divided into two parts: Proposition 28.6.1 shows that the

calculated join is an upper bound of S and T and the meet (when it exists) is

a lower bound; Proposition 28.6.2 then shows that the calculated join is less

than every common upper bound of S and T and that the meet is greater than

every common lower bound (and exists whenever S and T have a common

lower bound).

28.6.1 Proposition:

1. If Γ ` S ∨ T = J, then Γ ` S <: J and Γ ` T <: J.

2. If Γ ` S ∧ T = M, then Γ ` M <: S and Γ ` M <: T. �

Proof: By a straightforward induction on the size of a derivation of Γ ` S ∨

T = J or Γ ` S ∧ T = M (i.e., the number of recursive calls needed to calculate

J or M). �

28.6.2 Proposition:

1. If Γ ` S <: V and Γ ` T <: V, then Γ ` S ∨ T = J for some J with Γ ` J <: V.

2. If Γ ` L <: S and Γ ` L <: T, then Γ ` S ∧ T = M for some M with

Γ ` L <: M. �

Proof: It is easiest to prove the two parts by simultaneous induction on the

total sizes of algorithmic derivations of Γ ñ̀ S <: V and Γ ñ̀ T <: V for part 1

and of Γ ñ̀ L <: S and Γ ñ̀ L <: T for part 2. (Theorem 28.3.3 assures us that

these algorithmic counterparts of the given derivations always exist.)

1. If either of the two derivations is an instance of SA-Top, then V = Top and

the desired result, Γ ` J <: V, is immediate.

If the derivation of Γ ñ̀ T <: V is an instance of SA-Refl-TVar, then T = V.

But then the first given derivation tells us that Γ ` S <: V = T, so the first

clause in the definition of the join applies, giving us Γ ` S ∨ T = T and

satisfying the requirements. Similarly, if the derivation of Γ ñ̀ S <: V is an

instance of SA-Refl-TVar, then S = V. But then the second given derivation

tells us that Γ ` T <: V = S, so the second clause in the definition of the

join applies, giving us Γ ` S ∨ T = S and again satisfying the requirements.

If the derivation of Γ ñ̀ S <: V ends with an instance of SA-Trans-TVar,

then we have S = X with X<:U ∈ Γ and a subderivation of Γ ` U ∨ T = J.

The third clause in the definition of the join gives us Γ ` S ∨ T = J, and

the induction hypothesis yields Γ ` J <: V. Similarly if the derivation of

Γ ñ̀ T <: V ends with SA-Trans-TVar.

434 28 Metatheory of Bounded Quantification

It is now easy to check, from the form of the algorithmic subtyping rules,

that the only remaining possibilities are that both of the given derivations

end with either SA-Arrow or SA-All.

If both end with SA-Arrow, then we have S = S1→S2, T = T1→T2, and

V = V1→V2, with Γ ñ̀ V1 <: S1, Γ ñ̀ S2 <: V2, Γ ñ̀ V1 <: T1, and Γ ñ̀

T2 <: V2. By part (2) of the induction hypothesis, Γ ` S1 ∧ T1 = M1 for

some M1 with Γ ` V1 <: M1, and by part (1), Γ ` S2 ∨ T2 = J2 for some

J2 with Γ ` J2 <: V2. The fifth clause in the definition of joins gives us

Γ ` S1→S2 ∨ T1→T2 = M1→J2, and we obtain Γ ` M1→J2 <: V1→V2 by

S-Arrow.

Finally, if both of the given derivations end with SA-All, then we have

S = ∀X<:U1.S2, T = ∀X<:U1→T2, and V = ∀X<:U1.V2, with Γ , X<:U1
ñ̀

S2 <: V2 and Γ , X<:U1
ñ̀ T2 <: V2. By part (1) of the induction hypothesis,

Γ , X<:U1 ` S2 ∨ T2 = J2 with Γ , X<:U1
ñ̀ J2 <: V2. The sixth clause

in the definition of joins gives us J = ∀X<:U1.J2, and we obtain Γ `

∀X<:U1.J2 <: ∀X<:U1.V2 by S-All.

2. If the derivation of Γ ñ̀ L <: T ends in SA-Top, then T is Top, so Γ ` S <: T

and, from the first clause of the definition of the meet, Γ ` S ∧ T = S.

But, from the other given derivation, we know that Γ ` L <: S, so we are

finished. Similarly if the derivation of Γ ñ̀ L <: S ends in SA-Top.

If the derivation of Γ ñ̀ L <: S ends in SA-Refl-TVar, then L = S and the

other given derivation tells us Γ ` L = S <: T, from which the definition of

the meet yields Γ ` S ∧ T = S and we are done. Similarly if the derivation

of Γ ñ̀ L <: T ends in SA-Refl-TVar.

The only remaining possibilities are that both of the given derivations end

with SA-Trans-TVar, SA-Arrow, or SA-All.

If both derivations end with SA-Trans-TVar, then we have L = X with

X<:U ∈ Γ and two subderivations Γ ñ̀ U <: S and Γ ñ̀ U <: T. By part (2)

of the induction hypothesis, Γ ` U <: M, from which we obtain Γ ` L <: M

from S-TVar and transitivity.

If both derivations end with SA-Arrow, then we have S = S1→S2, T =

T1→T2, and L = L1→L2, with Γ ñ̀ S1 <: L1, Γ ñ̀ L2 <: S2, Γ ñ̀ T1 <: L1, and

Γ ñ̀ L2 <: T2. By part (1) of the induction hypothesis, Γ ` S1 ∨ T1 = J1

for some J1 with Γ ` J1 <: L1, and by part (2), Γ ` S2 ∧ T2 = M2 for some

M2 with Γ ` L2 <: M2. The definition of meets tells us that Γ ` S1→S2 ∧

T1→T2 = J1→M2, and we obtain Γ ` L1→L2 <: J1→M2 by S-Arrow.

The case where both derivations end with SA-All is similar. �

28 Metatheory of Bounded Quantification 435

28.6.3 Exercise [Recommended, «««]: Consider the pair of types (due to Ghelli,

1990) S = ∀X<:Y→Z.Y→Z and T = ∀X<:Y′→Z′.Y′→Z′ and the context Γ =

Y<:Top, Z<:Top, Y′<:Y, Z′<:Z. (1) In full F<:, how many types are there that

are subtypes of both S and T under Γ? (2) Show that, in full F<:, the types S

and T have no meet under Γ . (3) Find a pair of types that has no join under Γ

in full F<:. �

28.7 Bounded Existentials

To extend the kernel F<: typechecking algorithm to a language with existen-

tial types, we must deal with one additional subtlety. Recall the declarative

elimination rule for existentials:

Γ ` t1 : {∃X<:T11,T12} Γ , X<:T11, x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2

(T-Unpack)

In §24-1 we remarked that the type variable X appears in the context in

which t2’s type is calculated in the second premise but not in the context

of the rule’s conclusion. This means that the type T2 must not contain X

free, since any free occurrences of X will be out of scope in the conclusion.

This point was discussed in more detail in §25.5, where we observed that

the change in the context from premise to conclusion corresponds to a neg-

ative shift of variable indices in T2, when we represent types in the nameless

deBruijn format; this shift will fail if T2 happens to contain X free.

What are the implications of this observation for a minimal typing algo-

rithm for a language with existentials? In particular, what should we do with

an expression like t = let {X,x} = p in x, where p has type {∃X,Nat→X}?

The most natural type of the body x is Nat→X, which mentions the bound

variable X. However, according to the declarative typing relation (with the sub-

sumption rule), x also has the types Nat→Top and Top. Since neither of these

mentions X, the whole term t can legally be assigned the types Nat→Top and

Top in the declarative system. More generally, we are always free to promote

the body of an unpacking expression to any type that does not involve the

bound type variable X and then apply T-Unpack. So, if we want our minimal

typing algorithm to be complete, it should not simply fail when it encounters

an unpacking expression where the minimal type T2 of the body contains a

free occurrence of the bound variable X. Instead, it should try to promote T2

to some supertype that does not mention X. The key observation that we need

to make this work is that the set of X-free supertypes of a given type always

has a minimal element, as the following exercise (whose solution is due to

Ghelli and Pierce, 1998) shows.

436 28 Metatheory of Bounded Quantification

28.7.1 Exercise [«««]: Give an algorithm for calculating, in kernel F<: with bounded

existentials, the minimal X-free supertype of a given type T with respect to a

context Γ , written RX,Γ (T). �

The algorithmic typing rule for existential elimination can now be written

like this:

Γ ñ̀ t1 : T1 Γ ñ̀ T1 ⇑ {∃X<:T11,T12}

Γ , X<:T11, x:T12
ñ̀ t2 : T2 RX, (Γ , X<:T11, x:T12)(T2) = T′2

Γ ñ̀ let {X,x}=t1 in t2 : T′2
(TA-Unpack)

For full F<: with bounded existentials, the situation is more problematic,

as might be expected. Ghelli and Pierce (1998) give an example of a type T, a

context Γ , and a variable X such that the set of X-free supertypes T under Γ

has no minimal element. It immediately follows that the typing relation for

this system lacks minimal types.

28.7.2 Exercise [«««]: Show that the subtyping relation for a variant of full F<: with

just bounded existential types (no universal types) is also undecidable. �

28.8 Bounded Quantification and the Bottom Type

The addition of a minimal Bot type (§15.4) somewhat complicates the metathe-

oretic properties of F<:. The reason for this is that, in a type of the form

∀X<:Bot.T, the variable X is actually a synonym for Bot inside T, since X

is a subtype of Bot by assumption and Bot is a subtype of X by the rule

S-Bot. This, in turn, means that pairs of types such as ∀X<:Bot.X→X and

∀X<:Bot.Bot→Bot are equivalent in the subtype relation, even though they

are not syntactically identical. Moreover, if the ambient context contains the

assumptions X<:Bot and Y<:Bot, then the types X→Y and Y→X are equiv-

alent even though neither of them mentions Bot explicitly. Despite these

difficulties, the essential properties of kernel F<: can still be established in

the presence of Bot. Details can be found in Pierce (1997a).

P a r t V I

Higher-Order Systems

29 Type Operators and Kinding

In previous chapters, we have often made use of abbreviations like

CBool = ∀X. X → X → X;

and

Pair Y Z = ∀X. (Y→Z→X) → X;

to make examples easier to read, writing λx:Pair Nat Bool. x, for instance,

instead of the more cumbersome λx:∀X.(Nat→Bool→X)→X. x.

CBool is a simple abbreviation; when we see it in an example, we should

just replace it by the right-hand side of its definition. Pair, on the other hand,

is a parametric abbreviation; when we encounter Pair S T, we must substi-

tute the actual types S and T for the parameters Y and Z in its definition. In

other words, abbreviations like Pair give us an informal notation for defining

functions at the level of type expressions.

We have also used type-level expressions like Array T and Ref T involv-

ing the type constructorstype operators Array and Ref. Although these type

constructors are built into the language, rather than being defined by the

programmer, they are also a form of functions at the level of types. We can

view Ref, for example, as a function that, for each type T, yields the type of

reference cells containing an element of T.

Our task in this and the next two chapters is to treat these type-level func-

tions, collectively called type operators, more formally. In this chapter, we

introduce basic mechanisms of abstraction and application at the level of

types, along with a precise definition of when two type expressions should be

regarded as equivalent and a well-formedness relation, called kinding, that

prevents us from writing nonsensical type expressions. Chapter 30 goes a

The system introduced in this chapter is the pure simply typed lambda-calculus with type

operators, λω (Figure 29-1). The examples also use numbers and booleans (8-2) and universal

types (23-1). The associated OCaml implementation is fullomega.

440 29 Type Operators and Kinding

step further and treats type operators as first-class citizens—i.e., as entities

that can be passed as arguments to functions; that chapter introduces the

well-known System Fω, generalizing the quantification over types in System

F (Chapter 23) to higher-order quantification over type operators. Chapter 31

considers the combination of type operators, higher-order quantification, and

subtyping.

29.1 Intuitions

To study functions at the level of types, the first thing we need is some no-

tation for abstraction and application. It is standard practice to use the same

notations for these as for abstraction and application at the level of terms, in-

dicating abstraction by λ and application by juxtaposition.1 For example, we

write λX.{a:X,b:X} for the function that, given a type T, yields the record

type {a:T,b:T}. The application of this function to the argument Bool is

written (λX.{a:X,b:X}) Bool.

Like ordinary functions, type functions with multiple arguments can be

built from one-argument functions by currying. For example, the type ex-

pression λY. λZ. ∀X. (Y→Z→X) → X represents a two-argument function—

or, strictly speaking, a one-argument function that, when applied to a type S,

yields another one-argument function that, when applied to a type T, yields

the type ∀X.(S→T→X)→X.

We will continue to use informal abbreviations for long type expressions,

including type operators. For example, in the remainder of this chapter we

will assume we have the abbreviation

Pair = λY. λZ. ∀X. (Y→Z→X) → X;

When we write Pair S T in examples, what we really mean is

(λY. λZ. ∀X. (Y→Z→X) → X) S T.

In other words, we are replacing the informal convention of parametric abbre-

viation that we have used up to this point with the more elementary informal

convention of expanding simple abbreviations to their right-hand sides when-

ever we see them, plus formal mechanisms for definition and instantiation of

type operators. The operations of defining and expanding abbreviations can

1. The one drawback of this notational parsimony is that the terminology for different sorts

of expressions can become a little contorted. In particular, the phrase “type abstraction” might

now mean an abstraction that expects a type as its argument (i.e., a term like λX.t), or it

might equally mean an abstraction at the level of types (i.e., a type expression like λX.{a:X}).

In contexts where both are possible, people tend to use “polymorphic function” for the first

sense and “type-level abstraction” or “operator abstraction” for the second.

29 Type Operators and Kinding 441

also be treated formally—i.e., we can make them operations in the object lan-

guage, instead of conventions in the meta-language—but we will not do so

here. Interested readers are referred to the literature on type systems with

definitions or singleton kinds; see Severi and Poll (1994), Stone and Harper

(2000), Crary (2000), and other works cited there.

Introducing abstraction and application at the level of types gives us the

possibility of writing the same type in different ways. For example, if Id is an

abbreviation for the type operator λX.X, then the expressions

Nat → Bool Nat → Id Bool Id Nat → Id Bool

Id Nat → Bool Id (Nat → Bool) Id (Id (Id Nat → Bool))

are all names for the same arrow type. To make this intuition precise, we

introduce a definitional equivalence relation on types, written S ≡ T. The most

important clause in the definition of this relation

(λX::K11.T12) T2 ≡ [X, T2]T12 (Q-AppAbs)

tells us that a type-level abstraction applied to an argument is equivalent

to the body of the abstraction with the argument substituted for the formal

parameter. We exploit definitional equivalence in typechecking by a new rule

Γ ` t : S S ≡ T

Γ ` t : T
(T-Eq)

precisely capturing the intuition that, if two types are equivalent, then the

members of one are all members of the other.

Another new possibility that abstraction and application mechanisms give

us is the ability to write meaningless type expressions. For example, applying

one proper type to another, as in the type expression (Bool Nat), makes no

more sense than applying true to 6 at the term level. To prevent this sort

of nonsense, we introduce a system of kinds that classify type expressions

according to their arity, just as arrow types tell us about the arities of terms.

Kinds are built from a single atomic kind, written * and pronounced “type,”

and a single constructor ⇒. They include, for example:

* the kind of proper types (like Bool and Bool→Bool)

⇒ the kind of type operators (i.e., functions from proper types

to proper types)

⇒⇒* the kind of functions from proper types to type operators

(i.e., two-argument operators)

(*⇒*)⇒* the kind of functions from type operators to proper types

Kinds, then, are “the types of types.” In essence, the system of kinds is a copy

of the simply typed lambda-calculus, “one level up.”

442 29 Type Operators and Kinding

In what follows, we use the word type for any type-level expression—i.e.,

both for ordinary types like Nat→Nat and ∀X.X→X and for type operators

like λX.X. When we want to focus on ordinary types (i.e., the sorts of type

expressions that are actually used to classify terms), we call them proper

types.

Type expressions with kinds like (*⇒*)⇒* are called higher-order type

operators. Unlike higher-order functions at the term level, which are often

extremely useful, higher-order type operators are somewhat esoteric. We will

see one class of examples that use them in Chapter 32.

To simplify the problem of checking the well-kindedness of type expres-

sions, we annotate each type-level abstraction with a kind for its bound vari-

able. For example, the official form of the Pair operator is:

Pair = λA::*. λB::*. ∀X. (A→B→X) → X;

(Note the doubled colon.) However, since almost all of these annotations will

be *, we will continue to write λX.T as an abbreviation for λX::*.T.

A few pictures may help clarify. The expressions of our language are now

divided into three separate classes: terms, types, and kinds. The level of terms

contains basic data values (integers, floats), compound data values (records,

etc.), value-level abstractions, applications, type abstractions, and type appli-

cations.

λX.λx:X.x
(λx:Nat.x) true

Terms

λx:Nat.x

pair [Nat] [Bool] 5 false

5

(λx:Nat.x) 5

The level of types contains two sorts of expressions. First, there are proper

types like Nat, Nat→Nat, Pair Nat Bool, and ∀X.X→X, which are inhabited

by terms. (Of course, not all terms have a type; for example (λx:Nat.x) true

does not.)

λX.λx:X.x
(λx:Nat.x) true

Types

Terms

λx:Nat.x

pair [Nat] [Bool] 5 false

Nat→Nat

5

Nat

∀X.X→X

(λx:Nat.x) 5

(λX.X→X) Nat

Pair Nat Bool

29 Type Operators and Kinding 443

Then there are type operators like Pair and λX.X→X, which do not them-

selves classify terms (it does not make sense to ask “What terms have type

λX.X→X?”), but which can be applied to type arguments to form proper types

like (λX.X→X)Nat that do classify terms.

λX.λx:X.x
(λx:Nat.x) true

Types

Terms

λx:Nat.x

pair [Nat] [Bool] 5 false

Nat→Nat

5

Nat

∀X.X→X

(λx:Nat.x) 5

(λX.X→X) Nat

Pair Pair

Pair Nat Bool
λX.X→X

Pair Nat

Pair

Note that proper types—i.e., type expressions of kind *—may include type op-

erators of higher kinds as subphrases, as in (λX.X→X) Nat or Pair Nat Bool,

just as term expressions belonging to base types like Nat may include lambda-

abstractions as subexpressions, as in (λx:Nat.x) 5.

Finally, we have the level of kinds. The simplest kind is *, which has all

proper types as members.

λX.λx:X.x
(λx:Nat.x) true

Types

Terms

Kinds

λx:Nat.x

pair [Nat] [Bool] 5 false

Nat→Nat

*

5

Nat

∀X.X→X

(λx:Nat.x) 5

(λX.X→X) Nat

Pair Pair

Pair Nat Bool
λX.X→X

Pair Nat

Pair

Type operators like λX.X→X and Pair belong to arrow kinds like *⇒* and

⇒⇒*. Ill-formed type-level expressions, like Pair Pair, do not belong to

any kind.

444 29 Type Operators and Kinding

λX.λx:X.x
(λx:Nat.x) true

Types

Terms

Kinds

λx:Nat.x

pair [Nat] [Bool] 5 false

Nat→Nat

⇒ *⇒*⇒**

5

Nat

∀X.X→X

(λx:Nat.x) 5

(λX.X→X) Nat

Pair Pair

Pair Nat Bool
λX.X→X

Pair Nat

Pair

29.1.1 Exercise [«]: What is the difference in meaning between the type-level ex-

pressions ∀X.X→X and λX.X→X? �

29.1.2 Exercise [«]: Why doesn’t an arrow type like Nat→Nat have an arrow kind

like *⇒*? �

A natural question at this point is “Why stop at three levels of expres-

sions?” Couldn’t we go on to introduce functions from kinds to kinds, appli-

cation at the level of kinds, etc., add a fourth level to classify kind expressions

according to their functionality, and continue on in this way ad infinitum?

Such systems have been investigated by the pure type systems community

(Terlouw, 1989; Berardi, 1988; Barendregt, 1991, 1992; Jutting, McKinna, and

Pollack, 1994; McKinna and Pollack, 1993; Pollack, 1994). For programming

languages, however, three levels have proved sufficient.

Indeed, while type operators can be found, in some form, in essentially

all statically typed programming languages, it is relatively rare for language

designers to offer programmers even the full power of the present formula-

tion. Some languages (e.g., Java) offer only a few built-in type operators like

Array, with no facilities for defining new ones. Others bundle type operators

together with other language features; in ML, for example, type operators

are provided as part of the datatype mechanism; we can define parametric

datatypes like2

2. We’re ignoring ML’s conventions for capitalization of identifiers for the sake of the example.

In OCaml, this definition would really be written

type ′a tyop = Tyoptag of (′a → ′a);

29 Type Operators and Kinding 445

type ’a Tyop = tyoptag of (’a → ’a);

which we would write as

Tyop = λX. <tyoptag:X→X>;

In other words, in ML we can define parametric variants, but not arbitrary

parametric types. The benefit of this restriction is that, wherever the type

operator Tyop appears in a program at the level of types, the corresponding

tag tyoptag will appear at the level of terms—that is, every place where the

typechecker needs to use the definitional equivalence relation to replace a

type like Tyop Nat by its reduced form Nat→Nat will be marked in the pro-

gram by an explicit occurrence of tyoptag. This substantially simplifies the

typechecking algorithm.3

The ⇒ constructor on kinds is the only one that we have space to discuss

here, but a great many others have been studied; indeed, the range of kinding

systems for checking and tracking various properties of type expressions

rivals the range of type systems for analyzing properties of terms. There are

record kinds (whose elements are records of types—not to be confused with

the types of records; they offer a natural way of defining systems of mutually

recursive types), row kinds (which describe “rows of fields” that can be used

to assemble record types in systems with row variable polymorphism—see

page 337), power kinds or power types (which offer an alternate presentation

of subtyping—see Cardelli, 1988a), singleton kinds (related to definitions—see

page 441—and to module systems with sharing—see page 465), dependent

kinds (an analog “one level up” of the dependent types discussed in §30.5),

and many more.

29.2 Definitions

Figure 29-1 presents the complete definition of a core lambda-calculus with

type operators. At the term level, this calculus includes just the variables,

abstraction, and application of the simply typed lambda-calculus (for this

reason, it is called the simply typed lambda-calculus with type operators). The

type level includes the usual arrow types and type variables, plus operator

abstraction and application. Quantified types like∀X.T are omitted from this

system; we return to them in detail in Chapter 30.

3. This restriction is similar to ML’s treatment of recursive types, discussed in §20-1. The

bundling of recursive types into datatype definitions gives the programmer the convenience

of equi-recursive types and the typechecker the simplicity of iso-recursive types by hiding the

fold/unfold annotations in the tagging and case analysis operations associated with variant

types.

446 29 Type Operators and Kinding

→ ⇒ Extends λ→ (9-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

v ::= values:

λx:T.t abstraction value

T ::= types:

X type variable

λX::K.T operator abstraction

T T operator application

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X::K type variable binding

K ::= kinds:

* kind of proper types

K⇒K kind of operators

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

Kinding Γ ` T :: K

X::K ∈ Γ

Γ ` X :: K
(K-TVar)

Γ , X::K1 ` T2 :: K2

Γ ` λX::K1.T2 :: K1⇒K2

(K-Abs)

Γ ` T1 :: K11⇒K12 Γ ` T2 :: K11

Γ ` T1 T2 :: K12

(K-App)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1→T2 :: *
(K-Arrow)

Type equivalence S ≡ T

T ≡ T (Q-Refl)

T ≡ S

S ≡ T
(Q-Symm)

S ≡ U U ≡ T

S ≡ T
(Q-Trans)

S1 ≡ T1 S2 ≡ T2

S1→S2 ≡ T1→T2

(Q-Arrow)

S2 ≡ T2

λX::K1.S2 ≡ λX::K1.T2

(Q-Abs)

S1 ≡ T1 S2 ≡ T2

S1 S2 ≡ T1 T2

(Q-App)

(λX::K11.T12) T2 ≡ [X, T2]T12 (Q-AppAbs)

continued . . .

Figure 29-1: Type operators and kinding (λω)

29 Type Operators and Kinding 447

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` T1 :: * Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ ` t : S S ≡ T Γ ` T :: *

Γ ` t : T
(T-Eq)

Figure 29-1: Type operators and kinding (continued)

The presentation of the system extends the framework of the simply typed

lambda-calculus in three ways. First, we add a collection of rules of kinding,

which specify how type expressions can be combined to yield new type ex-

pressions. We write Γ ` T :: K for “type T has kind K in context Γ .” Note the

similarity between these kinding rules and the typing rules of the original

simply typed lambda-calculus (Figure 9-1).

Second, whenever a type T appears in a term (as in λx:T.t), we must check

that T is well formed. This involves adding a new premise to the old T-Abs

rule that checks Γ ` T :: *. Note that T must have exactly kind *—i.e., it

must be a proper type—since it is being used to describe the values that the

term-variable x may range over. The typing rules maintain the invariant that,

whenever we can derive a statement Γ ` t : T, the statement Γ ` T :: * is also

derivable (as long as all the types appearing in the context are well kinded).

This point is discussed in more detail in §30-3.

Third, we add a collection of rules for the definitional equivalence relation

between types. We write S ≡ T for “types S and T are definitionally equiva-

lent.” This relation is quite similar to the reduction relation at the level of

terms. The effect of definitional equivalence on typing is captured by the new

T-Eq rule. The kinding premise (which was elided when we discussed the rule

in the previous section) maintains the invariant mentioned above, that “ty-

pable terms always have kindable types.” Note the similarity of this rule to

the rule of subsumption (T-Sub) in systems with subtyping.

The basic metatheoretic properties of this system require a little work to

develop, since the type equivalence relation introduces significant flexibility

in the “shapes” of the types assigned to terms. We postpone the development

of this theory to Chapter 30.

30 Higher-Order Polymorphism

Having seen in Chapter 29 how to add type operators to λ→, the natural next

step is to mix them with the other typing features we have studied throughout

the book. In this chapter, we combine type operators with the polymorphism

of System F, yielding a well-known system called Fω (Girard, 1972). Chap-

ter 31 enriches this system with subtyping to form System Fω<:, which is the

setting for our final case study of purely functional objects in Chapter 32.

The definition of Fω is a straightforward combination of features from λω

and System F. However, proving the basic properties of this system (in partic-

ular, preservation and progress) requires somewhat harder work than most

of the systems we have seen, because we must deal with the fact that type-

checking now requires evaluation at the level of types. These proofs will be

the main job of this chapter.

30.1 Definitions

System Fω is formed by combining System F from Chapter 23 and λω from

Chapter 29, adding kinding annotations (X::K) in places where type variables

are bound (i.e., in type abstractions and quantifiers). The formal definition

for the system with just universal quantifiers (not existentials) is given in

Figure 30-1. We list the rules in full, even though the differences from earlier

systems are minor, for easy reference in the proofs in §30.3.

We abbreviate ∀X::*.T as ∀X.T and {∃X::*,T} as {∃X,T}, so that terms

of System F can be read directly as terms of Fω.

Similarly, we obtain the higher-order variant of existential types by gener-

alizing bindings from X to X::K in the original presentation of existentials in

Chapter 24. Figure 30-2 summarizes this extension.

The examples in this chapter are terms of Fω (Figure 30-1) with records, booleans, and ex-

istentials (30-2). The associated OCaml implementation is fullomega. No implementation is

provided for the dependent types mentioned in §30.5.

450 30 Higher-Order Polymorphism

→ ∀ ⇒ Extends λω (29-1) and System F (23-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

λX ::K .t type abstraction

t [T] type application

v ::= values:

λx:T.t abstraction value

λX ::K .t type abstraction value

T ::= types:

X type variable

T→T type of functions

∀X ::K .T universal type

λX::K.T operator abstraction

T T operator application

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X::K type variable binding

K ::= kinds:

* kind of proper types

K⇒K kind of operators

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

t1 -→ t′1

t1 [T2] -→ t′1 [T2]
(E-TApp)

(λX ::K11 .t12) [T2] -→ [X, T2]t12

(E-TappTabs)

Kinding Γ ` T :: K

X::K ∈ Γ

Γ ` X :: K
(K-TVar)

Γ , X::K1 ` T2 :: K2

Γ ` λX::K1.T2 :: K1⇒K2

(K-Abs)

Γ ` T1 :: K11⇒K12 Γ ` T2 :: K11

Γ ` T1 T2 :: K12

(K-App)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1→T2 :: *
(K-Arrow)

Γ , X::K1 ` T2 :: *

Γ ` ∀X::K1.T2 :: *
(K-All)

continued . . .

Figure 30-1: Higher-order polymorphic lambda-calculus (Fω)

30.2 Example

We will see an extended example of programming using abstractions ranging

over type operators in Chapter 32. Here is a much smaller one.

Recall the encoding of abstract data types in terms of existentials from

§24.2. Suppose now that we want to implement an ADT of pairs, in the same

way as we earlier implemented ADTs of types like counters. This ADT should

30 Higher-Order Polymorphism 451

Type equivalence S ≡ T

T ≡ T (Q-Refl)

T ≡ S

S ≡ T
(Q-Symm)

S ≡ U U ≡ T

S ≡ T
(Q-Trans)

S1 ≡ T1 S2 ≡ T2

S1→S2 ≡ T1→T2

(Q-Arrow)

S2 ≡ T2

∀X ::K1 .S2 ≡ ∀X ::K1 .T2

(Q-All)

S2 ≡ T2

λX::K1.S2 ≡ λX::K1.T2

(Q-Abs)

S1 ≡ T1 S2 ≡ T2

S1 S2 ≡ T1 T2

(Q-App)

(λX::K11.T12) T2 ≡ [X, T2]T12 (Q-AppAbs)

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` T1 :: * Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ , X ::K1 ` t2 : T2

Γ ` λX ::K1 .t2 : ∀X ::K1 .T2

(T-TAbs)

Γ ` t1 : ∀X ::K11 .T12

Γ ` T2 :: K11

Γ ` t1 [T2] : [X, T2]T12

(T-TApp)

Γ ` t : S S ≡ T Γ ` T :: *

Γ ` t : T
(T-Eq)

Figure 30-1: Higher-order polymorphic lambda-calculus (Fω), continued

provide operations for building pairs and taking them apart. Moreover, we

would like these operations to be polymorphic, so that we can use them to

build and use pairs of elements from any types S and T. That is, the abstract

type that we provide should not be a proper type, but rather an abstract type

constructor (or operator). It should be abstract in the same sense as the earlier

ADTs: for each S and T, the pair operation should take an element of S and

one of T and return an element of Pair S T, while fst and snd should take

a Pair S T and return, respectively, an S or a T, and these facts should be all

that a client of our abstraction knows about it.

From these requirements, we can read off the signature that we want our

pair ADT to present to the world:

PairSig = {∃Pair::*⇒*⇒*,

{pair: ∀X. ∀Y. X→Y→(Pair X Y),

fst: ∀X. ∀Y. (Pair X Y)→X,

snd: ∀X. ∀Y. (Pair X Y)→Y}};

452 30 Higher-Order Polymorphism

→ ∀ ∃ ⇒ Extends Fω (30-1) and 24-1

New syntactic forms

T ::= ... types:

{∃X ::K ,T} existential type

New evaluation rules t -→ t′

let {X,x}=({*T11,v12} as T1) in t2

-→ [X, T11][x, v12]t2

(E-UnpackPack)

t12 -→ t′12

{*T11,t12} as T1

-→ {*T11,t
′
12} as T1

(E-Pack)

New kinding rules Γ ` T :: K

Γ , X::K1 ` T2 :: *

Γ ` {∃X::K1,T2} :: *
(K-Some)

New type equivalence rules S ≡ T

S2 ≡ T2

{∃X ::K1 ,S2} ≡ {∃X ::K1 ,T2}
(Q-Some)

New typing rules Γ ` t : T

Γ ` t2 : [X, U]T2

Γ ` {∃X::K1,T2} :: *

Γ ` {*U,t2} as {∃X ::K1 ,T2}

: {∃X ::K1 ,T2}

(T-Pack)

Γ ` t1 : {∃X ::K11 ,T12}

Γ , X ::K11 , x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2

(T-Unpack)

Figure 30-2: Higher-order existential types

That is, an implementation of pairs should provide a type operator Pair plus

polymorphic functions pair, fst, and snd of the given types.

Here is one way of building a package with this type:

pairADT =

{*λX. λY. ∀R. (X→Y→R) → R,

{pair = λX. λY. λx:X. λy:Y.

λR. λp:X→Y→R. p x y,

fst = λX. λY. λp: ∀R. (X→Y→R) → R.

p [X] (λx:X. λy:Y. x),

snd = λX. λY. λp: ∀R. (X→Y→R) → R.

p [Y] (λx:X. λy:Y. y)}} as PairSig;

ñ pairADT : PairSig

The hidden representation type is the operator λX. λY. ∀R. (X→Y→R) → R

that we have used before (§23.4) to represent pairs. The components pair,

fst, and snd of the body are appropriate polymorphic functions.

Having defined pairADT, we can unpack it in the usual way.

let {Pair,pair}=pairADT

in pair.fst [Nat] [Bool] (pair.pair [Nat] [Bool] 5 true);

ñ 5 : Nat

30 Higher-Order Polymorphism 453

30.3 Properties

We now turn to establishing the basic properties of Fω—in particular the

usual preservation and progress theorems. The ideas behind these proofs are

similar to what we’ve seen before, but we need to proceed carefully because

we are now dealing with a somewhat larger and more complicated system.

In particular, it will require some work to analyze the structure of the type

equivalence relation. To shorten the proofs, we treat only the universal part

of Fω, the system defined in Figure 30-1. Extending the arguments to cover

existential types is straightforward.

Basic Properties

We begin with some simple properties that will be needed later.

30.3.1 Lemma [Strengthening]:

If Γ , x:S, ∆ ` T :: K, then Γ , ∆ ` T :: K. �

Proof: The kinding relation does not refer to term variable bindings. �

For the sake of variety, let us prove permutation and weakening for Fω

together, rather than one after the other as we have done previously.

30.3.2 Lemma [Permutation and Weakening]: Suppose we have contexts Γ and ∆

such that ∆ is a well-formed permutation of Γ ,Σ for some context Σ—that is,

∆ is a permutation of an extension of Γ .

1. If Γ ` T :: K, then ∆ ` T :: K.

2. If Γ ` t : T, then ∆ ` t : T. �

Proof: Straightforward induction on derivations. �

30.3.3 Lemma [Term Substitution]: If Γ , x:S, ∆ ` t : T and Γ ` s : S, then Γ , ∆ `

[x, s]t : T. �

Proof: By induction on derivations. (Exercise [«]: Where is Lemma 30.3.1

used? What about Lemma 30.3.2?) �

30.3.4 Lemma [Type Substitution]:

1. If Γ , Y::J, ∆ ` T :: K and Γ ` S :: J, then Γ , [Y, S]∆ ` [Y, S]T :: K.

2. If T ≡ U, then [Y, S]T ≡ [Y, S]U.

454 30 Higher-Order Polymorphism

Parallel reduction Sl T

Tl T (QR-Refl)

S1 l T1 S2 l T2

S1→S2 l T1→T2

(QR-Arrow)

S2 l T2

∀X::K1.S2 l ∀X::K1.T2

(QR-All)

S2 l T2

λX::K1.S2 l λX::K1.T2

(QR-Abs)

S1 l T1 S2 l T2

S1 S2 l T1 T2

(QR-App)

S12 l T12 S2 l T2

(λX::K11.S12) S2 l [X, T2]T12

(QR-AppAbs)

Figure 30-3: Parallel reduction on types

3. If Γ , Y::J, ∆ ` t : T and Γ ` S :: J, then Γ , [Y , S]∆ ` [Y , S]t :

[Y, S]T. �

Proof: Straightforward induction on derivations, using weakening (Lemma

30.3.2) for the K-TVar, and T-Var cases. For the Q-AppAbs case, we also need

the observation that [X , [Y , S]T2]([Y, S]T12) is the same thing as [Y ,

S]([X , T2]T12). �

Type Equivalence and Reduction

For establishing the properties of typing in Fω, it is convenient to use a di-

rected variant of the type equivalence relation, called parallel reduction (see

Figure 30-3). The differences from type equivalence are that the rules of sym-

metry and transitivity are dropped, and that the QR-AppAbs rule allows re-

ductions in the subphrases of the redex. Dropping symmetry gives the reduc-

tion relation a more “computational” feel, with (λX::K11.T12) T2 reducing to

[X , T2]T12, but not the other way around; this directedness makes the re-

lation easier to analyze, e.g., in the proof of Lemma 30.3.12 below. Dropping

transitivity and allowing reduction of the components at the same time as re-

ducing a lambda-redex are technicalities: we make these changes to obtain a

relation with the single-step diamond property stated in Lemma 30.3.8 below.

A key property of the parallel reduction relation is that its transitive and

symmetric closure, written jl∗, coincides with type equivalence.

30.3.5 Lemma: S ≡ T iff Sjl∗ T. �

Proof: The (⇐) direction is obvious. For the (⇒) direction, the only difficulty is

the fact that a type equivalence derivation may use instances of Q-Symm and

Q-Trans at arbitrary points, while the definition of the jl∗ relation permits

30 Higher-Order Polymorphism 455

uses of symmetry and transitivity only at the outermost level. This can be

dealt with by observing that any derivation of S ≡ T can be transformed into

a chain of transitivity-free derivations S = S0 ≡ S1 ≡ S2 ≡ · · · ≡ Sn = T glued

together with transitivity at the top, where, in each subderivation Si ≡ Si+1,

Q-Symm is used only as the final rule (or not at all). �

Moreover, parallel reduction is easily seen to be confluent, as the next few

lemmas show. (Confluence is often called the Church-Rosser property.)

30.3.6 Lemma: If Sl S′, then [Y, S]Tl [Y, S′]T for any type T. �

Proof: By induction on the structure of T. �

30.3.7 Lemma: If Sl S′ and Tl T′, then [Y, S]Tl [Y, S′]T′. �

Proof: By induction on the second given derivation. The QR-Refl case uses

Lemma 30.3.6. The cases for QR-Abs, QR-App, QR-Arrow, and QR-All pro-

ceed by straightforward use of the induction hypothesis. In QR-AppAbs case,

we have T = (λX::K11.T12) T2 and T′ = [X, T′2]T
′
12, with T12 l T′12 and T2 l

T′2. By the induction hypothesis, [Y , S]T12 l [Y , S′]T′12 and [Y , S]T2 l

[Y , S′]T′2. Applying QR-AppAbs, we obtain (λX::K11.[Y , S]T12) [Y ,

S]T2 l [X , [Y , S′]T′2]([Y , S′]T′12), i.e., [Y , S]((λX::K11.T12) T2) l

[Y, S′]([X, T′2]T
′
12). �

30.3.8 Lemma [Single-step diamond property of reduction]: If S l T and S l

U, then there is some type V such that Tl V and Ul V. �

Proof: Exercise [Recommended, «««]. �

30.3.9 Lemma [Confluence]: If S l∗ T and S l∗ U, then there is some type V such

that Tl∗ V and Ul∗ V. �

Proof: If we visualize the individual steps of reduction from S to T and from

S to U like this,

S

�w� ��
����

��
��

��
?
�'

??
??

??
??

??
??

·

�w� �
��

�
��

��

��
��

·

?
�'

??
??

??
??

??
??

· · ·

�w� ��
����

��
��

��
· · ·

?
�'

??
??

??
??

??
??

T U

then we can repeatedly use Lemma 30.3.8 to tile the interior of the diagram

456 30 Higher-Order Polymorphism

S

�w� ��
����

��
��

��
?
�'

??
??

??
??

??
??

·

�w� �
��

�
��

��

��
��

?
�'

·

�w� ?
�'

??
??

??
??

??
??

· · ·

�w� ��
����

��
��

��
?
�'

·

�w� ?
�'

· · ·

�w�
?
�'

??
??

??
??

??
??

T · · · · · · U

· · ·
?
�' �w�

·
?
�' �w�

· · ·
?
�' �w�

·
?
�' �w�

·
?
�' �w�

V

?
�' �w�

to obtain a large diamond. The lower edges of this diamond are the required

reductions. �

30.3.10 Proposition: If Sjl∗ T, then there is some U such that Sl∗ U and Tl∗ U. �

Proof: Exercise [««]. �

This brings us to the crucial observation relating equivalence and reduc-

tion: if two types are equivalent, then they share a common reduct. This gives

us the structure we need to prove the inversion properties that follow.

30.3.11 Corollary: If S ≡ T, then there is some U such that Sl∗ U and Tl∗ U. �

Preservation

We are now almost ready for the main proof that types are preserved during

reduction. The only other thing we need is, as usual, an inversion lemma that,

given a typing derivation whose conclusion has a certain shape, tells us about

the shape of its subderivations. This lemma, in turn, depends on a simple

observation about parallel reduction.

30.3.12 Lemma [Preservation of shapes under reduction]:

1. If S1→S2 l
∗ T, then T = T1→T2 with S1 l

∗ T1 and S2 l
∗ T2.

2. If ∀X::K1.S2 l
∗ T, then T = ∀X::K1.T2 with S2 l

∗ T2. �

Proof: Straightforward induction. �

30 Higher-Order Polymorphism 457

30.3.13 Lemma [Inversion]:

1. If Γ ` λx:S1. s2 : T1→T2, then T1 ≡ S1 and Γ , x:S1 ` s2 : T2. Also,

Γ ` S1 :: *.

2. If Γ ` λX::J1. s2 : ∀X::K1.T2, then J1 = K1 and Γ , X::J1 ` s2 : T2. �

Proof: For part 1, we prove, by induction, the following slightly more general

statement: If Γ ` λx:S1.s2 : S and S ≡ T1→T2, then T1 ≡ S1 and Γ , x:S1 `

s2 : T2. The induction step, rule T-Eq is straightforward. The interesting case

is the base of the induction, rule T-Abs. In this case, S has the form S1→S2,

where Γ , x:S1 ` s2 : S2. Lemma 30.3.12(1) gives us T1 ≡ S1 and T2 ≡ S2, from

which T-Eq gives Γ , x:S1 ` s2 : T2. Moreover, the other premise of T-Abs

gives us Γ ` S1 :: *. Part 2 is similar. �

30.3.14 Theorem [Preservation]: If Γ ` t : T and t -→ t′, then Γ ` t′ : T. �

Proof: Straightforward induction on typing derivations. The argument is sim-

ilar to the proof of preservation for the simply typed lambda-calculus with

subtyping (15.3.5).

Case T-Var: t = x

Can’t happen (there are no evaluation rules for variables).

Case T-Abs: t = λx:T1.t2

Can’t happen (t is already a value).

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

From Figure 30-1, we see that there are three rules by which t -→ t′ can

be derived: E-App1, E-App2, and E-AppAbs. For the first two, the result fol-

lows by straightforward use of the induction hypothesis. The third is more

interesting:

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t′ = [x, v2]t12

By Lemma 30.3.13(1), T11 ≡ S11 and Γ , x:S11 ` t12 : T12. By T-Eq, Γ ` t2 :

S11. From this and the substitution lemma (30.3.3), we obtain Γ ` t′ : T12.

Case T-TAbs: t = λX::K1.t2

Can’t happen (t is already a value).

Case T-TApp: t = t1 [T2] Γ ` t1 : ∀X::K11.T12 Γ ` T2 :: K11

T = [X, T2]T12

Similar to the T-App case, using the type substitution lemma (30.3.4) in place

of the term substitution lemma (30.3.3).

458 30 Higher-Order Polymorphism

Case T-Eq: Γ ` t : S S ≡ T Γ ` T :: *

By the induction hypothesis, Γ ` t′ : S. By T-Eq, Γ ` t′ : T. �

Progress

Our next task is the progress theorem. Again, we already have most of what

we need for the proof—all that remains is a standard canonical forms lemma

that tells us about the shapes of closed values.

30.3.15 Lemma [Canonical Forms]:

1. If t is a closed value with ` t : T1→T2, then t is an abstraction.

2. If t is a closed value with ` t : ∀X::K1.T2, then t is a type abstraction. �

Proof: The arguments for the two parts are similar; we show just (1). Since

there are only two forms of values, if t is a value and not an abstraction, then

it must be a type abstraction. So suppose (for a contradiction) that it is a type

abstraction. Then the given typing derivation for ` t : T1→T2 must end with

a use of T-TAbs followed by a nonempty sequence of uses of T-Eq. That is, it

must have the following form (eliding kinding premises):
...

(T-Tabs)
` t : ∀X::K11.S12 ∀X::K11.S12 ≡ U1

(T-Eq)
` t : U1

...

` t : Un−1 Un−1 ≡ Un
(T-Eq)

` t : Un Un ≡ T1→T2

(T-Eq)
` t : T1→T2

Since type equivalence is transitive, we can collapse all of these uses of equiv-

alence into one and conclude that ∀X::K11.S12 ≡ T1→T2. Now, by Proposi-

tion 30.3.11, there must be some type U such that ∀X::K11.S12 l
∗ U and

T1→T2 l
∗ U. By Lemma 30.3.12, such a U must have both a quantifier and an

arrow as its outermost constructor, a contradiction. �

30.3.16 Theorem [Progress]: Suppose t is a closed, well-typed term (that is, ` t : T

for some T). Then either t is a value or else there is some t′ with t -→ t′. �

Proof: By induction on typing derivations. The T-Var case cannot occur,

because t is closed. The T-Abs and T-TAbs cases are immediate, since ab-

stractions are values. The T-Eq case follows directly from the induction hy-

pothesis. The remaining cases, for application and type application, are more

interesting. We give just the case for type application; the other is similar.

30 Higher-Order Polymorphism 459

Case T-TApp: t = t1 [T2] ` t1 : ∀X::K11.T12 ` T2 :: K11

By the induction hypothesis, either t1 is a value or else it can make a step

of evaluation. If t1 can take a step, then rule E-TApp applies to t. If t1 is

a value, then the canonical forms lemma (30.3.15) tells us that t1 is a type

abstraction, so rule E-TAppTAbs applies to t. �

30.3.17 Exercise [Recommended, ««]: Suppose we add to the type equivalence rela-

tion the following peculiar rule:

T→T ≡ ∀X::*.T

Which, if any, of the basic properties of the system would fail? On the other

hand, suppose that we add this rule:

S→T ≡ T→S

Now which properties fail, if any? �

Kinding

In the definition of Fω in Figure 30-1 we took some pains to ensure the well-

kindedness of the types we can derive for terms using the rules. In partic-

ular, T-Abs checks that the type annotation on a lambda-abstraction is well

formed before adding it to the context, and T-Eq checks that the type T being

attributed to t has kind *. The precise sense in which these checks ensure

well-formedness is given by the following proposition.

30.3.18 Definition: A context Γ is said to be well formed if (1) Γ is empty, or (2)

Γ = Γ1, x:T with Γ1 well formed and Γ ` T :: *, or (3) Γ = Γ1, X::K with Γ1 well

formed. �

30.3.19 Proposition: If Γ ` t : T and Γ is well formed, then Γ ` T :: *. �

Proof: Routine induction, using Lemma 30.3.4(1) for the T-TApp case. �

Decidability

Space constraints preclude the inclusion in this book of a full proof of de-

cidability for Fω—i.e., a typechecking algorithm and proofs of its soundness,

completeness, and termination—but almost all the required ideas are already

familiar from the minimal typing algorithm for System F<:in Chapter 28.

We begin by observing that the kinding relation is decidable (since its rules

are syntax directed). This is no surprise, since we have seen that kinding is

essentially a copy of the simply typed lambda-calculus “one level up.” This

460 30 Higher-Order Polymorphism

assures us that the well-kindedness checks in the typing rules can be imple-

mented effectively.

Next, we remove the one non-syntax-directed rule, T-Eq, from the typing

relation, just as we removed T-Sub from F<:. We then examine the other rules

to see which premises must be generalized in order to account for essential

uses of the now-missing T-Eq rule. It turns out there are two critical points.

1. In the first premise of rules T-App and T-TApp, we may need to use T-Eq

to rewrite the type of the left-hand subexpression t1 to bring an arrow

or a quantifier to the outside. (For example, if the context associates vari-

able x with type (λX.X→X)Nat, then the application x 5 has type Nat only

because we can rewrite x’s type as Nat→Nat.)

We accomplish this by introducing an analog of the exposure relation from

§28.1. Here, rather than promoting t1’s minimal type until it becomes an

arrow or quantifier, as appropriate, we reduce it—for example, by repeat-

edly applying the rules in Figure 30-3 until no more nontrivial reductions

are possible.1

To be sure that this process will terminate, we need to show that our

reduction rules are normalizing. Of course, on ill-kinded terms, reduction

will not be normalizing, since the syntax of types in Fω includes all the

primitives we need to encode divergent terms such as omega (page 65).

Fortunately, it follows from Proposition 30.3.19 that, as long as we start

with a well-formed context (and perform appropriate kind-checks as we

go along to ensure that any annotation we put into the context is well

kinded), we need to deal only with well-kinded terms, and for these it is

possible to show (by adapting the technique of Chapter 12, for example)

that reduction always leads to a unique normal form.

2. In the second premise of T-App, we may need to use equivalence to match

the type T2 calculated for t2 with the left-hand side T11 of the arrow type of

t1. An algorithmic variant of this rule will therefore include an equivalence

check between T2 and T11. This check can be implemented, for example, by

reducing both T2 and T11 to their respective normal forms and then testing

whether these are identical (modulo the names of bound variables).

30.3.20 Exercise [««««]: Implement a typechecker for Fω based on these ideas, us-

ing the purefsub checker as a starting point. �

1. Actually, most typecheckers for Fω use a less aggressive form of reduction known as weak

head reduction, in which only leftmost, outermost redexes are reduced and we stop when some

concrete constructor—i.e., anything other than an application—comes to the front of the type.

30 Higher-Order Polymorphism 461

30.4 Fragments of Fω

Intuitively, it is clear that both λ→ and System F are contained in Fω. We can

make this intuition precise by defining a hierarchy of systems, F1, F2, F3, etc.,

whose limit is Fω.

30.4.1 Definition: In System F1, the only kind is * and no quantification (∀) or

abstraction (λ) over types is permitted. The remaining systems are defined

with reference to a hierarchy of kinds at level i, defined as follows:

K1 = ∅

Ki+1 = {*} ∪ {J⇒K | J ∈ Ki and K ∈ Ki+1}

Kω =
⋃

1≤iKi

In System F2, we still have only kind * and no lambda-abstraction at the level

of types, but we allow quantification over proper types (of kind *). In F3, we

allow quantification over type operators (i.e., we can write type expressions

of the form ∀X::K.T, where K ∈ K3) and introduce abstraction over proper

types (i.e., we consider type expressions of the form λX::*.T, giving them

kinds like *⇒*). In general, Fi+1 permits quantification over types with kinds

inKi+1 and abstraction over types with kinds inKi . �

F1 is just our simply typed lambda-calculus, λ→. Its definition is super-

ficially more complicated than Figure 9-1 because it includes kinding and

type equivalence relations, but these are both trivial: every syntactically well

formed type is also well kinded, with kind *, and the only type equivalent to a

type T is T itself. F2 is our System F; its position in this hierarchy is the reason

why it is often called the second-order lambda-calculus. F3 is the first system

where the kinding and type equivalence relations become non-degenerate.

Interestingly, all the programs in this book live in F3. (Strictly speaking, the

type operators Object and Class in Chapter 32 are in F4, since their argu-

ment is a type operator of kind (*⇒*)⇒*, but we could just as well treat

these two as abbreviation mechanisms of the metalanguage rather than full-

fledged expressions of the calculus, as we did with Pair before Chapter 29,

since in the examples using Object and Class we do not need to quantify

over types of this kind.) On the other hand, restricting our programming lan-

guage to F3 instead of using full Fω does not actually simplify things very

much, in terms of either implementation difficulty or metatheoretic intricacy,

since the key mechanisms of type operator abstraction and type equivalence

are already present at this level.

30.4.2 Exercise [«««« 3]: Are there any useful programs that can be written in F4

but not F3? �

462 30 Higher-Order Polymorphism

30.5 Going Further: Dependent Types

Much of this book has been concerned with formalizing abstraction mecha-

nisms of various sorts. In the simply typed lambda-calculus, we formalized

the operation of taking a term and abstracting out a subterm, yielding a func-

tion that can later be instantiated by applying it to different terms. In System

F, we considered the operation of taking a term and abstracting out a type,

yielding a term that can be instantiated by applying it to various types. In λω,

we recapitulated the mechanisms of the simply typed lambda-calculus “one

level up,” taking a type and abstracting out a subexpression to obtain a type

operator that can later be instantiated by applying it to different types.

A convenient way of thinking of all these forms of abstraction is in terms

of families of expressions, indexed by other expressions. An ordinary lambda-

abstraction λx:T1.t2 is a family of terms [x , s]t1 indexed by terms s.

Similarly, a type abstraction λX::K1.t2 is a family of terms indexed by types,

and a type operator is a family of types indexed by types.

λx:T1.t2 family of terms indexed by terms

λX::K1.t2 family of terms indexed by types

λX::K1.T2 family of types indexed by types.

Looking at this list, it is clear that there is one possibility that we have not

considered yet: families of types indexed by terms. This form of abstraction

has also been studied extensively, under the rubric of dependent types.

Dependent types offer a degree of precision in describing program behav-

iors that goes far beyond the other typing features we have seen. As a simple

example of this, suppose we have a built-in type FloatList with the usual

associated operations:

nil : FloatList

cons : Float → FloatList → FloatList

hd : FloatList → Float

tl : FloatList → FloatList

isnil : FloatList → Bool

In a language with dependent types, we can refine the simple type FloatList

to a family of types FloatList n—the types of lists with n elements.

To take advantage of this refinement, we sharpen the types of the basic

list operations. To begin with, we give the constant nil type FloatList 0.

To give more accurate types to the rest of the operations, we need to refine

the notation for function types to express the dependency between their ar-

guments and the types of their results. For example, the type of cons should

be roughly “a function that takes a Float and a list of length n and returns a

30 Higher-Order Polymorphism 463

list of length n+1.” If we make the binding of n explicit by providing it as an

initial argument, this description becomes “a function that takes a number

n, a Float, and a list of length n, and returns a list of length succ n.” That

is, what we need to capture in the type is the dependency between the value

of the first argument (n) and the types of the third argument (FloatList n)

and the result (FloatList (succ n)). We accomplish this by binding a name

to the first argument, writing Πn:Nat. ... instead of Nat→.... The types of

cons and the other list operations then become

nil : FloatList 0

cons : Πn:Nat. Float → FloatList n → FloatList (succ n)

hd : Πn:Nat. FloatList (succ n) → Float

tl : Πn:Nat. FloatList (succ n) → FloatList n.

The types of nil, cons, and tl tell us exactly how many elements are in their

results, while hd and tl demand non-empty lists as arguments. Also, note

that we don’t need isnil any more, since we can tell whether an element of

FloatList n is nil just by testing whether n is 0.

Dependent function types of the form Πx:T1.T2 are a more precise form

of arrow types T1→T2, where we bind a variable x representing the function’s

argument so that we can mention it in the result type T2. In the degenerate

case, when T2 does not mention x, we write Πx:T1.T2 as T1→T2.

Of course, we can also define new terms with dependent function types.

For example, the function

consthree = λn:Nat. λf:Float. λl:FloatList n.

cons (succ(succ n)) f

(cons (succ n) f

(cons n f l));

which prepends three copies of its second argument (f) at the front of its

third argument (l), has type

Πn:Nat. Float → FloatList n → FloatList (succ(succ(succ n))).

Note that the first argument to each of the three calls to cons is different,

reflecting the different lengths of their list arguments.

There is an extensive literature on dependent types in computer science

and logic. Some good starting points are Smith, Nordström, and Petersson

(1990), Thompson (1991), Luo (1994), and Hofmann (1997).

30.5.1 Exercise [««]: Fixing the type of the elements of lists to be Float keeps the

example simple, but we can generalize it to lists of an arbitrary type T using

ordinary type operators. Show how to do this. �

464 30 Higher-Order Polymorphism

Continuing along the same lines, we can build higher-level list-manipulating

functions with similarly refined types. For example, we can write a sorting

function whose type,

sort : Πn:Nat. FloatList n → FloatList n,

tells us that it returns a list of the same length as its input. Indeed, by further

refining the type families involved, we can even write a sort function whose

type tells us that the list it returns is always sorted. Checking that this sort

function actually belongs to this type will then amount to proving that it

meets its specification!

Such examples conjure up an alluring picture of a world in which programs

are correct by construction, where a program’s type tells us everything we

want to know about its behavior and an “ok” from the typechecker gives

us complete confidence that the program behaves as we expect. This vision is

related to the idea of programming by “extracting the computational content”

from a proof that a specification is satisfiable. The key observation is that a

constructive proof of a theorem of the form “For every x there exists a y

such that P” can be viewed as a function mapping x to y , together with some

evidence (which is computationally inessential—i.e., of interest only to the

typechecker) that this function has the property P . These ideas have been

pursued by researchers in the Nuprl (Constable et al., 1986), LEGO (Luo and

Pollack, 1992; Pollack, 1994) and Coq (Paulin-Mohring, 1989) projects, among

others.

Unfortunately, the power of dependent types is a two-edged sword. Blur-

ring the distinction between checking types and carrying out proofs of ar-

bitrary theorems does not magically make theorem proving simple—on the

contrary, it makes typechecking computationally intractable! Mathematicians

working with mechanical proof assistants do not just type in a theorem, press

a button, and sit back to wait for a Yes or No: they spend significant effort

writing proof scripts and tactics to guide the tool in constructing and verify-

ing a proof. If we carry the idea of correctness by construction to its limit,

programmers should expect to expend similar amounts of effort annotating

programs with hints and explanations to guide the typechecker. For certain

critical programming tasks, this degree of effort may be justified, but for

day-to-day programming it is almost certainly too costly.

Nonetheless, there have been several attempts to use dependent types in

the design of practical programming languges, including Russell (Donahue

and Demers, 1985; Hook, 1984), Cayenne (Augustsson, 1998), Dependent ML

(Xi and Pfenning, 1998, 1999), Dependently Typed Assembly Language (Xi and

Harper, 2001), and the shape types of Jay and Sekanina (1997). The trend in

these languages is toward restricting the power of dependent types in vari-

30 Higher-Order Polymorphism 465

ous ways, obtaining more tractable systems, for which typechecking can be

better automated. For example, in the languages of Xi et al., dependent types

are used only for static elimination of run-time bounds checking on array

accesses; the “theorem proving” problems generated during typechecking in

these languages are just systems of linear constraints, for which good auto-

matic procedures exist.

One area where dependent types have a long history of influence on pro-

gramming languages is in the design of module systems that incorporate

mechanisms for tracking sharing between inter-module dependencies. Land-

marks in this area include Pebble (Burstall and Lampson, 1984), MacQueen

(1986), Mitchell and Harper (1988), Harper et al. (1990), and Harper and Stone

(2000). Recent papers in this area have adopted the technical device of sin-

gleton kinds, in which module dependency is tracked at the level of kinds

instead of types (e.g., Stone and Harper, 2000; Crary, 2000; also see Hayashi,

1991; Aspinall, 1994).

The combination of dependent types with subtyping was first considered

by Cardelli (1988b), and has been further developed and generalized by As-

pinall (1994), Pfenning (1993b), Aspinall and Compagnoni (2001), Chen and

Longo (1996), and Zwanenburg (1999).

Another important application of dependent types in computer science is

in building proof assistants and automated theorem provers. In particular,

simple type systems with dependent types are often called logical frame-

works. The most famous of these is the pure simply typed calculus with de-

pendent types, LF (Harper, Honsell, and Plotkin, 1992). LF and its relatives, in

particular the calculus of constructions (Coquand and Huet, 1988; Luo, 1994),

have formed the basis for a long line of theorem proving environments, in-

cluding AutoMath (de Bruijn, 1980), NuPRL (Constable et al., 1986), LEGO (Luo

and Pollack, 1992; Pollack, 1994), Coq (Barras et al., 1997), ALF (Magnusson

and Nordström, 1994), and ELF (Pfenning, 1994). Pfenning (1996) surveys this

area in more depth.

The four forms of abstraction discussed earlier in this section are neatly

summarized by the following diagram, known as the Barendregt cube:2

Fω CC

F

����
·

����

λω ·

λ→

���

LF

����

2. Barendregt (1991) called it the lambda cube.

466 30 Higher-Order Polymorphism

All the systems of the cube include ordinary term abstraction. The top face

represents systems with polymorphism (families of terms indexed by types),

the back face systems with type operators, and the right face systems with

dependent types. In the far right corner is the calculus of constructions, con-

taining all four forms of abstraction. The other corner that we have men-

tioned above is LF, the simply typed lambda-calculus with dependent types.

All the systems of the Barendregt cube, and many others, can be presented

as instances of the general framework of pure type systems (Terlouw, 1989;

Berardi, 1988; Barendregt, 1991, 1992; Jutting, McKinna, and Pollack, 1994;

McKinna and Pollack, 1993; Pollack, 1994).

31 Higher-Order Subtyping

The last system we will consider, called Fω<: (“F-omega-sub”), is again a combi-

nation of features we have previously studied in isolation—this time, of type

operators and subtyping. It can be viewed as the extension of System F<:,

the second-order polymorphic lambda-calculus with bounded quantification,

with type operators. The most interesting new feature is the extension of the

subtyping relation from kind * to types of higher kinds.

Several different versions of Fω<: have been proposed, varying in expres-

siveness and metatheoretic complexity. The one used here is very close to

that of Pierce and Steffen (1994), one of the simplest. We will not prove any

properties of the system; interested readers are referred to Pierce and Steffen

(1994), or to Compagnoni (1994) or Abadi and Cardelli (1996), which treat

similar systems. (Multiplying the complexity of Chapter 28 by that of §30.3

gives an indication of how much space these proofs consume.)

The main reason for discussing Fω<: is that it forms the setting for the last

case study in object-oriented programming (Chapter 32). The examples do

not exercise any esoteric aspects of Fω<:’s definition—all that is needed is the

ability to write a bounded quantifier ranging over the subtypes of a given type

operator. Readers may therefore wish to skim this chapter on a first reading

and come back to it later if questions arise.

31.1 Intuitions

The interaction of subtyping and bounded quantification with type operators

raises several design issues in the formulation of the combined system. We

discuss these briefly before proceeding to the definition of the system.

The first question is whether, in the presence of subtyping, type operators

like λX::K1.T2 should be generalized to bounded type operators of the form

The system studied in this chapter is pure Fω<: (Figure 31-1). The associated implementation is

fomsub (the fullfomsub implementation includes various extensions such as existentials).

468 31 Higher-Order Subtyping

λX<:T1.T2. We choose simplicity over regularity in this chapter, defining a

system with bounded quantification and unbounded type operators.

The next issue is how to extend the subtype relation to include type opera-

tors. There are several alternatives. The simplest one, which we choose here,

is to lift the subtype relation on proper types pointwise to type operators. For

abstractions, we say that λX.S is a subtype of λX.T whenever applying both

to any argument U yields types that are in the subtype relation. For example,

λX.Top→X is a subtype of λX.X→Top because Top→U is a subtype of U→Top

for every U. Equivalently, we can say that λX.S is a subtype of λX.T if S is

a subtype of T when we hold X abstract, making no assumptions about its

subtypes and supertypes. The latter view leads directly to the following rule:

Γ , X ` S <: T

Γ ` λX.S <: λX.T
(S-Abs)

Conversely, if F and G are type operators with F <: G, then F U <: G U.

Γ ` F <: G

Γ ` F U <: G U
(S-App)

Note that this rule applies only when F and G are applied to the same argu-

ment U—knowing that F is pointwise a subtype of G tells us nothing about

their behavior when applied to different arguments. (Some more complex

variants of Fω<: that do consider this case are mentioned in §31.4.)

One additional rule arises from the intended meaning of the type equiva-

lence relation. If S ≡ T, then S and T have the same members. But types that

have the same members are surely subtypes of one another. This leads to an-

other subtyping rule, which includes definitional equivalence as a base case.

Γ ` S :: K Γ ` T :: K S ≡ T

Γ ` S <: T
(S-Eq)

Having lifted subtyping from kind * to kind *⇒*, we can repeat the process

for more complex kinds. For example, if P and Q are type operators of kind

⇒⇒*, then we say P <: Q if, for each U, the application P U is a subtype of

Q U in kind *⇒*.

A useful side effect of this definition is that the subtype relations for higher

kinds all have maximal elements. If we let Top[*] = Top and define(maximal

elements of higher kinds)

Top[K1⇒K2]
def
= λX::K1.Top[K2],

then a simple induction shows that Γ ` S <: Top[K] (whenever S has kind K).

We exploit this effect in the rules in the following section.

The step from ordinary bounded quantifiers to higher-order bounded quan-

tifiers is a straightforward one. Fω<: inherits from F<: bounded quantifiers of

31 Higher-Order Subtyping 469

the form ∀X<:T1.T2. Generalizing to higher-order (i.e., to quantification over

type operators) requires no change to this syntax: we just observe that T1

here may be any type expression, including a type operator. The unbounded

higher-order quantifiers that we inherit from Fω can be treated as abbrevia-

tions for bounded quantifiers with maximal bounds—i.e., we regard∀X::K1.T2

as an abbreviation for ∀X<:Top[K1].T2.

Lastly, Fω<: inherits from F<: the issue of whether to use the more tractable

kernel variant or the more powerful full variant of the rule S-All. We choose

the kernel variant here; the full variant also makes semantic sense, but its

metatheoretic properties (even those that one would expect should hold, by

analogy with full F<:) have not yet been established.

31.2 Definitions

The rules defining Fω<: are listed in Figure 31-1. One technicality in the defini-

tion is that, although the system provides two different sorts of binding for

type variables (X::K in type operators and X<:T in quantifiers), we allow only

the latter form of binding in contexts. When we move an X::K binder from

the right-hand side of the turnstile to the left, in rules K-Abs and S-Abs, we

change it to X<:Top[K].

Another fine point is that the rules S-Refl from F<: and T-Eq from Fω are

dropped in Fω<:. Instances of the old S-Refl are immediate consequences of

S-Eq and Q-Refl, while T-Eq is derivable from T-Sub and S-Eq.

31.2.1 Exercise [«]: If we define Id = λX.X and

Γ = B<:Top, A<:B, F <: Id

then which of the following subtype statements are derivable?

Γ ` A <: Id B

Γ ` Id A <: B

Γ ` λX.X <: λX.Top

Γ ` λX. ∀Y<:X. Y <: λX. ∀Y<:Top. Y

Γ ` λX. ∀Y<:X. Y <: λX. ∀Y<:X. X

Γ ` F B <: B

Γ ` B <: F B

Γ ` F B <: F B

Γ ` ∀F<:(λY.Top→Y). F A <: ∀F<:(λY.Top→Y). Top→B

Γ ` ∀F<:(λY.Top→Y). F A <: ∀F<:(λY.Top→Y). F B

Γ ` Top[*⇒*] <: Top[*⇒*⇒*] �

470 31 Higher-Order Subtyping

→ ∀ ⇒ <: Top Based on Fω (30-1) and kernel F<: (26-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

λX <:T .t type abstraction

t [T] type application

v ::= values:

λx:T.t abstraction value

λX <:T .t type abstraction value

T ::= types:

Top maximum type

X type variable

T→T type of functions

∀X <:T .T universal type

λX::K.T operator abstraction

T T operator application

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X <:T type variable binding

K ::= kinds:

* kind of proper types

K⇒K kind of operators

Evaluation t -→ t′

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 -→ [x, v2]t12 (E-AppAbs)

t1 -→ t′1

t1 [T2] -→ t′1 [T2]
(E-TApp)

(λX <:T11 .t12) [T2] -→ [X, T2]t12

(E-TappTabs)

Kinding Γ ` T :: K

Γ ` Top :: * (K-Top)

X<:T ∈ Γ Γ ` T :: K

Γ ` X :: K
(K-TVar)

Γ , X <:Top[K1] ` T2 :: K2

Γ ` λX::K1.T2 :: K1⇒K2

(K-Abs)

Γ ` T1 :: K11⇒K12 Γ ` T2 :: K11

Γ ` T1 T2 :: K12

(K-App)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1→T2 :: *
(K-Arrow)

Γ , X<:T1 ` T2 :: *

Γ ` ∀X <:T1 .T2 :: *
(K-All)

continued . . .

Figure 31-1: Higher-order bounded quantification (Fω<:)

31 Higher-Order Subtyping 471

Type equivalence S ≡ T

T ≡ T (Q-Refl)

T ≡ S

S ≡ T
(Q-Symm)

S ≡ U U ≡ T

S ≡ T
(Q-Trans)

S1 ≡ T1 S2 ≡ T2

S1→S2 ≡ T1→T2

(Q-Arrow)

S1 ≡ T1 S2 ≡ T2

∀ X<:S1 .S2 ≡ ∀ X<:T1 .T2

(Q-All)

S2 ≡ T2

λX::K1.S2 ≡ λX::K1.T2

(Q-Abs)

S1 ≡ T1 S2 ≡ T2

S1 S2 ≡ T1 T2

(Q-App)

(λX::K11.T12) T2 ≡ [X, T2]T12 (Q-AppAbs)

Subtyping Γ ` S <: T

Γ ` S <: U Γ ` U <: T Γ ` U :: K

Γ ` S <: T

(S-Trans)

Γ ` S :: *

Γ ` S <: Top
(S-Top)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1→S2 <: T1→T2

(S-Arrow)

X<:T ∈ Γ

Γ ` X <: T
(S-TVar)

Γ ` U1 :: K1 Γ , X<:U1 ` S2 <: T2

Γ ` ∀X<:U1.S2 <: ∀X<:U1.T2

(S-All)

Γ , X<:Top[K1] ` S2 <: T2

Γ ` λX::K1.S2 <: λX::K1.T2

(S-Abs)

Γ ` S1 <: T1

Γ ` S1 U <: T1 U
(S-App)

Γ ` S :: K Γ ` T :: K S ≡ T

Γ ` S <: T
(S-Eq)

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` T1 :: * Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-App)

Γ , X <:T ` t2 : T2

Γ ` λX <:T .t2 : ∀X <:T .T2

(T-TAbs)

Γ ` t1 : ∀X <:T11 .T12

Γ ` T2 <: T11

Γ ` t1 [T2] : [X, T2]T12

(T-TApp)

Γ ` t : S Γ ` S <: T Γ ` T :: *

Γ ` t : T
(T-Sub)

Figure 31-1: Higher-order bounded quantification (continued)

472 31 Higher-Order Subtyping

31.3 Properties

Proofs of fundamental properties of Fω<:, including preservation of types dur-

ing reduction, progress, and minimal typing, for (a near relative of) this sys-

tem can be found in the papers cited at the beginning of the chapter. These

proofs must, of course, address all the issues raised by subtyping, bounded

quantification, and type operators in isolation. In addition, one significant

new complication arises when we try to define an alternative, syntax-directed

presentation of the subtyping rules: not only can the type variable rule be

used in combination with transitivity in an essential way in subtyping deriva-

tions (as we saw in §28.3), but so can type equivalence (rule S-Eq) together

with transitivity.

For example, in the context Γ = X<:Top, F<:λY.Y, the statement Γ ` F X <:

X is provable as follows (ignoring kinding):

S-TVar
Γ ` F <: λY.Y

S-App
Γ ` F X <: (λY.Y) X

S-Eq
Γ ` (λY.Y) X <: X

S-Trans
Γ ` F X <: X

Moreover, note that we cannot get around this interaction simply by reducing

all type expressions to their normal forms, since the expression F A is not

a redex—it only becomes one when, during subtype checking, the variable

F is promoted to its upper bound λY.Y. The solution is to normalize type

expressions once at the beginning of the subtype check and then re-normalize

as necessary during the promotion operation.

31.4 Notes

Many of the ideas behind Fω<: are due to Cardelli, particularly to his paper,

“Structural Subtyping and the Notion of Power Type” (1988a); the extension of

the subtype relation to type operators was developed by Cardelli (1990) and

Mitchell (1990a). An early semantic model was given by Cardelli and Longo

(1991) using partial equivalence relations. Compagnoni and Pierce (1996) gave

a model for an extension of Fω<: with intersection types. A more powerful

model including recursive types was given by Bruce and Mitchell (1992); a

related model can be found in Abadi and Cardelli (1996).

Basic metatheoretic properties of the variant of Fω<: given here were proved

by Pierce and Steffen (1994), and independently (using a cleverer proof tech-

nique that simplifies one of the main arguments) by Compagnoni (1994).

Compagnoni’s technique was also used by Abadi and Cardelli (1996) for a

31 Higher-Order Subtyping 473

variant of Fω<: with their object calculus, rather than the lambda-calculus, as

its core term language.

The pointwise definition of subtyping between type operators can be gen-

eralized to allow subtyping between applications of different type operators

to different arguments (F S <: G T) if we refine the kind system so that it

tracks the polarity of type operators. We says that an operator F is covariant

if F S <: F T whenever S <: T and contravariant if F T <: F S whenever S <: T.

If we introduce two new subtyping rules reflecting these properties

Γ ` S <: T F is covariant

Γ ` F S <: F T

Γ ` S <: T F is contravariant

Γ ` F T <: F S

then it follows (by transitivity) that F S <: G T if F <: G, S <: T, and G is

covariant. To make all this work, we also need to mark type variables with

their polarities, and to restrict higher-order quantifiers to range only over

operators with certain polarities. Versions of Fω<: with polarities have been

considered by Cardelli (1990), Steffen (1998), and Duggan and Compagnoni

(1999).

Another possible generalization of the presentation of Fω<: used here is gen-

eralizing unbounded type operators λX::K1.T2 to bounded type operators

λX<:T1.T2. This is an appealing step, because it matches the way we gen-

eralized quantifiers to bounded quantifiers when we formed F<: by adding

subtyping to System F. On the other hand, it substantially complicates the

system, since we must also generalize the kind system to include kinds like

∀X<:T1.K2; this, in turn, introduces a mutual dependency between the kind-

ing and subtyping rules that requires significant work to untangle. See Com-

pagnoni and Goguen (1997a; 1997b).

Extensions of Fω<: with dependent types have been studied by Chen and

Longo (1996) and Zwanenburg (1999).

32 Case Study: Purely Functional Objects

Our final case study continues the development of the existential object model.

This model was introduced briefly in §24.2, which showed how existential

packages could be regarded as simple objects, and compared the properties

of this style of abstraction with the use of existentials to implement more

conventional abstract data types. In this chapter, we use the tools developed

in the past few chapters (type operators and higher-order subtyping, plus

one new feature, polymorphic update, that we introduce in §32.7) to extend

these simple existential objects to a set of idioms offering the flexibility of

full-blown object-oriented programming, including classes and inheritance.

32.1 Simple Objects

Let us begin by recalling, from §24.2, the type of purely functional Counter

objects:

Counter = {∃X, {state:X, methods:{get:X→Nat,inc:X→X}}};

The elements of this type are packages with a hidden state type X, a state of

type X, and a record of methods of type {get:X→Nat,inc:X→X}.

For the first few sections of this chapter, we will use the type {x:Nat}

as the representation type of all our objects. (In §32.8 we will see how to

define objects with multiple instance variables, as well as classes that add

new instance variables.) We will consistently use the abbreviation CounterR

when we are talking about the internal state type.

CounterR = {x:Nat};

A counter object is an element of the type Counter, defined according to

the rule for existential introduction (T-Pack in Figure 24-1).

The examples in this chapter are terms of Fω<: (Figure 31-1) with records (11-7), numbers (8-2)

and polymorphic update (32-1). The associated OCaml implementation is fullupdate.

476 32 Case Study: Purely Functional Objects

c = {*CounterR,

{state = {x=5},

methods = {get = λr:CounterR. r.x,

inc = λr:CounterR. {x=succ(r.x)}}}} as Counter;

ñ c : Counter

Invoking the methods of a Counter involves unpacking it, selecting the

appropriate field from its methods, and applying it to the state,

sendget = λc:Counter.

let {X,body} = c in

body.methods.get(body.state);

ñ sendget : Counter → Nat

and finally (in the case of inc, which must return a new object, not just a bare

number) repackaging the result into a new object with the same representa-

tion type and methods as the original.

sendinc = λc:Counter.

let {X,body} = c in

{*X,

{state = body.methods.inc(body.state),

methods = body.methods}} as Counter;

ñ sendinc : Counter → Counter

These basic functions can be used to build up more complex terms that ma-

nipulate Counter objects.

addthree = λc:Counter. sendinc (sendinc (sendinc c));

ñ addthree : Counter → Counter

32.2 Subtyping

A pleasant feature of this existential encoding of objects is that the subtype

inclusions that we expect between object types follow directly from the sub-

typing rules for existentials and records. To check this, recall (from 26-3) the

subtyping rule for existential types.1

Γ , X<:U ` S2 <: T2

Γ ` {∃X<:U,S2} <: {∃X<:U,T2}
(S-Some)

This rule tells us immediately that if we define an object type with more

methods than Counter, e.g.,

1. We use only the kernel variant of the rule here; the power of the full version is not needed.

In fact, we do not need bounded existentials at all in this chapter—the bounds of all our exis-

tentials are Top.

32 Case Study: Purely Functional Objects 477

ResetCounter =

{∃X, {state:X, methods:{get: X→Nat, inc:X→X, reset:X→X}}};

then it will be a subtype of Counter, i.e., ResetCounter <: Counter. This

means that, if we define a reset counter object,

rc = {*CounterR,

{state = {x=0},

methods = {get = λr:CounterR. r.x,

inc = λr:CounterR. {x=succ(r.x)},

reset = λr:CounterR. {x=0}}}} as ResetCounter;

ñ rc : ResetCounter

we can use subsumption to pass this object to functions defined on Counter,

such sendget, sendinc, and addthree:

rc3 = addthree rc;

ñ rc3 : Counter

Notice, though, that we lose type information when we do this: the type of

rc3 here is just Counter, not ResetCounter.

32.3 Bounded Quantification

Of course, it was precisely this sort of information loss due to subsump-

tion that motivated the introduction of bounded quantification in Chapter 26.

However, bounded quantification by itself is not quite enough—to be useful in

addressing the problem at hand, it needs to be enriched with some additional

mechanism.

To see why, observe that the obvious refinement of the type of sendinc

using bounded quantification is ∀C<:Counter. C→C. If we had a sendinc of

this type, then we could write addthree as

addthree = λC<:Counter. λc:C.

sendinc [C] (sendinc [C] (sendinc [C] c));

ñ addthree : ∀C<:Counter. C → C

and apply it to rc to obtain a result of type ResetCounter.

rc3 = addthree [ResetCounter] rc;

ñ rc3 : ResetCounter

478 32 Case Study: Purely Functional Objects

Unfortunately, there is no way to write such a function—or rather, no way

to write a function that behaves the way we want and give it this type. We

can, of course, write an identity function that belongs to this type,

wrongsendinc = λC<:Counter. λc:C. c;

ñ wrongsendinc : ∀C<:Counter. C → C

but if we try to refine the real implementation of sendinc from above by

adding a bounded type abstraction at the front, we get something that fails

to typecheck.

sendinc =

λC<:Counter. λc:C.

let {X,body} = c in

{*X,

{state = body.methods.inc(body.state),

methods = body.methods}}

as C;

ñ Error: existential type expected

The problem here is in the last line. The annotation as C tells the typechecker

“use the existential type C for the package being created here.” But C is not

an existential type—it is a type variable. This is not just a silly restriction of

the typing rules that we have defined—e.g., a consequence of the fact that the

rules do not “know” that every subtype of an existential type is an existential

type. On the contrary, it would actually be wrong to give the package

{*X,

{state = body.methods.inc(body.state),

methods = body.methods}}

the type C. Observe, for example, that the type

{∃X, {state:X, methods:{get:X→Nat,inc:X→X}, junk:Bool}}

is a subtype of Counter. But the package above certainly does not have this

type: it lacks the field junk. So it is not the case that, for any subtype C of

Counter, the body of sendinc above “really” has type C, if only the typing

rules could see it. Indeed, it can be shown (e.g., by appealing to a denotational

model for F<:—see Robinson and Tennent, 1988) that, in pure F<:, types of the

form ∀C<:T.C→C contain only identity functions.

Several ways of addressing this shortcoming of F<: have been proposed.

One possibility is to move from F<: to Fω<: and use higher-order bounded quan-

tification to give yet more refined types to functions like sendinc. Another

32 Case Study: Purely Functional Objects 479

possibility is to keep the type ∀C<:Counter.C→C, but to add features to the

language that can be used to build interesting inhabitants of this type. A fi-

nal possibility is simply to add references to the language. However, we have

already gone down that path in Chapter 27; the aim in the present chapter is

to experiment with what can be achieved—and how to achieve it—in a purely

functional setting.

The development that follows combines two of these methods—Fω<: to ad-

dress the problem with quantification over object types that we noticed in the

previous section, and a new primitive for polymorphic record update (defined

in §32.7) to address a related problem that arises in the treatment of instance

variables (§32.8).

32.4 Interface Types

Using type operators, we can express Counter as the combination of two

pieces

Counter = Object CounterM;

where

CounterM = λR. {get: R→Nat, inc:R→R};

is a type operator of kind *⇒* representing the specific method interface of

counter objects and

Object = λM::*⇒*. {∃X, {state:X, methods:M X}};

is a type operator of kind (*⇒*)⇒* that captures the common structure of

all object types. What we achieve by this reformulation is a separation of the

varying part (the method interface), where we want to allow subtyping, from

the fixed skeleton of objects (the existential packaging, and the pair of state

and methods), where we do not because it gets in the way of the repackaging.

We need bounded quantification over a type operator to achieve this split-

ting because it allows us to pull out the method interface from an object type,

even though the interface mentions the existentially bound state type X, by

abstracting the method interface itself on X. The interface thus becomes a

“parametric parameter.” The iterated character of the parameterization here

is reflected both in the kind of Object and in the steps by which the appli-

cation Object CounterM is simplified: first, CounterM is substituted into the

body of Object, yielding

{∃X, {state:X, methods:(λR. {get: R→Nat, inc:R→R}) X}}

480 32 Case Study: Purely Functional Objects

and then X is substituted into the body of CounterM, yielding

{∃X, {state:X, methods:{get:X→Nat,inc:X→X}}}.

If we split ResetCounter in the same way,

ResetCounterM = λR. {get: R→Nat, inc:R→R, reset:R→R};

ResetCounter = Object ResetCounterM;

then we have not only

ResetCounter <: Counter

as before but also

ResetCounterM <: CounterM

by the rules above for subtyping between type operators. That is, our separa-

tion of object types into generic boilerplate plus a specific interface gives us

a meaningful sense of interface subtyping that is separate from the subtype

relations between complete object types.

Interface subtyping is closely related—both conceptually and technically—

to the idea of matching introduced by Bruce et al. (1997) and further studied

by Abadi and Cardelli (1995; 1996).

32.5 Sending Messages to Objects

We can now repair the broken version of sendinc from §32.3 by abstracting

over sub-interfaces of CounterM rather than sub-types of Counter.

sendinc =

λM<:CounterM. λc:Object M.

let {X, b} = c in

{*X,

{state = b.methods.inc(b.state),

methods = b.methods}}

as Object M;

ñ sendinc : ∀M<:CounterM. Object M → Object M

Intuitively, the type of sendinc can be read “give me an object interface

refining the interface of counters, then give me an object with that interface,

and I’ll return you another object with the same interface.”

32.5.1 Exercise [«]: Why is this sendinc well typed whereas the previous one was

not? �

32 Case Study: Purely Functional Objects 481

To invoke the methods of counter and reset counter objects, we instantiate

the polymorphic method invocation functions with the appropriate interface

signature, CounterM or ResetCounterM (assuming sendget and sendreset

have been defined analogously).

sendget [CounterM] (sendinc [CounterM] c);

ñ 6 : Nat

sendget [ResetCounterM]

(sendreset [ResetCounterM]

(sendinc [ResetCounterM] rc));

ñ 0 : Nat

32.5.2 Exercise [Recommended, ««]: Define sendget and sendreset. �

32.6 Simple Classes

Now let us consider classes, beginning (as we did in Chapter 18) with simple

classes without self.

In §18.6, we defined a simple class (for the imperative object encoding,

where objects were records of methods) to be a function from states to

objects—a way of manufacturing multiple objects with the same methods

but each with a freshly allocated set of instance variables. In this chapter,

an object is more than just a record of methods: it includes a representation

type and a state as well. On the other hand, since this is a purely functional

model, each of the methods takes the state as a parameter (and, if necessary,

returns an object with an updated state), so we don’t need to pass the state to

the class at object-creation time. In fact, a class here—given that we are still

assuming that all objects use the same representation type—can be viewed

as simply a record of methods,

counterClass =

{get = λr:CounterR. r.x,

inc = λr:CounterR. {x=succ(r.x)}}

as {get: CounterR→Nat, inc:CounterR→CounterR};

ñ counterClass : {get:CounterR→Nat, inc:CounterR→CounterR}

or, using the CounterM operator to write the annotation more tersely:

counterClass =

{get = λr:CounterR. r.x,

inc = λr:CounterR. {x=succ(r.x)}}

as CounterM CounterR;

482 32 Case Study: Purely Functional Objects

ñ counterClass : CounterM CounterR

We build instances of such classes by supplying an initial value for the state

and packaging this state with the methods (i.e., the class) into an object.

c = {*CounterR,

{state = {x=0},

methods = counterClass}}

as Counter;

ñ c : Counter

Defining a subclass is simply a matter of building a new record of methods,

copying some of its fields from a previously defined one.

resetCounterClass =

let super = counterClass in

{get = super.get,

inc = super.inc,

reset = λr:CounterR. {x=0}}

as ResetCounterM CounterR;

ñ resetCounterClass : ResetCounterM CounterR

To generalize these simple classes to handle the same sorts of examples

that we closed with in Chapter 18, two more things are needed: the ability

to add new instance variables in subclasses, and a treatment of self. The

next two sections address the first of these; §32.9 closes the chapter with a

treatment of self.

32.7 Polymorphic Update

To add instance variables to classes, we need to add one new mechanism—a

primitive for in-place polymorphic update of record fields and an associated

refinement to record types. The need for these features arises from the fact

that allowing variation in instance variables between classes means making

superclasses polymorphic in the instance variables of their subclasses. Let us

look at how this happens.

Suppose that we want to define a subclass of resetCounterClass, adding

a backup method that saves the current value of the counter and changing

the behavior of reset to revert to this saved value instead of to a constant

initial value. To hold this saved value, we will need to extend our state type

from {x:Nat} to {x:Nat, old:Nat}. This difference in representations im-

mediately creates a technical difficulty. Our ability to reuse the inc method

32 Case Study: Purely Functional Objects 483

from resetCounterClass when defining backupCounterClass depends on

this method behaving the same in both classes. However, if the sets of in-

stance variables are different, then it does not behave quite the same: the inc

of a ResetCounter expects a state of type {x:Nat} and returns a new state of

the same type, while the inc of BackupCounter expects and produces states

of type {x:Nat,old:Nat}.

To resolve this difficulty, it suffices to observe that the inc method does

not really need to know that the state type is {x:Nat} or {x:Nat,old:Nat},

but only that the state contains an instance variable x. In other words, we can

unify these two methods by giving them both type ∀S<:{x:Nat}.S→S.

Now the same difficulty arises with states as with whole objects in §32.3:

the type ∀S<:{x:Nat}.S→S in our present language is inhabited only by

the identity function. Again, to address this difficulty, we need some mecha-

nism that permits a more precise form of bounded quantification; here, the

most direct mechanism is to add a primitive for polymorphic update of record

fields.2 If r is a record with a field x of type T and t is a term of type T, then

we write r←x=t to mean “a record that is just like r except that its x field has

the value t.” Note that this is a purely functional form of update operation—it

does not change r, but instead makes a clone with a different x field.

Using this record update primitive, a function that captures the intended

behavior of the inc method body can be written roughly as follows:

f = λX<:{a:Nat}. λr:X. r←a = succ(r.a);

However, we have to be a little careful. A naive typing rule for the update

operator would be:

Γ ` r : R Γ ` R <: {lj:Tj} Γ ` t : Tj

Γ ` r←lj=t : R

But this rule is unsound. For example, suppose we have:

s = {x={a=5,b=6},y=true};

Since s : {x:{a:Nat,b:Nat},y:Bool}, and {x:{a:Nat,b:Nat},y:Bool} <:

{x:{a:Nat}}, the above rule would allow us to derive

s←x={a=8} : {x:{a:Nat,b:Nat},y:Bool},

which would be wrong, since s←x={a=8} reduces to {x={a=8},y=true}.

This problem was caused by the use of depth subtyping on the field x to de-

rive {x:{a:Nat,b:Nat},y:Bool} <: {x:{a:Nat}}. Depth subtyping should

2. As before, there are actually several ways of achieving similar effects—by introducing differ-

ent primitives (some are listed in §32.10), or by using polymorphism, as in Pierce and Turner

(1994)—a notationally heavier but theoretically more elementary alternative. The one used here

is chosen for its simplicity, and because it fits naturally with the examples that follow.

484 32 Case Study: Purely Functional Objects

→ ∀ <: Top {} ← Based on F<: (26-1) with records (11-7)

New syntactic forms

t ::= ... terms:

{ ιi li=ti
i∈1..n} record

t←l=t field update

T ::= ... types:

{ ιi li:Ti
i∈1..n} type of records

ι ::= # invariant (updatable) field

omitted covariant (fixed) field

New evaluation rules t -→ t′

{ιjlj=vj
j∈1..n}←li=v

-→ {ιjlj=vj
j∈1..i−1,ιili=v,ιklk=vk

k∈i+1..n}

(E-UpdateV)

{ ιi li=vi
i∈1..n}.lj -→ vj (E-ProjRcd)

tj -→ t′j

{ ιi li=vi
i∈1..j−1, ιj lj=tj, ιk lk=tk

k∈j+1..n}

-→ { ιi li=vi
i∈1..j−1, ιj lj=t

′
j, ιk lk=tk

k∈j+1..n}

(E-Rcd)

New subtyping rules Γ ` S <: T

Γ ` { ιi li:Ti
i∈1..n+k} <: { ιi li:Ti

i∈1..n}

(S-RcdWidth)

for each i Γ ` Si <: Ti

if ιi = #, then Γ ` Ti <: Si

Γ ` { ιi li:Si
i∈1..n} <: { ιi li:Ti

i∈1..n}

(S-RcdDepth)

Γ ` {...#li:Si ...} <: {...li:Si...}

(S-RcdVariance)

New typing rules Γ ` t : T

for each i Γ ` ti : Ti

Γ ` { ιi li=ti
i∈1..n} : { ιi li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : { ιi li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Γ ` r : R Γ ` R <: {#lj:Tj}

Γ ` t : Tj

Γ ` r←lj=t : R
(T-Update)

Figure 32-1: Polymorphic update

not be allowed in fields that might be updated. We can achieve this by the

simple expedient of annotating such fields with a special mark, written #.

The rules for these “updatable records” and for the update operation itself

are given in Figure 32-1. We refine the syntax of record types so that every

field is annotated with a variance tag that indicates whether depth subtyp-

ing is allowed—# to forbid subtyping in this field and the empty string to

permit it (choosing the empty string here means that unmarked records will

behave as they always have). The depth subtyping rule S-RcdDepth is refined

to allow subtyping only in unmarked fields. Finally, we add a subtyping rule

S-RcdVariance that permits marks on fields to be changed from # to the

empty string—in other words, to “forget” that a given field is updatable. The

typing rule for the update primitive demands that the field being replaced is

marked #. The E-Update rule implements the update operation.

32 Case Study: Purely Functional Objects 485

The function f above is now written like this,

f = λX<:{#a:Nat}. λr:X. r←a = succ(r.a);

ñ f : ∀X<:{#a:Nat}. X → X

and used like this:

r = {#a=0, b=true};

f [{#a:Nat,b:Bool}] r;

ñ {#a=1, b=true} : {#a:Nat, b:Bool}

The soundness of the update operation rests on the following observation

about the refined subtype relation:

32.7.1 Fact: If ` R <: {#l:T1}, then R = {...#l:R1...} with ` R1 <: T1 and

` T1 <: R1. �

32.7.2 Exercise [Recommended, «««]: Does the minimal typing property hold for

this calculus? If so, prove it. If not, find a way to repair it. �

32.8 Adding Instance Variables

Using the features from the previous section, we can write a counterClass

that is polymorphic in the type of the internal state.

CounterR = {#x:Nat};

counterClass =

λR<:CounterR.

{get = λs:R. s.x,

inc = λs:R. s←x=succ(s.x)}

as CounterM R;

ñ counterClass : ∀R<:CounterR. CounterM R

To build an object from the new counterClass, we simply supply CounterR

as the representation type:

c = {*CounterR,

{state = {#x=0},

methods = counterClass [CounterR]}}

as Object CounterM;

ñ c : Counter

486 32 Case Study: Purely Functional Objects

Note that objects built from the new class have the same type Counter =

Object CounterM as the ones above: the changes to the treatment of instance

variables are entirely internal to the classes. The method invocation functions

above can also be used with objects instantiated from the new classes.

We can write resetCounterClass in the same style.

resetCounterClass =

λR<:CounterR.

let super = counterClass [R] in

{get = super.get,

inc = super.inc,

reset = λs:R. s←x=0}

as ResetCounterM R;

ñ resetCounterClass : ∀R<:CounterR. ResetCounterM R

Finally, we can write a backupCounterClass, this time abstracting over a

subtype of BackupCounterR (which was the point of the whole exercise).

BackupCounterM = λR. {get:R→Nat,inc:R→R,reset:R→R,backup:R→R};

BackupCounterR = {#x:Nat,#old:Nat};

backupCounterClass =

λR<:BackupCounterR.

let super = resetCounterClass [R] in

{get = super.get,

inc = super.inc,

reset = λs:R. s←x=s.old,

backup = λs:R. s←old=s.x}

as BackupCounterM R;

ñ backupCounterClass : ∀R<:BackupCounterR. BackupCounterM R

32.9 Classes with “Self”

In §18.9, we saw how to extend imperative classes with a mechanism allowing

the methods of a class to refer to each other recursively. This extension also

makes sense in the purely functional setting.

We begin by abstracting counterClass on a collection of methods self

appropriate for the same representation type R.

counterClass =

λR<:CounterR.

λself: Unit→CounterM R.

λ_:Unit.

{get = λs:R. s.x,

inc = λs:R. s←x=succ(s.x)}

as CounterM R;

32 Case Study: Purely Functional Objects 487

As in §18.9, the Unit argument to the class is used to postpone evaluation

during the fix operation that creates the methods of an object. The type of

self includes a matching Unit abstraction.

To build an object from this class, we take the fixed point of the function

counterClass and apply it to unit.

c = {*CounterR,

{state = {#x=0},

methods = fix (counterClass [CounterR]) unit}}

as Object CounterM;

ñ c : Counter

We next define a subclass offering a set operation, with the following in-

terface:

SetCounterM = λR. {get: R→Nat, set:R→Nat→R, inc:R→R};

The implementation of setCounterClass defines a set method and uses the

set and get methods from self in the implementation of its inc method:

setCounterClass =

λR<:CounterR.

λself: Unit→SetCounterM R.

λ_:Unit.

let super = counterClass [R] self unit in

{get = super.get,

set = λs:R. λn:Nat. s←x=n,

inc = λs:R. (self unit).set s (succ((self unit).get s))}

as SetCounterM R;

Finally, bringing together all the mechanisms from the chapter, we can

build a subclass of instrumented counters whose set operation counts the

number of times that it has been called.

InstrCounterM =

λR. {get: R→Nat, set:R→Nat→R, inc:R→R, accesses:R→Nat};

InstrCounterR = {#x:Nat,#count:Nat};

instrCounterClass =

λR<:InstrCounterR.

λself: Unit→InstrCounterM R.

λ_:Unit.

let super = setCounterClass [R] self unit in

{get = super.get,

488 32 Case Study: Purely Functional Objects

set = λs:R. λn:Nat.

let r = super.set s n in

r←count=succ(r.count),

inc = super.inc,

accesses = λs:R. s.count}

as InstrCounterM R;

Note that calls to inc are included in the access count, since inc is imple-

mented in terms of the set method from self.

To wrap up, let’s build an instrumented counter object and send it some

messages.

ic = {*InstrCounterR,

{state = {#x=0,#count=0},

methods = fix (instrCounterClass [InstrCounterR]) unit}}

as Object InstrCounterM;

ñ ic : Object InstrCounterM

sendaccesses [InstrCounterM] (sendinc [InstrCounterM] ic);

ñ 1 : Nat

32.9.1 Exercise [Recommended, «««]: Define a subclass of instrCounterClass

that adds backup and reset methods. �

32.10 Notes

The first “purely functional” interpretation of objects in a typed lambda-

calculus was based on recursively-defined records; it introduced by Cardelli

(1984) and studied in many variations by Kamin and Reddy (Reddy, 1988;

Kamin and Reddy, 1994), Cook and Palsberg (1989), and Mitchell (1990a). In

its untyped form, this model was used rather effectively for the denotational

semantics of untyped object-oriented languages. In its typed form, it was

used to encode individual object-oriented examples, but it caused difficulties

with uniform interpretations of typed object-oriented languages. The most

successful effort in this direction was carried out by Cook and his co-workers

(Cook, Hill, and Canning, 1990; Canning, Cook, Hill, and Olthoff, 1989a; Can-

ning, Cook, Hill, Olthoff, and Mitchell, 1989b).

Pierce and Turner (1994) introduced an encoding that relied only on a type

system with existential types, but no recursive types. This led Hofmann and

Pierce (1995b) to the first uniform, type-driven interpretation of objects in a

functional calculus. At the same conference, Bruce presented a paper (1994)

32 Case Study: Purely Functional Objects 489

on the semantics of a functional object-oriented language. This semantics

was originally presented as a direct mapping into a denotational model of

Fω<:, but has recently been reformulated as an object encoding that depends

on both existential and recursive types. Meanwhile, frustrated by the diffi-

culties of encoding objects in lambda calculi, Abadi and Cardelli introduced

a calculus of primitive objects (1996). Later, however, Abadi, Cardelli, and

Viswanathan (1996) discovered a faithful encoding of that object calculus in

terms of bounded existentials and recursive types. These developments are

surveyed by Bruce et al. (1999) and Abadi and Cardelli (1996).

The object encoding in this chapter has been extended to include multi-

ple inheritance—classes with more than one superclass—by Compagnoni and

Pierce (1996). The key technical idea is the extension of Fω<: with intersection

types (§15.7).

There have been numerous proposals for addressing the shortcomings of

pure second-order bounded quantification that we observed in §32.3. Besides

the two that we saw in this chapter—higher-order bounded quantification

and a polymorphic record update primitive—there are several other styles

of polymorphic record update (Cardelli and Mitchell, 1991; Cardelli, 1992;

Fisher and Mitchell, 1996; Poll, 1996), as well as structural unfolding for re-

cursive types (Abadi and Cardelli, 1996), positive subtyping (Hofmann and

Pierce, 1995a), polymorphic repacking for existential types (Pierce, 1996), and

type destructors (Hofmann and Pierce, 1998).

A different line of attack based on row-variable polymorphism has been

developed by Wand (1987, 1988, 1989b), Rémy (1990, 1989, 1992), Vouil-

lon (2000, 2001) and others, and forms the basis for the object-oriented fea-

tures of OCaml (Rémy and Vouillon, 1998).

“Begin at the beginning,” the King said, very gravely, “and go on till you come

to the end: then stop.” —Lewis Carroll

Appendices

A Solutions to Selected Exercises

3.2.4 Solution: |Si+1| = |Si|
3 + |Si| × 3+ 3, and |S0| = 0. So |S3| = 59439.

3.2.5 Solution: A straightforward inductive proof does the trick. When i = 0, there

is nothing to prove. Next, supposing that i = j + 1, for some j ≥ 0, and that

Sj ⊆ Si , we must show that Si ⊆ Si+1—that is, for any term t ∈ Si , we must

show t ∈ Si+1. So suppose we have t ∈ Si . By the definition of Si as the union

of three sets, we know that t must have one of three forms:

1. t ∈ {true, false, 0}. In this case, we obviously have t ∈ Si+1, by the

definition of Si+1.

2. t = succ t1, pred t1, or iszero t1, where t1 ∈ Sj . Since Sj ⊆ Si by the

induction hypothesis, we have t1 ∈ Si , so t ∈ Si+1 by definition of Si+1.

3. t = if t1 then t2 else t3, where t1,t2,t3 ∈ Sj . Again, since Sj ⊆ Si by

the induction hypothesis, we have t ∈ Si+1, by the definition of Si+1.

3.3.4 Solution: (We give the argument just for the depth-induction principle; the

others are similar.) We are told that, for each term s, if P(r) for all r with

smaller depth than s, then P(s); we must now prove that P(s) holds for all

s. Define a new predicate Q on natural numbers as follows:

Q(n) = ∀s with depth(s) = n. P(s)

Now use natural number induction (2.4.2) to prove that Q(n) holds for all n.

3.5.5 Solution: Suppose P is a predicate on derivations of evaluation statements.

If, for each derivation D,

given P(C) for all immediate subderivations C

we can show P(D),

then P(D) holds for all D.

494 A Solutions to Selected Exercises

3.5.10 Solution:

t -→ t′

t -→∗ t′

t -→∗ t

t -→∗ t′ t′ -→∗ t′′

t -→∗ t′′

3.5.13 Solution: (1) 3.5.4 and 3.5.11 fail. 3.5.7, 3.5.8, and 3.5.12 remain valid. (2)

Now just 3.5.4 fails; the rest remain valid. The interesting fact in the second

part is that, even though single-step evaluation becomes nondeterministic in

the presence of this rule, the final results of multi-step evaluation are still

deterministic: all roads lead to Rome. Indeed, a rigorous proof of this fact is

not very hard, though it is not as trivial as before. The main observation is

that the single-step evaluation relation has the so-called diamond property:

A.1 Lemma [Diamond Property]: If r -→ s and r -→ t, with s ≠ t, then there is

some term u such that s -→ u and t -→ u. �

Proof: From the evaluation rules, it is clear that this situation can arise only

when r has the form if r1 then r2 else r3. We proceed by induction on the

pair of derivations used to derive r -→ s and r -→ t, with a case analysis on

the final rules in both derivations.

Case i:

Suppose r -→ s by E-IfTrue and r -→ t by E-Funny2. Then, from the forms

of these rules, we know that s = r2 and that t = if true then r′2 else r3,

where r2 -→ r′2. But then choosing u = r′2 gives us what we need, since we

know that s -→ r′2 and we can see that t -→ r′2 by E-IfTrue.

Case ii:

Suppose the final rule in the derivations of both r -→ s and r -→ t is E-If. By

the form of E-If, we know s must have the form if r′1 then r2 else r3 and

t must have the form if r′′1 then r2 else r3, where r1 -→ r′1 and r1 -→ r′′1 .

But then, by the induction hypothesis, there is some term r′′′1 with r′1 -→ r′′′1

and r′′1 -→ r′′′1 . We can complete the argument for this case by taking u =

if r′′′1 then r2 else r3 and observing that s -→ u and t -→ u by E-If.

The arguments for the other cases are similar. �

The proof of uniqueness of results now follows by a straightforward “dia-

gram chase.” Suppose that r -→∗ s and r -→∗ t.

A Solutions to Selected Exercises 495

s1

s

t2s2

r

t1

. . .

t

. . .

Then we can use Lemma A.1 to “pull together” s1 and t1

s1

s

t2s2

r

t1

. . .

t

. . .

u2

then use it to pull together s2 and u2 and again to pull together u2 and t2

s1

s

t2s2

r

t1

. . .

t

. . .

u2

and so on until we have pulled together s and t, building a complete large

diamond out of individual single-step diamonds.

It follows that, if r can be evaluated to v and to w, then they must be the

same (they are both normal forms, so the only way they can evaluate to the

same thing is to start out the same).

3.5.14 Solution: By induction on the structure of t.

Case: t is a value

Since every value is in normal form, this case cannot occur.

496 A Solutions to Selected Exercises

Case: t = succ t1

Looking at the evaluation rules, we find that only the rule E-Succ could pos-

sibly be used to derive t -→ t′ and t -→ t′′ (all the other rules have left-

hand sides whose outermost constructor is something other than succ). So

there must be two subderivations with conclusions of the form t1 -→ t′1 and

t1 -→ t′′1 . By the induction hypothesis (which applies because t1 is a subterm

of t), we obtain t′1 = t′′1 . But then succ t′1 = succ t′′1 , as required.

Case: t = pred t1

Here there are three evaluation rules (E-Pred, E-PredZero, and E-PredSucc)

that might have been used to reduce t to t′ and t′′. Notice, however, that

these rules do not overlap: if t matches the left-hand side of one rule, then

it definitely does not match the left-hand side of the others. (For example,

if t matches E-Pred, then t1 is definitely not a value, in particular not 0 or

succ v.) This tells us that the same rule must have been used to derive t -→ t′

and t -→ t′′. If that rule was E-Pred, then we use the induction hypothesis

as in the previous case. If it was E-PredZero or E-PredSucc, then the result

is immediate.

Case: Other cases

Similar.

3.5.16 Solution: Let us use the metavariable t to range over the new set of terms

extended with wrong (including all terms with wrong as a subphrase), and g to

range over the original set of “good” terms that do not involve wrong. Write

t
w
-→ t′ for the new evaluation relation augmented with wrong transitions,

and g
o
-→ g′ for the original form of evaluation. Now, the claim that the two

treatments agree can be formulated precisely as follows: any (original) term

whose evaluation gets stuck in the original semantics will evaluate to wrong

in the new semantics, and vice versa. Formally:

A.2 Proposition: For all original terms g, (g
o

-→∗ g′, where g′ is stuck) iff (g
w

-→∗

wrong). �

To prove this, we proceed in several steps. First, we remark that the new

transitions we have added do not invalidate Theorem 3.5.14.

A.3 Lemma: The augmented evaluation relation is deterministic. �

This means that whenever g can take a single step to g′ in the original

semantics, it can also step to g′ in the augmented semantics, and furthermore

that g′ is the only term g can step to in the new semantics.

Next, we show that a term that is (already) stuck in the original semantics

will always evaluate to wrong in the augmented semantics.

A Solutions to Selected Exercises 497

A.4 Lemma: If g is stuck then g
w

-→∗ wrong. �

Proof: By induction on the structure of g.

Case: g = true, false, or 0

Can’t happen (we assumed that g is stuck).

Case: g = if g1 then g2 else g3

Since g is stuck, g1 must be in normal form (or else E-If would apply). Clearly,

g1 cannot be true or false (otherwise one of E-IfTrue or E-IfFalse would

apply and g would not be stuck). Consider the remaining cases:

Subcase: g1 = if g11 then g12 else g13

Since g1 is in normal form and obviously not a value, it is stuck. The in-

duction hypothesis tells us that g1

w

-→∗ wrong. From this, we can construct

a derivation of g
w

-→∗ if wrong then g2 else g3. Adding a final instance

of rule E-If-Wrong yields g
w

-→∗ wrong, as required.

Subcase: g1 = succ g11

If g11 is a numeric value, then g1 is a badbool and rule E-If-Wrong im-

mediately yields g
w
-→ wrong. Otherwise, by definition g1 is stuck, and the

induction hypothesis tells us that g1

w

-→∗ wrong. From this derivation, we

construct a derivation of g
w

-→∗ succ wrong. Adding a final instance of rule

E-Succ-Wrong yields g
w

-→∗ wrong.

Other subcases:

Similar.

Case: g = succ g1

Since g is stuck, we know (from the definition of values) that g1 must be in

normal form and not a numeric value. There are two possibilities: either g1 is

true or false, or else g1 itself is not a value, hence stuck. In the first case,

rule E-Succ-Wrong immediately yields g
w
-→ wrong; in the second case, the

induction hypothesis gives us g1

w

-→∗ wrong and we proceed as before.

Other cases:

Similar. �

Lemmas A.3 and A.4 together give us the “only if” (=⇒) half of Proposi-

tion A.2. For the other half, we need to show that a term that is “about to go

wrong” in the augmented semantics is stuck in the original semantics.

498 A Solutions to Selected Exercises

A.5 Lemma: If g
w
-→ t in the augmented semantics and t contains wrong as a

subterm, then g is stuck in the original semantics. �

Proof: Straightforward induction on (augmented) evaluation derivations. �

Combining this with Lemma A.3 yields the “if” (⇐=) half of Proposition A.2,

and we are finished.

3.5.17 Solution: We prove the two directions of the “iff” separately, in Proposi-

tions A.7 and A.9. In each case, we begin with a technical lemma establishing

some useful properties of multi-(small-)step evaluation.

A.6 Lemma: If t1 -→∗ t′1 then if t1 then t2 else t3 -→∗ if t′1 then t2 else t3

(and similarly for the other term constructors). �

Proof: Easy induction. �

A.7 Proposition: If t ⇓ v then t -→∗ v. �

Proof: By induction on the derivation of t ⇓ v, with a case analysis on the

final rule used.

Case B-Value: t = v

Immediate.

Case B-IfTrue: t = if t1 then t2 else t3

t1 ⇓ true

t2 ⇓ v

By the induction hypothesis, t1 -→
∗ true. By Lemma A.6,

if t1 then t2 else t3 -→
∗

if true then t2 else t3.

By E-IfTrue, if true then t2 else t3 -→ t2. By the induction hypothesis,

t2 -→
∗ v. The result then follows by the transitivity of -→∗.

The other cases are similar. �

A.8 Lemma: If

if t1 then t2 else t3 -→
∗

v,

then either t1 -→
∗ true and t2 -→

∗ v or t1 -→
∗ false and t3 -→

∗ v. Moreover,

the evaluation sequences for t1 and t2 or t3 are strictly shorter than the given

evaluation sequence. (And similarly for the other term constructors.) �

Proof: By induction on the length of the given evaluation sequence. Since a

condition is not a value, there must be at least one step of evaluation. Proceed

by case analysis on the final rule used in this step (note that it must be one

of the If rules).

A Solutions to Selected Exercises 499

Case E-If: if t1 then t2 else t3 -→ if t′1 then t2 else t3 -→
∗ v

t1 -→ t′1

By the induction hypothesis, either t′1 -→
∗ true and t2 -→

∗ v or t′1 -→
∗ false

and t3 -→
∗ v. Adding the initial step t1 -→ t′1 to the derivation of t′1 -→

∗ true

or t′1 -→
∗ false yields the desired result. It is easy to check that the resulting

evaluation sequences are shorter than the original.

Case E-IfTrue: if true then t2 else t2 -→ t2 -→
∗ v

Immediate.

Case E-IfFalse: if false then t2 else t2 -→ t3 -→
∗ v

Immediate. �

A.9 Proposition: If t -→∗ v then t ⇓ v. �

Proof: By induction on the number of steps of small-step evaluation in the

given derivation of t -→∗ v.

If t -→∗ v in 0 steps, then t = v and the result follows by B-Value. Other-

wise, we proceed by case analysis on the form of t.

Case: t = if t1 then t2 else t3

By Lemma A.8, either (1) t1 -→∗ true and t2 -→∗ v or (2) t1 -→∗ false and

t3 -→∗ v. The arguments in both cases are similar, so suppose we have case

(1). Lemma A.8 also tells us that the evaluation sequences for t1 -→∗ true

and t2 -→
∗ v are shorter than the given one for t, so the induction hypothesis

applies, giving us t1 ⇓ true and t2 ⇓ v. From these, we can use rule B-IfTrue

to derive t ⇓ v.

The cases for the other term constructors are similar. �

4.2.1 Solution: Each time eval calls itself, it adds a try handler to the call stack.

Since there is one recursive call for each step of evaluation, the stack will

eventually overflow. In essence, wrapping the recursive call to eval in a try

means that it is not a tail call, although it looks like one. A better (but less

readable) version of eval is:

let rec eval t =

let t’opt = try ∃(eval1 t) with NoRuleApplies → None in

match t’opt with

∃(t’) → eval t’

| None → t

5.2.1 Solution:

or = λb. λc. b tru c;

not = λb. b fls tru;

500 A Solutions to Selected Exercises

5.2.2 Solution:

scc2 = λn. λs. λz. n s (s z);

5.2.3 Solution:

times2 = λm. λn. λs. λz. m (n s) z;

Or, more compactly:

times3 = λm. λn. λs. m (n s);

5.2.4 Solution: Again, there is more than one way to do it:

power1 = λm. λn. m (times n) c1;

power2 = λm. λn. m n;

5.2.5 Solution:

subtract1 = λm. λn. n prd m;

5.2.6 Solution: Evaluating prd cn takes O(n) steps, since prd uses n to construct

a sequence of n pairs of numbers and then selects the first component of the

last pair of the sequence.

5.2.7 Solution: Here’s a simple one:

equal = λm. λn.

and (iszro (m prd n))

(iszro (n prd m));

5.2.8 Solution: This is the solution I had in mind:

nil = λc. λn. n;

cons = λh. λt. λc. λn. c h (t c n);

head = λl. l (λh.λt.h) fls;

tail = λl.

fst (l (λx. λp. pair (snd p) (cons x (snd p)))

(pair nil nil));

isnil = λl. l (λh.λt.fls) tru;

Here is a rather different approach:

nil = pair tru tru;

cons = λh. λt. pair fls (pair h t);

head = λz. fst (snd z);

tail = λz. snd (snd z);

isnil = fst;

A Solutions to Selected Exercises 501

5.2.9 Solution: We used if rather than test to prevent both branches of the con-

ditional always being evaluated, which would make factorial diverge. To

prevent this divergence when using test, we need to protect both branches

by wrapping them in dummy lambda-abstractions. Since abstractions are val-

ues, our call-by-value evaluation strategy does not look underneath them, but

instead passes them verbatim to test, which chooses one and passes it back.

We then apply the whole test expression to a dummy argument, say c0, to

force evaluation of the chosen branch.

ff = λf. λn.

test

(iszro n) (λx. c1) (λx. (times n (f (prd n)))) c0;

factorial = fix ff;

equal c6 (factorial c3);

ñ (λx. λy. x)

5.2.10 Solution: Here’s a recursive function that does the job:

cn = λf. λm. if iszero m then c0 else scc (f (pred m));

churchnat = fix cn;

A quick test that it works:

equal (churchnat 4) c4;

ñ (λx. λy. x)

5.2.11 Solution:

ff = λf. λl.

test (isnil l)

(λx. c0) (λx. (plus (head l) (f (tail l)))) c0;

sumlist = fix ff;

l = cons c2 (cons c3 (cons c4 nil));

equal (sumlist l) c9;

ñ (λx. λy. x)

A list-summing function can also, of course, be written without using fix:

sumlist’ = λl. l plus c0;

equal (sumlist l) c9;

ñ (λx. λy. x)

5.3.3 Solution: By induction on the size of t. Assuming the desired property for

terms smaller than t, we must prove it for t itself; if we succeed, we may

conclude that the property holds for all t. There are three cases to consider:

502 A Solutions to Selected Exercises

Case: t = x

Immediate: |FV(t)| = |{x}| = 1 = size(t).

Case: t = λx.t1

By the induction hypothesis, |FV(t1)| ≤ size(t1). We now calculate as follows:

|FV(t)| = |FV(t1) \ {x}| ≤ |FV(t1)| ≤ size(t1) < size(t).

Case: t = t1 t2

By the induction hypothesis, |FV(t1)| ≤ size(t1) and |FV(t2)| ≤ size(t2). We

now calculate as follows: |FV(t)| = |FV(t1)∪ FV(t2)| ≤ |FV(t1)| + |FV(t2)| ≤

size(t1)+ size(t2) < size(t).

5.3.6 Solution: For full (non-deterministic) beta-reduction, the rules are:

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

t2 -→ t′2

t1 t2 -→ t1 t
′
2

(E-App2)

(λx.t12) t2 -→ [x, t2]t12 (E-AppAbs)

(Note that the syntactic category of values is not used.)

For the normal-order strategy, one way of writing the rules is

na1 -→ na′1

na1 t2 -→ na′1 t2

(E-App1)

t2 -→ t′2

nanf1 t2 -→ nanf1 t
′
2

(E-App2)

t1 -→ t′1

λx.t1 -→ λx.t
′
1

(E-Abs)

(λx.t12) t2 -→ [x, t2]t12 (E-AppAbs)

where the syntactic categories of normal forms, non-abstraction normal forms,

and non-abstractions are defined as follows:

nf ::= normal forms:

λx.nf

nanf

nanf ::= non-abstraction normal forms:

x

nanf nf

A Solutions to Selected Exercises 503

na ::= non-abstractions:

x

t1 t2

(This definition is a bit awkward compared to the others. Normal-order re-

duction is usually defined by just saying “it’s like full beta-reduction, except

that the left-most, outermost redex is always chosen first.”)

The lazy strategy defines values as arbitrary abstractions—the same as call

by value. The evaluation rules are:

t1 -→ t′1

t1 t2 -→ t′1 t2

(E-App1)

(λx.t12) t2 -→ [x, t2]t12 (E-AppAbs)

5.3.8 Solution:
λx.t ⇓ λx.t

t1 ⇓ λx.t12 t2 ⇓ v2 [x, v2]t12 ⇓ t′

t1 t2 ⇓ t′

6.1.1 Solution:

c0 = λ. λ. 0;

c2 = λ. λ. 1 (1 0);

plus = λ. λ. λ. λ. 3 1 (2 0 1);

fix = λ. (λ. 1 (λ. (1 1) 0)) (λ. 1 (λ. (1 1) 0));

foo = (λ. (λ. 0)) (λ. 0);

6.1.5 Solution: The two functions can be defined as follows:

removenamesΓ (x) = the index of the rightmost x in Γ

removenamesΓ (λx.t1) = λ. removenamesΓ ,x(t1)

removenamesΓ (t1 t2) = removenamesΓ ,x(t1) removenamesΓ ,x(t2)

restorenamesΓ (k) = the kth name in Γ

restorenamesΓ (λ.t1) = λx. restorenamesΓ ,x(t1)

where x is the first name not in dom(Γ)

restorenamesΓ (t1 t2) = restorenamesΓ ,x(t1) restorenamesΓ ,x(t2)

The required properties of removenames and restorenames are proved by

straightforward structural induction on terms.

6.2.2 Solution:

1. λ. λ. 1 (0 4)

2. λ. 0 3 (λ. 0 1 4)

504 A Solutions to Selected Exercises

6.2.5 Solution:

[0, 1] (0 (λ.λ.2)) = 1 (λ. λ. 3)

i.e., a (λx. λy. a)

[0, 1 (λ.2)] (0 (λ.1)) = (1 (λ.2)) (λ.(2 (λ.3)))

i.e., (a (λz.a)) (λx.(a (λz.a)))

[0, 1] (λ. 0 2) = λ. 0 2

i.e., λb. b a

[0, 1] (λ. 1 0) = λ. 2 0

i.e., λa′. a a′

6.2.8 Solution: If Γ is a naming context, write Γ(x) for the index of x in Γ , counting

from the right. Now, the property that we want is that

removenamesΓ ([x, s]t) = [Γ(x), removenamesΓ (s)](removenamesΓ (t)).

The proof proceeds by induction on t, using Definitions 5.3.5 and 6.2.4,

some simple calculations, and some easy lemmas about removenames and

the other basic operations on terms. Convention 5.3.4 plays a crucial role in

the abstraction case.

6.3.1 Solution: The only way an index could become negative would be if the

variable numbered 0 actually occurred anywhere in the term we shift. But

this cannot happen, since we’ve just performed a substitution for variable 0

(and since the term that we substituted for variable 0 was already shifted up,

so it obviously cannot contain any instances of variable number 0).

6.3.2 Solution: The proof of equivalence of the presentations using indices and

levels can be found in Lescanne and Rouyer-Degli (1995). De Bruijn levels are

also discussed by de Bruijn (1972) and Filinski (1999, Section 5.2).

8.3.5 Solution: No: removing this rule breaks the progress property. If we really

object to defining the predecessor of 0, we need to handle it in another way—

e.g., by raising an exception (Chapter 14) if a program attempts it, or re-

fining the type of pred to make clear that it can legally be applied only to

strictly positive numbers, perhaps using intersection types (§15.7) or depen-

dent types (§30.5).

8.3.6 Solution: Here’s a counterexample: the term (if false then true else 0)

is ill-typed, but evaluates to the well-typed term 0.

8.3.7 Solution: The type preservation property for the big-step semantics is sim-

ilar to the one we gave for the small-step semantics: if a well-typed term

evaluates to some final value, then this value has the same type as the original

A Solutions to Selected Exercises 505

term. The proof is similar to the one we gave. The progress property, on the

other hand, now makes a much stronger claim: it says that every well-typed

term can be evaluated to some final value—that is, that evaluation always ter-

minates on well-typed terms. For arithmetic expressions, this happens to be

the case, but for more interesting languages (languages involving general re-

cursion, for example—cf. §11.11) it will often not be true. For such languages,

we simply have no progress property: in effect, there is no way to tell the dif-

ference between reaching an error state and failing to terminate. This is one

reason that language theorists generally prefer the small-step style.

A different alternative is to give a big-step semantics with explicit wrong

transitions, in the style of Exercise 8.3.8. This style is used, for example,

by Abadi and Cardelli for the operational semantics of their object calculus

(Abadi and Cardelli, 1996, p. 87).

8.3.8 Solution: In the augmented semantics there are no stuck states at all—every

non-value term either evaluates to another term in the ordinary way or else

goes explicitly to wrong (this must be proved, of course)—so the progress

property is trivial. The subject-reduction theorem, on the other hand, now

tells us a little more. Since wrong has no type, saying that a well-typed term

can evaluate only to another well-typed term tells us, in particular, that a

well-typed term cannot take a step to wrong. In effect, the proof of the old

progress theorem becomes part of the new proof of preservation.

9.2.1 Solution: Because the set of type expressions is empty (there is no base case

in the syntax of types).

9.2.3 Solution: One such context is

Γ = f:Bool→Bool→Bool, x:Bool, y:Bool.

In general, any context of the form

Γ = f:S→T→Bool, x:S, y:T

where S and T are arbitrary types, will do the job. This sort of reasoning is

central to the type reconstruction algorithm developed in Chapter 22.

9.4.1 Solution: T-True and T-False are introduction rules. T-If is an elimination

rule. T-Zero and T-Succ are introduction rules. T-Pred and T-IsZero are elim-

ination rules. Deciding whether succ and pred are introduction or elimina-

tion forms requires a little thought, since they can be viewed as both creating

and using numbers. The key observation is that, when pred and succ meet,

they make a redex. Similarly for iszero.

506 A Solutions to Selected Exercises

9.3.2 Solution: Suppose, for a contradiction, that the term x x does have a type

T. Then, by the inversion lemma, the left-hand subterm (x) must have a type

T1→T2 and the right-hand subterm (also x) must have type T1. Using the vari-

able case of the inversion lemma, we find that x:T1→T2 and x:T1 must both

come from assumptions in Γ . Since there can only be one binding for x in Γ ,

this means that T1→T2 = T1. But this means that size(T1) is strictly greater

than size(T1→T2), an impossibility, and we have our contradiction.

Notice that if types were allowed to be infinitely large, then we could con-

struct a solution to the equation T1→T2 = T1. We will return to this point in

detail in Chapter 20.

9.3.3 Solution: Suppose that Γ ` t : S and Γ ` t : T. We show, by induction on a

derivation of Γ ` t : T, that S = T.

Case T-Var: t = x

with x:T ∈ Γ

By case (1) of the inversion lemma (9.3.1), the final rule in any derivation of

Γ ` t : S must also be T-Var, and S = T.

Case T-Abs: t = λy:T2.t1

T = T2→T1

Γ , y:T2 ` t1 : T1

By case (2) of the inversion lemma, the final rule in any derivation of Γ `

t : S must also be T-Abs, and this derivation must have a subderivation with

conclusion Γ , y:T2 ` t1 : S1, with S = T2→S1. By the induction hypothesis

(on the subderivation with conclusion (Γ , y:T2 ` t1 : T1), we obtain S1 = T1,

from which S = T is immediate.

Case T-App, T-True, T-False, T-If:

Similar.

9.3.9 Solution: By induction on a derivation of Γ ` t : T. At each step of the

induction, we assume that the desired property holds for all subderivations

(i.e., that if Γ ` s : S and s -→ s′, then Γ ` s′ : S, whenever Γ ` s : S is

proved by a subderivation of the present one) and proceed by case analysis

on the last rule used in the derivation.

Case T-Var: t = x x:T ∈ Γ

Can’t happen (there are no evaluation rules with a variable as the left-hand

side).

Case T-Abs: t = λx:T1.t2

Can’t happen.

A Solutions to Selected Exercises 507

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11

T = T12

Looking at the evaluation rules in Figure 9-1 with applications on the left-

hand side, we find that there are three rules by which t -→ t′ can be derived:

E-App1, E-App2, and E-AppAbs. We consider each case separately.

Subcase E-App1: t1 -→ t′1 t′ = t′1 t2

From the assumptions of the T-App case, we have a subderivation of the

original typing derivation whose conclusion is Γ ` t1 : T11→T12. We can

apply the induction hypothesis to this subderivation, obtaining Γ ` t′1 :

T11→T12. Combining this with the fact (also from the assumptions of the

T-App case) that Γ ` t2 : T11, we can apply rule T-App to conclude that

Γ ` t′ : T.

Subcase E-App2: t1 = v1 (i.e., t1 is a value)

t2 -→ t′2
t′ = v1 t

′
2

Similar.

Subcase E-AppAbs: t1 = λx:T11. t12

t2 = v2

t′ = [x, v2]t12

Using the inversion lemma, we can deconstruct the typing derivation for

λx:T11. t12, yielding Γ , x:T11 ` t12 : T12. From this and the substitution

lemma (9.3.8), we obtain Γ ` t′ : T12.

The cases for boolean constants and conditional expressions are the same

as in 8.3.3.

9.3.10 Solution: The term (λx:Bool. λy:Bool. y) (true true) is ill typed, but

reduces to (λy:Bool.y), which is well typed.

11.2.1 Solution: t1 = (λx:Unit.x) unit

ti+1 = (λf:Unit→Unit. f(f(unit))) (λx:Unit.ti)

11.3.2 Solution:

Γ ` t2 : T2

Γ ` λ_:T1.t2 : T2

(T-Wildcard)

(λ_:T11.t12) v2 -→ t12 (E-Wildcard)

The proof that these rules are derived from the abbreviation goes exactly like

Theorem 11.3.1.

508 A Solutions to Selected Exercises

11.4.1 Solution: The first part is easy: if we desugar ascription using the rule t as T

= (λx:T. x) t,x then it is straightforward to check that both the typing and

the evaluation rules for ascription can be derived directly from the rules for

abstraction and application.

If we change the evaluation rule for ascription to an eager version, then

we need a more refined desugaring that delays evaluation of t until after the

ascription has been thrown away. For example, we can use this one:

t as T
def
= (λx:Unit→T. x unit) (λy:Unit. t) where y is fresh.

Of course, the choice of Unit here is inessential: any type would do.

The subtlety here is that this desugaring, though intuitively correct, does

not give us exactly the properties of Theorem 11.3.1. The reason is that a

desugared ascription takes two steps of evaluation to disappear, while the

high-level rule E-Ascribe works in a single step. However, this should not

surprise us: we can think of this desugaring as a simple form of compilation,

and observe that the compiled forms of nearly every high-level construct

require multiple steps of evaluation in the target language for each atomic

reduction in the source language. What we should do, then, is weaken the

requirements of 11.3.1 to demand only that each high-level evaluation step

should be matched by some sequence of low-level steps:

if t -→E t
′, then e(t) -→∗

I e(t
′).

A final subtlety is that the other direction—i.e., the fact that reductions of

a desugared term can always be “mapped back” to reductions of the origi-

nal term—requires a little care to state precisely, since the elimination of a

desugared ascription takes two steps, and after the first step the low-level

term does not correspond to the desugaring of either the original term with

a high-level ascription or the term in which it has been eliminated. What is

true, though, is that the first reduction of a desugared term can always be

“completed” by taking it one more step to reach the desugaring of another

high-level term. Formally, if e(t) -→I s, then s -→∗ e(t′), with t -→E t
′.

11.5.1 Solution: Here is what you need to add:

let rec eval1 ctx t = match t with

...

| TmLet(fi,x,v1,t2) when isval ctx v1 →

termSubstTop v1 t2

| TmLet(fi,x,t1,t2) →

let t1’ = eval1 ctx t1 in

TmLet(fi, x, t1’, t2)

...

A Solutions to Selected Exercises 509

→ {} let p (typed) Extends 11-8

Pattern typing rules

` x : T⇒ x:T (P-Var)

for each i ` pi : Ti ⇒ ∆i

` {li=pi
i∈1..n} : {kj:Tj

j∈1..m}⇒ ∆1, . . . , ∆n

(P-Rcd)

New typing rules Γ ` t : T

Γ ` t1 : T1 ` p : T1 ⇒ ∆

Γ , ∆ ` t2 : T2

Γ ` let p =t1 in t2 : T2

(T-Let)

Figure A-1: Typed record patterns

let rec typeof ctx t =

match t with

...

| TmLet(fi,x,t1,t2) →

let tyT1 = typeof ctx t1 in

let ctx’ = addbinding ctx x (VarBind(tyT1)) in

(typeof ctx’ t2)

11.5.2 Solution: This definition doesn’t work very well. For one thing, it changes the

order of evaluation: the rules E-LetV and E-Let specify a call-by-value order,

where t1 in let x=t1 in t2 must be reduced to a value before we are allowed

to substitute it for x and begin working on t2. For another thing, although the

validity of the typing rule T-Let is preserved by this translation—this follows

directly from the substitution lemma (9.3.8)—the property of ill-typedness of

terms is not preserved. For example, the ill-typed term

let x = unit(unit) in unit

is translated to the well-typed term unit: since x does not appear in the body

unit, the ill-typed subterm unit(unit) simply disappears.

11.8.2 Solution: One proposal for adding types to record patterns is summarized

in Figure A-1. The typing rule for the generalized let construct, T-Let, refers

to a separate “pattern typing” relation that (viewed algorithmically) takes a

pattern and a type as input and, if it succeeds, returns a context giving ap-

propriate bindings for the variables in the pattern. T-Let adds this context

to the current context Γ during the typechecking of the body t2. (We assume

throughout that the sets of variables bound by different fields of a record

pattern are disjoint.)

Note that we can, if we like, refine the record pattern typing rule a little,

allowing the pattern to mention fewer fields than will actually be provided by

the value it will match:

510 A Solutions to Selected Exercises

{li
i∈1..n} ⊆ {kj

j∈1..m}

∀ i∈1..n. ∃ j∈1..m. li = kj and ` pi : Tj ⇒ ∆i

` {li=pi
i∈1..n} ∈ {kj:Tj

j∈1..m}⇒ ∆1, . . . , ∆n
(P-Rcd’)

If we adopt this rule, we can eliminate the record projection form as a primi-

tive construct, since it can now be treated as syntactic sugar:

t.l
def
= let {l=x}=t in x

Proving preservation for the extended system is almost the same as for the

simply typed lambda-calculus. The only extension that we need is a lemma

connecting the pattern typing relation with the run-time matching operation.

If σ is a substitution and ∆ is a context with the same domain as σ , then

Γ ` σ î ∆ means that, for each x ∈ dom(∆), we have Γ ` σ(x) : ∆(x).

Lemma: If Γ ` t : T and ` p : T ⇒ ∆, then match(p, t) = σ , with

Γ ` σ î ∆.

The extra notations we’ve introduced require a slight generalization of the

standard substitution lemma (9.3.8):

Lemma: Γ , ∆ ` t : T and Γ ` σ î ∆, then Γ ` σt : T.

The preservation argument for the C-Let rule now follows the same pattern

as before, using these lemmas for the C-Let case.

11.9.1 Solution:

Bool
def
= Unit+Unit

true
def
= inl unit

false
def
= inr unit

if t0 then t1 else t2

def
= case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2

where x1 and x2 are fresh.

11.11.1 Solution:

equal =

fix

(λeq:Nat→Nat→Bool.

λm:Nat. λn:Nat.

if iszero m then iszero n

else if iszero n then false

else eq (pred m) (pred n));

ñ equal : Nat → Nat → Bool

A Solutions to Selected Exercises 511

plus = fix (λp:Nat→Nat→Nat.

λm:Nat. λn:Nat.

if iszero m then n else succ (p (pred m) n));

ñ plus : Nat → Nat → Nat

times = fix (λt:Nat→Nat→Nat.

λm:Nat. λn:Nat.

if iszero m then 0 else plus n (t (pred m) n));

ñ times : Nat → Nat → Nat

factorial = fix (λf:Nat→Nat.

λm:Nat.

if iszero m then 1 else times m (f (pred m)));

ñ factorial : Nat → Nat

factorial 5;

ñ 120 : Nat

11.11.2 Solution:

letrec plus : Nat→Nat→Nat =

λm:Nat. λn:Nat.

if iszero m then n else succ (plus (pred m) n) in

letrec times : Nat→Nat→Nat =

λm:Nat. λn:Nat.

if iszero m then 0 else plus n (times (pred m) n) in

letrec factorial : Nat→Nat =

λm:Nat.

if iszero m then 1 else times m (factorial (pred m)) in

factorial 5;

ñ 120 : Nat

11.12.1 Solution: Surprise! Actually, the progress theorem does not hold. For exam-

ple, the expression head[T] nil[T] is stuck—no evaluation rule applies to

it, but it is not a value. In a full-blown programming language, this situation

would be handled by making head[T] nil[T] raise an exception rather than

getting stuck: we consider exceptions in Chapter 14.

11.12.2 Solution: Not quite all: if we erase the annotation on nil, then we lose the

Uniqueness of Types theorem. Operationally, when the typechecker sees a

nil it knows it has to assign it the type List T for some T, but it does not

know how to choose T without some form of guessing. Of course, more so-

phisticated typing algorithms such as the one used by the OCaml compiler

do precisely this sort of guessing. We will return to this point in Chapter 22.

512 A Solutions to Selected Exercises

12.1.1 Solution: In the case for applications. Suppose we are trying to show that

t1 t2 is normalizing. We know by the induction hypothesis that both t1 and

t2 are normalizing; let v1 and v2 be their normal forms. By the inversion

lemma for the typing relation (9.3.1), we know that v1 has type T11→T12 for

some T11 and T12. So, by the canonical forms lemma (9.3.4), v1 must have the

form λx:T11.t12. But reducing t1 t2 to (λx:T11.t12) v2 does not give us a

normal form, since the E-AppAbs rule now applies, yielding [x , v2]t12, so

to finish the proof we must argue that this term is normalizable. But here we

get stuck, since this term may, in general, be bigger than the original term

t1 t2 (because the substitution can make as many copies of v2 as there are

occurrences of x in t12).

12.1.7 Solution: Definition 12.1.2 is extended with two additional clauses:

• RBool(t) iff t halts.

• RT1 × T2
(t) iff t halts, RT1

(t.1), and RT2
(t.2).

The proof of Lemma 12.1.4 is extended with one additional case:

• Suppose that T = T1×T2 for some T1 and T2. For the “only if” direction

(=⇒) we suppose that RT(t) and we must show RT(t′), where t -→ t′. We

know that RT1
t.1 and RT2

(t.2) from the definition of RT1 × T2
. But the eval-

uation rules E-Proj1 and E-Proj2 tell us that t.1 -→ t′.1 and t.2 -→ t′.2,

so, by the induction hypothesis, RT1
(t′.1) and RT2

(t′.2). From these, the

definition of RT1 × T2
yields RT1 × T2

(t′). The “if” direction is similar.

Finally, we need to add some cases (one for each new typing rule) to the proof

of Lemma 12.1.5:

Case T-If: t = if t1 then t2 else t3 Γ ` t1 : Bool

Γ ` t2 : T Γ ` t3 : T

where Γ = x1:T1, . . . , xn:Tn

Let σ = [x1 , v1] · · · [xn , vn]. By the induction hypothesis, we have

RBool(σt1), RT(σt2), and RT(σt3). By Lemma 12.1.3, σt1, σt2, and

σt3 are all normalizing; let us write v1, v2, and v3 for their values.

Lemma 12.1.4 gives us RBool(v1), RT(v2), and RT(v3). Also, σt itself is

clearly normalizing.

We now continue by induction on T.

• If T = A or T = Bool, then RT(σt) follows immediately from the fact

that σt is normalizing.

A Solutions to Selected Exercises 513

• If T = T1→T2, then we must show RT2
σt s for an arbitrary s ∈ RT1

.

So suppose s ∈ RT1
. Then, by the evaluation rules for if expressions,

we see that either σt s -→∗ v2 s or else σt s -→∗ v3 s, depending

on whether v1 is true or false. But we know that RT2
(v2 s) and

RT2
(v3 s) by the definition of RT1→T2

and the fact that both RT1→T2
v2

and RT1→T2
v3. By Lemma 12.1.4, RT1→T2

(σt s), as required.

Case T-True: t = true T = Bool

Immediate.

Case T-False: t = false T = Bool

Immediate.

Case T-Pair: t = {t1,t2} Γ ` t1 : T1 Γ ` t2 : T2 T = T1×T2

By the induction hypothesis, RTi(σti) for i = 1,2. Let vi be the normal

form of each σti . Note, by Lemma 12.1.4, that RTi(vi).

The evaluation rules for the first and second projections tell us that

{σt1,σt2}.i -→∗ vi , from which we obtain, by Lemma 12.1.4, that

RTi ({σt1,σt2}.i). The definition of RT1 × T2
yields RT1 ×T2

({σt1,σt2}),

that is, RT1 ×T2
(σ{t1,t2}).

Case T-Proj1: t = t0.1 Γ ` t0 : T1×T2 T = T1

Immediate from the definition of RT1 × T2
.

13.1.1 Solution:

0 0

a = b = { , }

0

{ , }

13.1.2 Solution: No—calls to lookup with any index other than the one given to

update will now diverge. The point is that we need to make sure we look up

the value stored in a before we overwrite it with the new function. Otherwise,

when we get around to doing the lookup, we will find the new function, not

the original one.

13.1.3 Solution: Suppose the language provides a primitive free that takes a ref-

erence cell as argument and releases its storage so that (say) the very next

allocation of a reference cell will obtain the same piece of memory. Then the

program

514 A Solutions to Selected Exercises

let r = ref 0 in

let s = r in

free r;

let t = ref true in

t := false;

succ (!s)

will evaluate to the stuck term succ false. Note that aliasing plays a crucial

role here in setting up the problem, since it prevents us from detecting invalid

deallocations by simply making free r illegal if the variable r appears free in

the remainder of the expression.

This sort of example is easy to mimic in a language like C with manual

memory management (our ref constructor corresponds to C’s malloc, our

free to a simplified version of C’s free).

13.3.1 Solution: A simple account of garbage collection might go like this.

1. Model the finiteness of memory by taking the set L of locations to be finite.

2. Define reachability of locations in the store as follows. Write locations(t)

for the set of locations mentioned in t. Say that a location l′ is reachable

in one step from a location l in a store µ if l′ ∈ locations(µ(l)). Say that l′ is

reachable from l if there is a finite sequence of locations beginning with l

and ending with l′, with each reachable in one step from the previous one.

Finally, define the set of locations reachable from a term t in a store µ,

written reachable(t, µ) as the locations reachable in µ from locations(t).

3. Model the action of garbage collection as a relation t | µ -→gc t | µ′

defined by the following rule:

µ′ = µ restricted to reachable(t, µ)

t | µ -→gc t | µ
′

(E-GC)

(That is, the domain of µ′ is just reachable(t, µ), and its value on every

location in this domain is the same as that of µ.)

4. Define evaluation sequences to be sequences of ordinary evaluation steps

interleaved with garbage collection:
gc

-→∗ def
= (-→ ∪ -→gc)

∗. Note that we

do not want to just add the rule GC to the ordinary single-step evaluation

relation: it is important that we perform garbage collection only “at the

outermost level,” where we can see the whole term being evaluated. If we

allowed garbage collection “inside” of the evaluation of the left-hand side

of an application, for example, we might incorrectly re-use locations that

are actually mentioned in the right-hand side of the application, since by

A Solutions to Selected Exercises 515

looking at the left-hand side we would not be able to see that they were

still accessible.

5. Justify these refinements to the definition of evaluation by showing that

they do not affect final results, except for introducing the possibility of

memory exhaustion:

(a) If t | µ
gc

-→∗ t′ | µ′′, then t | µ -→∗ t′ | µ′, for some µ′ such that µ′ has

a larger domain than µ′′ and the two coincide where both are defined.

(b) If t | µ -→∗ t′ | µ′, then either

i. t | µ
gc

-→∗ t′ | µ′′, for some µ′′ such that µ′′ has a smaller domain

than µ′ and coincides with µ′ where µ′ is defined, or else

ii. evaluation of t | µ runs out of memory—i.e., reaches a state t′′′ |

µ′′′, where the next step of evaluating t′′′ needs to allocate a fresh

location, but none is available because reachable(t′′′, µ′′′) = L.

This simple treatment of garbage collection ignores several aspects of real

stores, such as the fact that storing different kinds of values typically re-

quires different amounts of memory, as well as some more advanced lan-

guage features, such as finalizers (pieces of code that will be executed when

the run-time system is just about to garbage collect a data structure to which

they are attached) and weak pointers (pointers that are not counted as “real

references” to a data structure, so that the structure may be garbage collected

even though weak pointers to it still exist). A more sophisticated treatment

of garbage collection in operational semantics can be found in Morrisett et al.

(1995).

13.4.1 Solution:

let r1 = ref (λx:Nat.0) in

let r2 = ref (λx:Nat.(!r1)x) in

(r1 := (λx:Nat.(!r2)x);

r2);

13.5.2 Solution: Let µ be a store with a single location l

µ = (l, λx:Unit. (!l)(x)),

and Γ the empty context. Then µ is well typed with respect to both of the

following store typings:

Σ1 = l:Unit→Unit

Σ2 = l:Unit→(Unit→Unit).

516 A Solutions to Selected Exercises

13.5.8 Solution: There are well-typed terms in this system that are not strongly

normalizing. Exercise 13.1.2 gave one. Here is another:

t1 = λr:Ref (Unit→Unit).

(r := (λx:Unit. (!r)x);

(!r) unit);

t2 = ref (λx:Unit. x);

Applying t1 to t2 yields a (well-typed) divergent term.

More generally, we can use the following steps to define arbitrary recursive

functions using references. (This technique is actually used in some imple-

mentations of functional languages.)

1. Allocate a ref cell and initialize it with a dummy function of the appro-

priate type:

factref = ref (λn:Nat.0);

ñ factref : Ref (Nat→Nat)

2. Define the body of the function we are interested in, using the contents of

the reference cell for making recursive calls:

factbody =

λn:Nat.

if iszero n then 1 else times n ((!factref)(pred n));

ñ factbody : Nat → Nat

3. “Backpatch” by storing the real body into the reference cell:

factref := factbody;

4. Extract the contents of the reference cell and use it as desired:

fact = !factref;

fact 5;

ñ 120 : Nat

14.1.1 Solution: Annotating error with its intended type would break the type

preservation property. For example, the well-typed term

(λx:Nat.x) ((λy:Bool.5) (error as Bool));

(where error as T is the type-annotated syntax for exceptions) would evalu-

ate in one step to an ill-typed term:

A Solutions to Selected Exercises 517

(λx:Nat.x) (error as Bool);

As the evaluation rules propagate an error from the point where it occurs

up to the top-level of a program, we may view it as having different types.

The flexibility in the T-Error rule permits us to do this.

14.3.1 Solution: The Definition of Standard ML (Milner, Tofte, Harper, and Mac-

Queen, 1997; Milner and Tofte, 1991b) formalizes the exn type. A related

treatment can be found in Harper and Stone (2000).

14.3.2 Solution: See Leroy and Pessaux (2000).

14.3.3 Solution: See Harper et al. (1993).

15.2.1 Solution:

S-RcdPerm
{x:Nat,y:Nat,z:Nat}

<: {y:Nat,x:Nat,z:Nat}

S-RcdWidth
{y:Nat,x:Nat,z:Nat}

<: {y:Nat}
S-Trans

{x:Nat,y:Nat,z:Nat} <: {y:Nat}

15.2.2 Solution: There are lots of other derivations with the same conclusion. Here

is one:

...

` f : Rx→Nat

S-Rcd-Width
Rxy <: Rx

S-Refl
Nat <: Nat

S-Arrow
Rx→Nat <: Rxy→Nat

T-Sub
` f : Rxy→Nat

...

` xy : Rxy
T-App

` f xy : Nat

Here is another:

...

` f : Rx→Nat

...
T-Rcd

` xy : Rxy

S-RcdWidth
Rxy <: Rx

S-Refl
Rx <: Rx

S-Trans
Rxy <: Rx

T-Sub
` xy : Rx

T-App
` f xy : Nat

In fact, as the second example suggests, there are actually infinitely many

typing derivations for any derivable statement in this calculus.

15.2.3 Solution:

1. I count six: {a:Top,b:Top}, {b:Top,a:Top}, {a:Top}, {b:Top}, {}, and

Top.

518 A Solutions to Selected Exercises

2. For example, let

S0 = {}

S1 = {a:Top}

S2 = {a:Top,b:Top}

S2 = {a:Top,b:Top,c:Top}

etc.

3. For example, let T0 = S0→Top, T1 = S1→Top T2 = S2→Top, etc.

15.2.4 Solution: (1) No. If there were, it would have to be either an arrow or a record

(it obviously can’t be Top). But a record type would not be a subtype of any of

the arrow types, and vice versa. (2) No again. If there were such an arrow type

T1→T2, its domain type T1 would have to be a subtype of every other type S1;

but we have just seen that this is not possible.

15.2.5 Solution: Adding this rule would not be a good idea if we want to keep

the existing evaluation semantics. The new rule would allow us to derive,

for example, that Nat×Bool <: Nat, which would mean that the stuck term

(succ (5,true)) would be well typed, violating the progress theorem. The

rule is safe in a “coercion semantics” (see §15.6), though even there it raises

some algorithmic difficulties for subtype checking.

15.3.1 Solution: By adding bogus pairs to the subtype relation, we can break both

preservation and progress. For example, adding the axiom

{x:{}} <: {x:Top→Top}

allows us to derive Γ ` t : Top, where t = ({x={}}.x){}. But t -→ {}{},

which is not typable—a violation of preservation. Alternatively, if we add the

axiom

{} <: Top→Top

then the term {}{} is typable, but this term is stuck and not a value—a viola-

tion of progress.

On the other hand, taking away pairs from the subtype relation is actually

harmless. The only place where the typing relation is mentioned in the state-

ment of the progress property is in the premises, so restricting the subtype

relation, and hence the typing relation, can only make it easier for progress

to hold. In the case of the preservation property, we might worry that tak-

ing away the transitivity rule, in particular, would cause trouble. The reason

it does not is, intuitively, that its role in the system is actually inessential, in

the sense that the subsumption rule T-Sub can be used to recover transitivity.

A Solutions to Selected Exercises 519

For example, instead of

...

Γ ` t ∈ S

...

S <: U

...

U <: T
S-Trans

S <: T
T-Sub

Γ ` t : T

we can always write:

...

Γ ` t : S

...

S <: U
T-Sub

Γ ` t ∈ U

...

U <: T
T-Sub

Γ ` t : T

15.3.2 Solution:

1. By induction on subtyping derivations. By inspection of the subtyping

rules in Figures 15-1 and 15-3, it is clear that the final rule in the derivation

of S <: T1→T2 must be S-Refl, S-Trans, or S-Arrow.

If the final rule is S-Refl, then the result is immediate (since in this case

S = T1→T2, and we can derive both T1 <: T1 and T2 <: T2 by reflexivity).

If the final rule is S-Trans, then we have subderivations with conclusions

S <: U and U <: T1→T2 for some type U. Applying the induction hypothesis

to the second subderivation, we see that U has the form U1→U2, with T1 <:

U1 and U2 <: T2. Now, since we know that U is an arrow type, we can apply

the induction hypothesis to the first subderivation to obtain S = S1→S2

with U1 <: S1 and S2 <: U2. Finally, we can use S-Trans twice to reassemble

the facts we have established, obtaining T1 <: S1 (from T1 <: U1 and U1 <:

S1) and S2 <: T2 (from S2 <: U2 and U2 <: T2).

If the final rule is S-Arrow, then S has the desired form and the immediate

subderivations are exactly the facts we need about the parts of S.

2. By induction on subtyping derivations. Again, inspecting the subtyping

rules reveals that the final rule in the derivation of S <: {li:Ti
i∈1..n} must

be S-Refl, S-Trans, S-RcdWidth, S-RcdDepth, or S-RcdPerm. The case for

S-Refl is trivial. The cases for S-RcdWidth, S-RcdDepth, and S-RcdPerm

are all immediate.

If the final rule is S-Trans, then we have subderivations with conclu-

sions S <: U and U <: {li:Ti
i∈1..n} for some type U. Applying the induc-

tion hypothesis to the second subderivation, we see that U has the form

520 A Solutions to Selected Exercises

{ua:Ua
a∈1..o}, with {li

i∈1..n} ⊆ {ua
a∈1..o} and with Ua <: Ti for each li = ua.

Now, since we know that U is a record type, we can apply the induction

hypothesis to the first subderivation to obtain S = {kj:Sj
j∈1..m}, with

{ua
a∈1..o} ⊆ {kj

j∈1..m} and with Sj <: Ua for each ua = kj . Reassembling

these facts, we obtain {li
i∈1..n} ⊆ {kj

j∈1..m} by the transitivity of set inclu-

sion, and Sj <: Ti by S-Trans for each li = kj , since each label in T must

also be in U (i.e., li must be equal to ua for some a), and then we know

Sj <: Ua and Ua <: Ti . (The awkward choice of metavariable names here is

unavoidable: there just aren’t enough roman letters to go around.)

15.3.6 Solution: Both parts proceed by induction on typing derivations. We show

the argument just for the first part.

By inspection of the typing rules, it is clear that the final rule in a derivation

of ` v : T1→T2 must be either T-Abs or T-Sub. If it is T-Abs, then the desired

result is immediate from the premise of the rule. So suppose the last rule is

T-Sub.

From the premises of T-Sub, we have ` v : S and S <: T1→T2. From the

inversion lemma (15.3.2), we know that S has the form S1→S2. The result now

follows from the induction hypothesis.

16.1.2 Solution: Part (1) is a straightforward induction on the structure of S.

For part (2), we first note that, by part (1), if there is any derivation of S <: T,

then there is a reflexivity-free one. We now proceed by induction on the size

of a reflexivity-free derivation of S <: T. Note that we are arguing by induction

on the size of the derivation, rather than on its structure, as we have done in

the past. This is necessary because, in the arrow and record cases, we apply

the induction hypothesis to newly constructed derivations that do not appear

as subderivations of the original.

If the final rule in the derivation is anything other than S-Trans, then the

result follows directly by the induction hypothesis (i.e., by the induction hy-

pothesis, all of the subderivations of this final rule can be replaced by deriva-

tions not involving transitivity; since the final rule itself is not transitivity

either, the whole derivation is now transitivity-free). So suppose the final rule

is S-Trans—i.e., that we are given subderivations with conclusions S <: U and

U <: T, for some type U. We proceed by cases on the pair of final rules in both

of these subderivations.

Case Any/S-Top: T = Top

If the right-hand derivation ends with S-Top, then the result is immediate,

since S <: Top can be derived from S-Top no matter what S is.

Case S-Top/Any: U = Top

If the left-hand subderivation ends with S-Top, we first note that, by the in-

A Solutions to Selected Exercises 521

duction hypothesis, we may suppose that the right-hand subderivation is

transitivity-free. Now, inspecting the subtyping rules, we see that the final

rule in this subderivation must be S-Top (we have already eliminated reflexiv-

ity, and all the other rules demand that U be either an arrow or a record). The

result then follows by S-Top.

Case S-Arrow/S-Arrow: S = S1→S2 U = U1→U2 T = T1→T2

U1 <: S1 S2 <: U2

T1 <: U1 U2 <: T2

Using S-Trans, we can construct derivations of T1 <: S1 and S2 <: T2 from

the given subderivations. Moreover, these new derivations are strictly smaller

than the original derivation, so the induction hypothesis can be applied to

obtain transitivity-free derivations of T1 <: S1 and S2 <: T2. Combining these

with S-Arrow, we obtain a transitivity-free derivation of S1→S2 <: T1→T2.

Case S-Rcd/S-Rcd:

Similar.

Other cases:

The other combinations (S-Arrow/S-Rcd and S-Rcd/S-Arrow) are not possi-

ble, since they place incompatible constraints on the form of U.

16.1.3 Solution: If we add Bool, then the first part of Lemma 16.1.2 needs to be

modified a little. It should now read, “S <: S can be derived for every type S

without using S-Refl except at type Bool.” Alternatively, we can add a rule

Bool <: Bool

to the definition of subtyping and then show that S-Refl can be dropped from

the enriched system.

16.2.5 Solution: By induction on declarative typing derivations. Proceed by cases

on the final rule in the derivation.

Case T-Var: t = x Γ(x) = T

Immediate, by TA-Var.

Case T-Abs: t = λx:T1.t2 Γ , x:T1 ` t2 : T2 T = T1→T2

By the induction hypothesis, Γ , x:T1
ñ̀ t2 : S2, for some S2 <: T2. By TA-Abs,

Γ ñ̀ t : T1→S2. By S-Arrow, T1→S2 <: T1→T2, as required.

Case T-App: t = t1 t2 Γ ` t1 : T11→T12 Γ ` t2 : T11 T = T12

By the induction hypothesis, Γ ñ̀ t1 : S1 for some S1 <: T11→T12 and Γ ñ̀

t2 : S2 for some S2 <: T11. By the inversion lemma for the subtype relation

(15.3.2), S1 must have the form S11→S12, for some S11 and S12 with T11 <: S11

and S12 <: T12. By transitivity, S2 <: S11. By the completeness of algorithmic

522 A Solutions to Selected Exercises

subtyping, ñ̀ S2 <: S11. Now, by TA-App, Γ ñ̀ t1 t2 : S12, which finishes this

case (since we already have S12 <: T12).

Case T-Rcd: t = {li=ti
i∈1..n} Γ ` ti : Ti for each i

T = {li:Ti
i∈1..n}

Straightforward.

Case T-Proj: t = t1.lj Γ ` t1 : {li:Ti
i∈1..n} T = Tj

Similar to the application case.

Case T-Sub: t : S S <: T

By the induction hypothesis and transitivity of subtyping.

16.2.6 Solution: The term λx:{a:Nat}.x has both the types {a:Nat}→{a:Nat}

and {a:Nat}→Top under the declarative rules. But without S-Arrow, these

types are incomparable (and there is no type that lies beneath both of them).

16.3.2 Solution: We begin by giving a mutually recursive pair of algorithms that,

we claim (and will show, below), calculate the join J and meet M, respectively,

of a pair of types S and T. The second algorithm may also fail, signaling that

S and T have no meet.

S ∨ T =

Bool if S = T = Bool

M1→J2 if S = S1→S2 T = T1→T2

S1 ∧ T1 = M1 S2 ∨ T2 = J2

{jl:Jl
l∈1..q} if S = {kj:Sj

j∈1..m}

T = {li:Ti
i∈1..n}

{jl
l∈1..q} = {kj

j∈1..m} ∩ {li
i∈1..n}

Sj ∨ Ti = Jl for each jl = kj = li

Top otherwise

S ∧ T =

S if T = Top

T if S = Top

Bool if S = T = Bool

J1→M2 if S = S1→S2 T = T1→T2

S1 ∨ T1 = J1 S2 ∧ T2 = M2

{ml:Ml
l∈1..q} if S = {kj:Sj

j∈1..m}

T = {li:Ti
i∈1..n}

{ml
l∈1..q} = {kj

j∈1..m} ∪ {li
i∈1..n}

Sj ∧ Ti = Ml for each ml = kj = li

Ml = Sj if ml = kj occurs only in S

Ml = Ti if ml = li occurs only in T

fail otherwise

A Solutions to Selected Exercises 523

In the arrow case of the first algorithm, the call to the second algorithm may

result in failure; in this case the first algorithm falls through to the last case

and the result is Top. For example Bool→Top ∨ {}→Top = Top.

It is easy to check that ∨ and ∧ are total functions (i.e., never diverge): just

note that the total size of S and T is always reduced in recursive calls. Also,

the ∧ algorithm never fails when its inputs are bounded below:

A.10 Lemma: If L <: S and L <: T, then S ∧ T = M for some M. �

Proof: By induction on the size of S (or, equivalently, T), with a case analysis

on the shapes of S and T. If either S or T is Top, then one of the first two cases

in the definition applies, and the result is either T or S, respectively. The cases

where S and T have different shapes cannot occur, since the inversion lemma

for the subtype relation (15.3.2) would make inconsistent demands on the

shape of L; for example, if S is an arrow, then so must L be, but if T is a

record, then so is L.1 So we have three cases left.

If both S and T are Bool, then the third case in the definition applies and

we are finished.

Suppose instead that S = S1→S2 and T = T1→T2. The totality of the ∨

algorithm tells us that the first recursive call returns some type J1. Also, by

the inversion lemma, L must have the form L1→L2 with L2 <: S2 and L2 <: T2.

That is, L2 is a common lower bound of S2 and T2, so the induction hypothesis

applies and tells us that S2 ∧ L2 does not fail, but rather returns a type M2. So

S ∧ T = J1→M2.

Finally, suppose that S = {kj:Sj
j∈1..m} and T = {li:Ti

i∈1..n}. By the inver-

sion lemma, L must be a record type whose labels include all the labels that

occur in either of S and T. Moreover, for each label in both S and T, the inver-

sion lemma tells us that the corresponding field in L is a common subtype

of the fields in S and T. This assures us that the recursive calls to the ∧

algorithm for the common labels all succeed. �

Now let us verify that these definitions calculate joins and meets. The ar-

gument is divided into two parts: Proposition A.11 shows that the calculated

meet is a lower bound of S and T and the join is an upper bound; Proposi-

tion A.12 shows that the calculated meet is greater than every common lower

bound of S and T and the join less than every common upper bound.

A.11 Proposition:

1. If S ∨ T = J, then S <: J and T <: J.

1. Strictly speaking, Lemma 15.3.2 did not deal with Bool. The additional case for Bool just

says that the only subtype of Bool is Bool itself.

524 A Solutions to Selected Exercises

2. If S ∧ T = M, then M <: S and M <: T. �

Proof: By a straightforward induction on the size of a “derivation” of S ∧ T =

M or S ∨ T = J (i.e., the number of recursive calls to the definitions of ∧ and

∨ needed to calculate M or J). �

A.12 Proposition:

1. Suppose that S ∨ T = J and, for some U, that S <: U and T <: U. Then

J <: U.

2. Suppose that S ∧ T = M and, for some L, that L <: S and L <: T. Then

L <: M. �

Proof: The two parts are proved together, by induction on the sizes of S and

T (actually, induction on almost anything will do). Given S and T, we consider

the two parts in turn.

For part (1), proceed by cases on the form of U. If U is Top, then we are

done, since J <: Top no matter what J is. If U = Bool, then the inversion

lemma (15.3.2) tells us that S and T must also be Bool, so J = Bool and we

are finished. The other cases are more interesting.

If U = U1→U2, then, by the inversion lemma, S = S1→S2 and T = T1→T2,

with U1 <: S1, U1 <: T1, S2 <: U2, and T2 <: U2. By the induction hypothesis,

the meet M1 of S1 and T1 lies above U1, while the join J2 of S2 and T2 lies

below U2. By S-Arrow, M1→J2 <: U1→U2.

If U is a record type, then, by the inversion lemma, so are S and T. More-

over, the labels of S and T are supersets of the labels of U, and the type

of every field in U is a supertype of the corresponding fields in S and T.

Thus, the join of S and T will contain at least the labels of U, and (by

the induction hypothesis) the fields of the join will be subtypes of the

corresponding fields of U. By S-Rcd, J <: U.

For part (2), we again proceed by cases on the forms of S and T. If either is

Top, then the meet is the other, and the result is immediate. The cases where

S and T have different (non-Top) shapes cannot occur, as we saw in the proof

of A.10. If both are Bool, then the result is again immediate. The remaining

cases (S and T both arrows or both records) are more interesting.

If S = S1→S2 and T = T1→T2, then by the inversion lemma we must have

L = L1→L2, with S1 <: L1, T1 <: L1, L2 <: S2, and L2 <: T2. By the induction

hypothesis, the join J1 of S1 and T1 lies below L1, while the meet M2 of S2

and T2 lies above L2. By S-Arrow, L1→L2 <: J1→M2.

A Solutions to Selected Exercises 525

If S and T are record types, then, by the inversion lemma, so is L. Further-

more, L must have all the labels of S and T (and perhaps more), and the

corresponding fields must be in the subtype relation. Now, for each label

ml in the meet M of S and T, there are three possibilities. If ml occurs in

both S and T, then its type in M is the meet of its types in S and T, and the

corresponding type in L is a subtype of the one in M by the induction hy-

pothesis. On the other hand, if ml occurs only in S, then the corresponding

type in M is the same as in S, and we already know that the type in L is

smaller. The case where ml occurs only in T is similar. �

16.3.3 Solution: The minimal type of this term is Top—the join of Bool and {}.

However, the fact that this term is typable should probably be viewed as a

weakness in our language, since it is hard to imagine that the programmer

really intended to write this expression—after all, no operations can be per-

formed on a value of type Top, so there is little point in computing it in the

first place! There are two possible responses to this weakness. One is simply

to remove Top from the system and make ∨ a partial operation. The other

is to keep Top, but make the typechecker generate a warning whenever it

encounters a term whose minimal type is Top.

16.3.4 Solution: Handling Ref types is straightforward. We simply add one clause

to the meet and join algorithms:

S ∨ T =

.

Ref(T1) if S = Ref(S1), T = Ref(T1), S1 <: T1, and T1 <: S1

.

S ∧ T =

.

Ref(T1) if S = Ref(S1), T = Ref(T1), S1 <: T1, and T1 <: S1

.

When we refine Ref with Source and Sink constructors, however, we en-

counter a major difficulty: the subtype relation no longer has joins (or meets)!

For example, the types Ref{a:Nat,b:Bool} and Ref{a:Nat} are subtypes

of both Source{a:Nat} and Sink{a:Nat,b:Bool}, but these types have no

common lower bound.

There are various ways to address this difficulty. Perhaps the simplest is to

add either Source or Sink, but not both, to the system. For many application

domains, this will suffice. For example, for the refined implementation of

classes in §18.12, we need just Source. In a concurrent language with channel

types (§15.5), on the other hand, we might prefer to have just Sink, since this

will give us the ability to define a server process and pass around just the

526 A Solutions to Selected Exercises

“send capability” on its access channel (the receive capability is needed only

by the server process itself).

With just Source types, the join algorithm remains complete when refined

as follows (we also need the Ref clause from above; analogous clauses are

added to the meet algorithm):

S ∨ T =

.

Source(J1) if S = Ref(S1) T = Ref(T1)

S1 ∨ T1 = J1

Source(J1) if S = Source(S1) T = Source(T1)

S1 ∨ T1 = J1

Source(J1) if S = Ref(S1) T = Source(T1)

S1 ∨ T1 = J1

Source(J1) if S = Source(S1) T = Ref(T1)

S1 ∨ T1 = J1

.

A different solution (suggested by Hennessy and Riely, 1998) is to refine

the Ref type constructor so that, instead of one argument, it takes two: the

elements of Ref S T are reference cells that can be used to store elements of

type S and retrieve elements of type T. The new Ref is contravariant in its

first parameter and covariant in its second. Now Sink S can be defined as an

abbreviation for Ref S Top, and Source T can be defined as Ref Bot T.

16.4.1 Solution: Yes:

Γ ` t1 : T1 T1 = Bot

Γ ` t2 : T2 Γ ` t3 : T3 T2 ∨ T3 = T

Γ ` if t1 then t2 else t3 : T
(TA-If)

The alternative rule

Γ ` t1 : T1 T1 = Bot

Γ ` t2 : T2 Γ ` t3 : T3

Γ ` if t1 then t2 else t3 : Bot
(TA-If)

is appealing, and would be safe (since Bot is empty, the evaluation of t1 can

never yield a regular result), but this rule would assign some types to terms

that cannot be assigned by the declarative typing rules; choosing it would

break Theorem 16.2.4.

17.3.1 Solution: The solution just requires transcribing the algorithms from Exer-

cise 16.3.2.

let rec join tyS tyT =

match (tyS,tyT) with

A Solutions to Selected Exercises 527

(TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) →

(try TyArr(meet tyS1 tyT1, join tyS2 tyT2)

with Not_found → TyTop)

| (TyBool,TyBool) →

TyBool

| (TyRecord(fS), TyRecord(fT)) →

let labelsS = List.map (fun (li,_) → li) fS in

let labelsT = List.map (fun (li,_) → li) fT in

let commonLabels =

List.find_all (fun l → List.mem l labelsT) labelsS in

let commonFields =

List.map (fun li →

let tySi = List.assoc li fS in

let tyTi = List.assoc li fT in

(li, join tySi tyTi))

commonLabels in

TyRecord(commonFields)

| _ →

TyTop

and meet tyS tyT =

match (tyS,tyT) with

(TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) →

TyArr(join tyS1 tyT1, meet tyS2 tyT2)

| (TyBool,TyBool) →

TyBool

| (TyRecord(fS), TyRecord(fT)) →

let labelsS = List.map (fun (li,_) → li) fS in

let labelsT = List.map (fun (li,_) → li) fT in

let allLabels =

List.append

labelsS

(List.find_all

(fun l → not (List.mem l labelsS)) labelsT) in

let allFields =

List.map (fun li →

if List.mem li allLabels then

let tySi = List.assoc li fS in

let tyTi = List.assoc li fT in

(li, meet tySi tyTi)

else if List.mem li labelsS then

(li, List.assoc li fS)

else

(li, List.assoc li fT))

528 A Solutions to Selected Exercises

allLabels in

TyRecord(allFields)

| _ →

raise Not_found

let rec typeof ctx t =

match t with

...

| TmTrue(fi) →

TyBool

| TmFalse(fi) →

TyBool

| TmIf(fi,t1,t2,t3) →

if subtype (typeof ctx t1) TyBool then

join (typeof ctx t2) (typeof ctx t3)

else error fi "guard of conditional not a boolean"

17.3.2 Solution: See the rcssubbot implementation.

18.6.1 Solution:

DecCounter = {get:Unit→Nat, inc:Unit→Unit, reset:Unit→Unit,

dec:Unit→Unit};

decCounterClass =

λr:CounterRep.

let super = resetCounterClass r in

{get = super.get,

inc = super.inc,

reset = super.reset,

dec = λ_:Unit. r.x:=pred(!(r.x))};

18.7.1 Solution:

BackupCounter2 = {get:Unit→Nat, inc:Unit→Unit,

reset:Unit→Unit, backup: Unit→Unit,

reset2:Unit→Unit, backup2: Unit→Unit};

BackupCounterRep2 = {x: Ref Nat, b: Ref Nat, b2: Ref Nat};

backupCounterClass2 =

λr:BackupCounterRep2.

let super = backupCounterClass r in

{get = super.get, inc = super.inc,

reset = super.reset, backup = super.backup,

reset2 = λ_:Unit. r.x:=!(r.b2),

backup2 = λ_:Unit. r.b2:=!(r.x)};

A Solutions to Selected Exercises 529

18.11.1 Solution:

instrCounterClass =

λr:InstrCounterRep.

λself: Unit→InstrCounter.

λ_:Unit.

let super = setCounterClass r self unit in

{get = λ_:Unit. (r.a:=succ(!(r.a)); super.get unit),

set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),

inc = super.inc,

accesses = λ_:Unit. !(r.a)};

ResetInstrCounter = {get:Unit→Nat, set:Nat→Unit,

inc:Unit→Unit, accesses:Unit→Nat,

reset:Unit→Unit};

resetInstrCounterClass =

λr:InstrCounterRep.

λself: Unit→ResetInstrCounter.

λ_:Unit.

let super = instrCounterClass r self unit in

{get = super.get,

set = super.set,

inc = super.inc,

accesses = super.accesses,

reset = λ_:Unit. r.x:=0};

BackupInstrCounter = {get:Unit→Nat, set:Nat→Unit,

inc:Unit→Unit, accesses:Unit→Nat,

backup:Unit→Unit, reset:Unit→Unit};

BackupInstrCounterRep = {x: Ref Nat, a: Ref Nat, b: Ref Nat};

backupInstrCounterClass =

λr:BackupInstrCounterRep.

λself: Unit→BackupInstrCounter.

λ_:Unit.

let super = resetInstrCounterClass r self unit in

{get = super.get,

set = super.set,

inc = super.inc,

accesses = super.accesses,

reset = λ_:Unit. r.x:=!(r.b),

backup = λ_:Unit. r.b:=!(r.x)};

530 A Solutions to Selected Exercises

newBackupInstrCounter =

λ_:Unit. let r = {x=ref 1, a=ref 0, b=ref 0} in

fix (backupInstrCounterClass r) unit;

18.13.1 Solution: One way to test for identity is using reference cells. We extend the

internal representation of our objects with an instance variable id of type

Ref Nat

IdCounterRep = {x: Ref Nat, id: Ref (Ref Nat)};

and an id method that just returns the id field:

IdCounter = {get:Unit→Nat, inc:Unit→Unit, id:Unit→(Ref Nat)};

idCounterClass =

λr:IdCounterRep.

{get = λ_:Unit. !(r.x),

inc = λ_:Unit. r.x:=succ(!(r.x)),

id = λ_:Unit. !(r.id)};

Now, the sameObject function takes two objects with id methods and checks

whether the references returned by the id methods are the same.

sameObject =

λa:{id:Unit→(Ref Nat)}. λb:{id:Unit→(Ref Nat)}.

((b.id unit) := 1;

(a.id unit) := 0;

iszero (!(b.id unit)));

The trick here is using aliasing to test whether two reference cells are the

same: we make sure the second is non-zero, assign zero to the first, and test

the second to see whether it has become zero.

19.4.1 Solution: Since every class declaration must include an extends clause, and

since these clauses are not allowed to be cyclic, the chain of extends clauses

from every class must eventually end with Object.

19.4.2 Solution: One obvious improvements would be to combine the three typing

rules for casting into one

Γ ` t0 : D

Γ ` (C)t0 : C
(T-Cast)

and drop the concept of stupid casts. Another would be to omit constructors,

since they do nothing anyway.

19.4.6 Solution:

1. The formulation of interfaces for FJ is routine.

A Solutions to Selected Exercises 531

2. Suppose we declare the following interfaces:

interface A {}

interface B {}

interface C extends A,B {}

interface D extends A,B {}

Then C and D have both A and B as common upper bounds, but no least

upper bound.

3. Instead of the standard algorithmic rule for conditional expressions,

Γ ` t1 : boolean Γ ` t2 : E2 Γ ` t3 : E3

Γ ` t1 ? t2 : t3 : E2 ∨ E3

Java uses the following restricted rules:

Γ ` t1 : boolean Γ ` t2 : E2 Γ ` t3 : E3 Γ ` E2 <: E3

Γ ` t1 ? t2 : t3 : E3

Γ ` t1 : boolean Γ ` t2 : E2 Γ ` t3 : E3 Γ ` E3 <: E2

Γ ` t1 ? t2 : t3 : E2

These are intuitively sound, but they interact poorly with the small-step

style of operational semantics used for FJ—the type preservation property

is actually false! (It is easy to construct an example that shows this.)

19.4.7 Solution: Surprisingly, handling super is harder than handling self, since

we need some way of remembering what class the “currently executing method

body” came from. There are at least two ways to accomplish this:

1. Annotate terms with some indication of where super references should

be looked up.

2. Add a preprocessing step in which the whole class table is rewritten,

transforming references to super into references to this with “mangled”

names indicating which class they come from.

19.5.1 Solution: Before giving the main proof, we develop some required lemmas.

As always, the critical one (A.14) relates typing and substitution.

A.13 Lemma: If mtype(m,D) = C→C0, then mtype(m,C) = C→C0 for all C <: D. �

Proof: Straightforward induction on the derivation of C <: D. Note that,

whether m is defined in CT(C) or not, mtype(m,C) should be the same as

mtype(m,E) where CT(C) = class C extends E {...}. �

532 A Solutions to Selected Exercises

A.14 Lemma [Term substitution preserves typing]: If Γ , x : B ` t : D and Γ `

s : A, where A <: B, then Γ ` [x, s]t : C for some C <: D. �

Proof: By induction on the derivation of Γ , x : B ` t : D. The intuitions are

exactly the same as for the lambda-calculus with subtyping; details vary a

little, of course. The most interesting cases are the last two.

Case T-Var: t = x x:D ∈ Γ

If x 6∈ x, then the result is trivial since [x , s]x = x. On the other hand, if

x = xi and D = Bi , then, since [x, s]x = si , letting C = Ai finishes the case.

Case T-Field: t = t0.fi Γ , x : B ` t0 : D0 fields(D0) = C f D = Ci

By the induction hypothesis, there is some C0 such that Γ ` [x , s]t0 : C0

and C0 <: D0. It is easy to check that fields(C0) = (fields(D0),D g) for some D g.

Therefore, by T-Field, Γ ` ([x, s]t0).fi : Ci .

Case T-Invk: t = t0.m(t) Γ , x : B ` t0 : D0 mtype(m,D0) = E→D

Γ , x : B ` t : D D <: E

By the induction hypothesis, there are some C0 and C such that:

Γ ` [x, s]t0 : C0 C0 <: D0 Γ ` [x, s]t : C C <: D.

By Lemma A.13, mtype(m,C0) = E→D. Moreover, C <: E by the transitivity of

<:. Therefore, by T-Invk, Γ ` [x, s]t0.m([x, s]t) : D.

Case T-New: t = new D(t) fields(D) = D f Γ , x : B ` t : C C <: D

By the induction hypothesis, Γ ` [x, s]t : E for some E with E <: C. We have

E <: D by the transitivity of <:. Therefore, by T-New, Γ ` new D([x, s]t) : D.

Case T-UCast: t = (D)t0 Γ , x : B ` t0 : C C <: D

By the induction hypothesis, there is some E such that Γ ` [x, s]t0 : E and

E <: C. We have E <: D by the transitivity of <:, which yields Γ ` (D)([x ,

s]t0) : D by T-UCast.

Case T-DCast: t = (D)t0 Γ , x : B ` t0 : C D <: C D ≠ C

By the induction hypothesis, there is some E such that Γ ` [x , s]t0 : E

and E <: C. If E <: D or D <: E, then Γ ` (D)([x , s]t0) : D by T-UCast

or T-DCast, respectively. On the other hand, if both D 6<: E and E 6<: D, then

Γ ` (D)([x, s]t0) : D (with a stupid warning) by T-SCast.

Case T-SCast: t = (D)t0 Γ , x : B ` t0 : C D 6<: C C 6<: D

By the induction hypothesis, there is some E such that Γ ` [x, s]t0 : E and

E <: C. This means that E 6<: D. (To see this, note that each class in FJ has just

one super class. It follows that, if both E <: C and E <: D, then either C <: D or

D <: C.) So Γ ` (D)([x, s]t0) : D (with a stupid warning), by T-SCast. �

A Solutions to Selected Exercises 533

A.15 Lemma [Weakening]: If Γ ` t : C, then Γ , x : D ` t : C. �

Proof: Straightforward induction. �

A.16 Lemma: If mtype(m, C0) = D→D, and mbody(m, C0) = (x, t), then for some D0

and some C <: D we have C0 <: D0 and x : D, this : D0 ` t : C. �

Proof: By induction on the derivation of mbody(m,C0). The base case (where

m is defined in C0) is easy since m is defined in CT(C0) and the well-formedness

of the class table implies that we must have derived x : D, this : C0 ` t : C

by T-Method. The induction step is also straightforward. �

We are now ready to give the proof of the type safety theorem.

Proof of Theorem 19.5.1: By induction on a derivation of t -→ t′, with a case

analysis on the final rule. Note how stupid warnings are generated in the

T-DCast subcase, second from the end.

Case E-ProjNew: t = new C0(v).fi t′ = vi fields(C0) = D f

From the shape of t, we see that the final rule in the derivation of Γ ` t : C

must be T-Field, with premise Γ ` new C0(v) : D0, for some D0, and that

C = Di . Similarly, the last rule in the derivation of Γ ` new C0(v) : D0 must

be T-New, with premises Γ ` v : C and C <: D, and with D0 = C0. In particular,

Γ ` vi : Ci , which finishes the case, since Ci <: Di .

Case E-InvkNew: t = (new C0(v)).m(u) t′ = [u/x, new C0(v)/this]t0

mbody(m,C0) = (x,t0)

The final rules in the derivation of Γ ` t : C must be T-Invk and T-New, with

premises

Γ ` new C0(v) : C0 Γ ` u : C C <: D mtype(m,C0) = D→C.

By Lemma A.16, we have x : D, this : D0 ` t0 : B for some D0 and B, with

C0 <: D0 and B <: C. By Lemma A.15, Γ , x : D, this : D0 ` t0 : B. Then,

by Lemma A.14, Γ ` [x , u, this , new C0(v)]t0 : E for some E <: B. By

transitivity of <:, we obtain E <: C. Letting C′ = E completes the case.

Case E-CastNew: t = (D)(new C0(v)) C0 <: D t′ = new C0(v)

The proof of Γ ` (D)(new C0(v)) : C must end with T-UCast since end-

ing with T-SCast or T-DCast would contradict the assumption C0 <: D. The

premises of T-UCast, give us Γ ` new C0(v) : C0 and D = C, finishing the

case.

The cases for the congruence rules are easy. We show just one:

534 A Solutions to Selected Exercises

Case RC-Cast: t = (D)t0 t′ = (D)t′0 t0 -→ t′0

There are three subcases according to the last typing rule used.

Subcase T-UCast: Γ ` t0 : C0 C0 <: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. By transitivity

of <:, C′0 <: C. Therefore, by T-UCast, Γ ` (C)t′0 : C (with no additional

stupid warning).

Subcase T-DCast: Γ ` t0 : C0 D <: C0 D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 <: C or

C <: C′0, then Γ ` (C)t′0 : C by T-UCast or T-DCast (without any additional

stupid warning). On the other hand, if both C′0 6<: C and C 6<: C′0, then, Γ `

(C)t′0 : C with a stupid warning by T-SCast.

Subcase T-SCast: Γ ` t0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. Then, both C′0 6<: C

and C 6<: C′0 also hold. Therefore Γ ` (C)t′0 : C with a stupid warning. �

20.1.1 Solution:

Tree = µX. <leaf:Unit, node:{Nat,X,X}>;

leaf = <leaf=unit> as Tree;

ñ leaf : Tree

node = λn:Nat. λt1:Tree. λt2:Tree. <node={n,t1,t2}> as Tree;

ñ node : Nat → Tree → Tree → Tree

isleaf = λl:Tree. case l of <leaf=u> ⇒ true | <node=p> ⇒ false;

ñ isleaf : Tree → Bool

label = λl:Tree. case l of <leaf=u> ⇒ 0 | <node=p> ⇒ p.1;

ñ label : Tree → Nat

left = λl:Tree. case l of <leaf=u> ⇒ leaf | <node=p> ⇒ p.2;

ñ left : Tree → Tree

right = λl:Tree. case l of <leaf=u> ⇒ leaf | <node=p> ⇒ p.3;

ñ right : Tree → Tree

append = fix (λf:NatList→NatList→NatList.

λl1:NatList. λl2:NatList.

if isnil l1 then l2 else

cons (hd l1) (f (tl l1) l2));

A Solutions to Selected Exercises 535

ñ append : NatList → NatList → NatList

preorder = fix (λf:Tree→NatList. λt:Tree.

if isleaf t then nil else

cons (label t)

(append (f (left t)) (f (right t))));

ñ preorder : Tree → NatList

t1 = node 1 leaf leaf;

t2 = node 2 leaf leaf;

t3 = node 3 t1 t2;

t4 = node 4 t3 t3;

l = preorder t4;

hd l;

ñ 4 : Nat

hd (tl l);

ñ 3 : Nat

hd (tl (tl l));

ñ 1 : Nat

20.1.2 Solution:

fib = fix (λf: Nat→Nat→Stream. λm:Nat. λn:Nat. λ_:Unit.

{n, f n (plus m n)}) 0 1;

ñ fib : Stream

20.1.3 Solution:

Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C,

reset:Unit→C, backup:Unit→C};

c = let create =

fix (λcr: {x:Nat,b:Nat}→Counter. λs: {x:Nat,b:Nat}.

{get = s.x,

inc = λ_:Unit. cr {x=succ(s.x),b=s.b},

dec = λ_:Unit. cr {x=pred(s.x),b=s.b},

backup = λ_:Unit. cr {x=s.x,b=s.x},

reset = λ_:Unit. cr {x=s.b,b=s.b} })

in create {x=0,b=0};

ñ c : Counter

536 A Solutions to Selected Exercises

20.1.4 Solution:

D = µX. <nat:Nat, bool:Bool, fn:X→X>;

lam = λf:D→D. <fn=f> as D;

ap = λf:D. λa:D.

case f of

<nat=n> ⇒ divergeD unit

| <bool=b> ⇒ divergeD unit

| <fn=f> ⇒ f a;

ifd = λb:D. λt:D. λe:D.

case b of

<nat=n> ⇒ divergeD unit

| <bool=b> ⇒ (if b then t else e)

| <fn=f> ⇒ divergeD unit;

tru = <bool=true> as D;

fls = <bool=false> as D;

ifd fls one zro;

ñ <nat=0> as D : D

ifd fls one fls;

ñ <bool=false> as D : D

Readers who feel concerned about the fact that we can code ill-typed terms in

this system should note that what we’ve done is to construct a data structure

for representing the object language of untyped terms in the metalanguage

of the simply typed lambda-calculus with recursive types. The fact that we

can do this is no more surprising than the fact (which we’ve been using in the

implementation chapters throughout the book) that we can represent terms

of various typed and untyped lambda-calculi as data structures in ML.

20.1.5 Solution:

lam = λf:D→D. <fn=f> as D;

ap = λf:D. λa:D. case f of

<nat=n> ⇒ divergeD unit

| <fn=f> ⇒ f a

| <rcd=r> ⇒ divergeD unit;

rcd = λfields:Nat→D. <rcd=fields> as D;

prj = λf:D. λn:Nat. case f of

<nat=n> ⇒ divergeD unit

| <fn=f> ⇒ divergeD unit

| <rcd=r> ⇒ r n;

myrcd = rcd (λn:Nat. if iszero 0 then zro

else if iszero (pred n) then one

else divergeD unit);

A Solutions to Selected Exercises 537

20.2.1 Solution: Here are some of the more interesting examples in iso-recursive

form:

Hungry = µA. Nat → A;

f = fix (λf: Nat→Hungry. λn:Nat. fold [Hungry] f);

ff = fold [Hungry] f;

ff1 = (unfold [Hungry] ff) 0;

ff2 = (unfold [Hungry] ff1) 2;

fixT =

λf:T→T.

(λx:(µA.A→T). f ((unfold [µA.A→T] x) x))

(fold [µA.A→T] (λx:(µA.A→T). f ((unfold [µA.A→T] x) x)));

D = µX. X→X;

lam = λf:D→D. fold [D] f;

ap = λf:D. λa:D. (unfold [D] f) a;

Counter = µC. {get:Nat, inc:Unit→C};

c = let create = fix (λcr: {x:Nat}→Counter. λs: {x:Nat}.

fold [Counter]

{get = s.x,

inc = λ_:Unit. cr {x=succ(s.x)}})

in create {x=0};

c1 = (unfold [Counter] c).inc unit;

(unfold [Counter] c1).get;

21.1.7 Solution:

E2(∅) = {a} E2({a,b}) = {a, c}

E2({a}) = {a} E2({a, c}) = {a,b}

E2({b}) = {a} E2({b, c}) = {a,b}

E2({c}) = {a,b} E2({a,b, c}) = {a,b, c}

The E2-closed sets are {a} and {a,b, c}. The E2-consistent sets are ∅, {a},

and {a,b, c}. The least fixed point of E2 is {a}. The greatest fixed point is

{a,b, c}.

21.1.9 Solution: To prove the principle of ordinary induction on natural numbers,

we proceed as follows. Define the generating function F ∈ P(N) → P(N) by

F(X) = {0} ∪ {i + 1 | i ∈ X}.

Now, suppose we have a predicate (i.e., a set of numbers) P such that P(0)

and such that P(i) implies P(i+1). Then, from the definition of F , it is easy to

538 A Solutions to Selected Exercises

see that X ⊆ P implies F(X) ⊆ P , i.e., P is F-closed. By the induction principle,

µF ⊆ P . But µF is the whole set of natural numbers (indeed, this can be taken

as the definition of the set of natural numbers), so P(n) holds for all n ∈ N.

For lexicographic induction, define F ∈ P(N × N) → P(N × N) to be

F(X) = {(m,n) | ∀(m′, n′) < (m,n), (m′, n′) ∈ X}.

Now, suppose we have a predicate (i.e., a set of pairs of numbers) P such that,

whenever P(m′, n′) for all (m′, n′) < (m,n), we also have P(m,n). As before,

from the definition of F , it is easy to see that X ⊆ P implies F(X) ⊆ P , i.e., P

is F-closed. By the induction principle, µF ⊆ P . To finish, we must check that

µF is indeed the set of all pairs of numbers (this is the only subtle bit of the

argument). This can be argued in two steps. First, we remark that N × N is

F-closed (this is immediate from the definition of F). Second, we show that

no proper subset of N × N is F-closed—i.e., N × N is the smallest F-closed

set. To see this, suppose there were a smaller F-closed set Y , and let (m,n) be

the smallest pair that does not belong to Y ; by the definition of F , we see that

F(Y) 6⊆ Y , i.e., Y is not closed—a contradiction.

21.2.2 Solution: Define a tree to be a partial function T ∈ {1,2}∗ ⇀ {→, × ,Top}

satisfying the following constraints:

• T(•) is defined;

• if T(π,σ) is defined then T(π) is defined.

Note that occurrences of the symbols →,× ,Top in the nodes of a tree are

completely unconstrained, e.g. a node with Top can have non-trivial children,

etc. As in §21.2, we overload the symbols→, × , and Top to be also operators

on trees.

The set of all trees is taken as the universeU. The generating function F is

based on the familiar grammar for types:

F(X) = {Top}

∪ {T1×T2 | T1, T2 ∈ X}

∪ {T1→T2 | T1, T2 ∈ X}.

It can be seen from the definitions of T and U that T ⊆ U, so it makes

sense to compare the sets in the equations of interest, T = νF and Tf = µF .

It remains to check that the equations are true.

T ⊆ νF follows by the principle of coinduction from the fact that T is

F-consistent. To obtain νF ⊆ T , we need to check, for any T ∈ νF , the two

last conditions from Definition 21.2.1. This can be done by induction on the

length of π .

A Solutions to Selected Exercises 539

µF ⊆ Tf follows by the principle of induction from the fact that Tf is F-

closed. To obtain Tf ⊆ µF , we argue, by induction on the size of T, that T ∈ Tf
implies T ∈ µF . (The size of T ∈ Tf can be defined as the length of the longest

sequence π ∈ {1,2}∗ such that T(π) is defined.)

21.3.3 Solution: The pair (Top, Top×Top) is not in νS . To see this, just observe

from the definition of S that this pair is not in S(X) for any X. So there is

no S-consistent set containing this pair, and in particular νS (which is S-

consistent) does not contain it.

21.3.4 Solution: For an example of a pair of tree types that are related by νS but

not by µS , we can take the pair (T,T) for any infinite type T. Consider the

set pairs R = {(T(π),T(π)) |π ∈ {1,2}∗}. An examination of the definition

of S easily gives R ⊆ S(R), and applying the principle of coinduction gives

R ⊆ νS . Then (T,T) ∈ νS because (T,T) ∈ R. On the other hand, (T,T) 6∈ µS

because µS relates only finite types—this can be established by taking R ′ to

be the set of all pairs of finite types and obtaining µS ⊆ R′ by the principle

of induction.

There are no pairs (S,T) of finite types that are related by νSf , but not by

µSf , because the two fixed points coincide. This follows from the fact that,

for any S,T ∈ Tf , (S,T) ∈ νSf implies (S,T) ∈ µSf . (Since T is a finite tree, the

latter statement follows, in turn, be obtained by induction on T. One needs to

consider the cases of T being Top, T1×T2, T1→T2, inspect the definition of Sf ,

and use the equalities Sf (νSf) = νSf and Sf (µSf) = µSf .)

21.3.8 Solution: Begin by defining the identity relation on tree types: I = {(T,T) |

T ∈ T }. If we can show that I is S-consistent, then the coinduction principle

will tell us that I ⊆ νS—that is, νS is reflexive. To show the S-consistency

of I, consider an element (T,T) ∈ I, and proceed by cases on the form of T.

First, suppose T = Top. Then (T,T) = (Top,Top), which is in S(I) by definition.

Suppose, next, that T = T1×T2. Then, since (T1,T1), (T2,T2) ∈ I, the definition

of S gives (T1×T2,T1×T2) ∈ S(I). Similarly for T = T1→T2.

21.4.2 Solution: By the coinduction principle, it is enough to show that U ×U is

FTR-consistent, i.e., U×U ⊆ FTR(U×U). Suppose (x, y) ∈ U ×U. Pick any

z ∈ U. Then (x, z), (z, y) ∈ U × U, and so, by the definition of FTR , also

(x, y) ∈ FTR(U×U).

21.5.2 Solution: To check invertability, we just inspect the definitions of Sf and S

and make sure that each set G(S,T) contains at most one element.

In the definitions of Sf and S each clause explicitly specifies the form of

a supportable element and the contents of its support set, so writing down

540 A Solutions to Selected Exercises

supportSf and supportS is easy. (Compare with the support function for Sm in

Definition 21.8.4.)

21.5.4 Solution:

i a

h

b c

a

b

d

d

e

e

b

f g

c

g

f g

21.5.6 Solution: No, an x ∈ νF \ µF does not have to lead to a cycle in the support

graph: it can also lead to an infinite chain. For example, consider F ∈ P(N) →

P(N) defined by F(X) = {0} ∪ {n | n + 1 ∈ X}. Then µF = {0} and νF = N.

Also, for any n ∈ νF \ µF , that is for any n > 0, support(n) = {n + 1},

generating an infinite chain.

21.5.13 Solution: First, consider partial correctness. The proof for each part pro-

ceeds by induction on the recursive structure of a run of the algorithm:

1. From the definition of lfp, it is easy to see that there are two cases where

lfp(X) can return true. If lfp(X) = true because X = ∅, we have X ⊆ µF

trivially. On the other hand, if lfp(X) = true because lfp(support(X)) =

true, then, by the induction hypothesis, support(X) ⊆ µF , from which

Lemma 21.5.8 yields X ⊆ µF .

2. If lfp(X) = false because support(X) ↑, then X 6⊆ µF by Lemma 21.5.8.

Otherwise, lfp(X) = false because lfp(support(X)) = false, and, by the

induction hypothesis, support(X) 6⊆ µF . By Lemma 21.5.8, X 6⊆ µF .

Next, we want to characterize the generating functions F for which lfp is

guaranteed to terminate on all finite inputs. For this, some new terminology

is helpful. Given a finite-state generating function F ∈ P(U) → P(U), the

partial function heightF ∈ U ⇀ N (or just height) is the least partial function

satisfying the following condition:2

height(x) =

0 if support(x) = ∅

0 if support(x) ↑

1+max{height(y) | y ∈ support(x)} if support(x) ≠∅

(Note that height(x) is undefined if x either participates in a reachability cycle

itself or depends on an element from a cycle.) A generating function F is said

to be finite height if heightF is a total function. It is easy to check that, if y ∈

support(x) and both height(x) and height(y) are defined, then height(y) <

height(x).

2. Observe that this way of phrasing the definition of height can easily be rephrased as the

least fixed point of a monotone function on relations representing partial functions.

A Solutions to Selected Exercises 541

Now, if F is finite state and finite height, then lfp(X) terminates for any

finite input set X ⊆ U. To see this, observe that, since F is finite state, for

every recursive call lfp(Y) descended from the original call lfp(X), the set Y is

finite. Since F is finite height, h(Y) = max{height(y) | y ∈ Y} is well defined.

Since h(Y) decreases with each recursive call and is always non-negative, it

serves as a termination measure for lfp.

21.8.5 Solution: The definition of Sd is the same as that of Sm, except that the last

clause does not contain the conditions T ≠ µX.T1 and T ≠ Top. To see that Sd

is not invertible, observe that the set G(µX.Top,µY.Top) contains two generating

sets, {(Top, µY.Top)} and {(µX.Top,Top)} (compare the contents of this set

for the function Sm).

Because all the clauses of Sd and Sm are the same, except the last, and the

last clause of Sm is a restriction of the last clause of Sd , the inclusion νSm ⊆

νSd is obvious. The other inclusion, νSd ⊆ νSm, can be proved using the

principle of coinduction together with the following lemma, which establishes

that νSd is Sm-consistent.

A.17 Lemma: For any two µ-types S, T, if (S,T) ∈ νSd , then (S,T) ∈ Sm(νSd). �

Proof sketch: By lexicographic induction on (n, k), where k = µ-height(S) and

n = µ-height(T). This induction verifies the informal idea that any derivation

of (S,T) ∈ νSd can be transformed into another derivation of the same fact,

that also happens to be a derivation of (S,T) ∈ νSm. The restrictions in the

rule of left µ-folding dictate that the transformed derivation has the property

that every sequence of applications of µ-folding rules starts with a sequence

of left µ-foldings, which are then followed by a sequence of right µ-foldings. �

21.9.2 Solution:

T v T

S v T1

S v T1×T2

S v T2

S v T1×T2

S v T1

S v T1→T2

S v T2

S v T1→T2

S v [X, µX.T]T

S v µX.T

(Note, as a point of interest, that the generating function TD differs from

the generating functions we have considered throughout this chapter: it is

not invertible. For example, B v A×B→B× C is supported by the two sets

{B v A× B} and {B v B×C}, neither of which is a subset of the other.)

21.9.7 Solution: All the rules for BU are the same as the rules for TD given in the

solution of Exercise 21.9.2, except the rule for types starting with a µ binder:

S � T

[X, µX.T]S � µX.T

542 A Solutions to Selected Exercises

21.11.1 Solution: There are lots. A trivial example is µX.T and [X, µX.T]T for just

about any T. A more interesting one is µX. Nat×(Nat×X) and µX. Nat×X.

22.3.9 Solution: Here are the main algorithmic constraint generation rules:

Γ(x) = T

Γ `F x : T |F {}
(CT-Var)

Γ , x:T1 `F t2 : T2 |F ′ C x 6∈ dom(Γ)

Γ `F λx:T1.t2 : T1→T2 |F ′ C
(CT-Abs)

Γ `F t1 : T1 |F ′ C1 Γ `F ′ t2 : T2 |F ′′ C2 F ′′ = X, F ′′′

Γ `F t1 t2 : X |F ′′′ C1 ∪ C2 ∪ {T1 = T2→X}
(CT-App)

The remaining rules are similar. The equivalence of the original rules and the

algorithmic presentation can be stated as follows:

1. (Soundness) If Γ `F t : T |F ′ C and the variables mentioned in Γ and t

do not appear in F , then Γ ` t : T |F\F ′ C .

2. (Completeness) If Γ ` t : T |X C , then there is some permutation F of

the names in X such that Γ `F t : T |∅ C .

Both parts are proved by straightforward induction on derivations. For the

application case in part 1, the following lemma is useful:

If the type variables mentioned in Γ and t do not appear in F and if

Γ `F t : T |F ′ C , then the type variables mentioned in T and C do not

appear in F \ F ′.

For the corresponding case in part 2, the following lemma is used:

If Γ `F t : T |F ′ C , then Γ `F,G t : T |F ′,G C , where G is any sequence

of fresh variable names.

22.3.10 Solution: Representing constraint sets as lists of pairs of types, the con-

straint generation algorithm is a direct transcription of the inference rules

given in the solution to 22.3.9.

let rec recon ctx nextuvar t = match t with

TmVar(fi,i,_) →

let tyT = getTypeFromContext fi ctx i in

(tyT, nextuvar, [])

| TmAbs(fi, x, tyT1, t2) →

let ctx’ = addbinding ctx x (VarBind(tyT1)) in

let (tyT2,nextuvar2,constr2) = recon ctx’ nextuvar t2 in

(TyArr(tyT1, tyT2), nextuvar2, constr2)

A Solutions to Selected Exercises 543

| TmApp(fi,t1,t2) →

let (tyT1,nextuvar1,constr1) = recon ctx nextuvar t1 in

let (tyT2,nextuvar2,constr2) = recon ctx nextuvar1 t2 in

let NextUVar(tyX,nextuvar’) = nextuvar2() in

let newconstr = [(tyT1,TyArr(tyT2,TyId(tyX)))] in

((TyId(tyX)), nextuvar’,

List.concat [newconstr; constr1; constr2])

| TmZero(fi) → (TyNat, nextuvar, [])

| TmSucc(fi,t1) →

let (tyT1,nextuvar1,constr1) = recon ctx nextuvar t1 in

(TyNat, nextuvar1, (tyT1,TyNat)::constr1)

| TmPred(fi,t1) →

let (tyT1,nextuvar1,constr1) = recon ctx nextuvar t1 in

(TyNat, nextuvar1, (tyT1,TyNat)::constr1)

| TmIsZero(fi,t1) →

let (tyT1,nextuvar1,constr1) = recon ctx nextuvar t1 in

(TyBool, nextuvar1, (tyT1,TyNat)::constr1)

| TmTrue(fi) → (TyBool, nextuvar, [])

| TmFalse(fi) → (TyBool, nextuvar, [])

| TmIf(fi,t1,t2,t3) →

let (tyT1,nextuvar1,constr1) = recon ctx nextuvar t1 in

let (tyT2,nextuvar2,constr2) = recon ctx nextuvar1 t2 in

let (tyT3,nextuvar3,constr3) = recon ctx nextuvar2 t3 in

let newconstr = [(tyT1,TyBool); (tyT2,tyT3)] in

(tyT3, nextuvar3,

List.concat [newconstr; constr1; constr2; constr3])

22.3.11 Solution: A constraint generation rule for fix expressions can be derived

straightforwardly from the typing rule T-Fix in Figure 11-12.

Γ ` t1 : T1 |X1
C1 X not mentioned in X1, Γ , or t1

Γ ` fix t1 : X |X1∪{X} C1{T1 = X→X}
(CT-Fix)

This rule reconstructs t1’s type (calling it T1), makes sure that T1 has the

form X→X for some fresh X, and yields X as the type of fix t1.

A constraint generation rule for letrec expressions can in turn be derived

from this one, together with the definition of letrec as a derived form.

22.4.3 Solution:

{X = Nat, Y = X→X} [X, Nat, Y, Nat→Nat]

{Nat→Nat = X→Y} [X, Nat, Y, Nat]

{X→Y = Y→Z, Z = U→W} [X, U→W, Y, U→W, Z, U→W]

{Nat = Nat→Y} Not unifiable

{Y = Nat→Y} Not unifiable

{ } []

544 A Solutions to Selected Exercises

22.4.6 Solution: The main data structure needed for this exercise is a representa-

tion of substitutions. There are many alternatives; a simple one is to reuse the

constr datatype from Exercise 22.3.10: a substitution is just a constraint set,

all of whose left-hand sides are unification variables. If we define a function

substinty that performs substitution of a type for a single type variable

let substinty tyX tyT tyS =

let rec f tyS = match tyS with

TyArr(tyS1,tyS2) → TyArr(f tyS1, f tyS2)

| TyNat → TyNat

| TyBool → TyBool

| TyId(s) → if s=tyX then tyT else TyId(s)

in f tyS

then application of a whole substitution to a type can be defined as follows:

let applysubst constr tyT =

List.fold_left

(fun tyS (TyId(tyX),tyC2) → substinty tyX tyC2 tyS)

tyT (List.rev constr)

The unification function also needs to be able to apply a substitution to all

the types in some constraint set:

let substinconstr tyX tyT constr =

List.map

(fun (tyS1,tyS2) →

(substinty tyX tyT tyS1, substinty tyX tyT tyS2))

constr

Also crucial is the “occur-check” that detects circular dependencies:

let occursin tyX tyT =

let rec o tyT = match tyT with

TyArr(tyT1,tyT2) → o tyT1 || o tyT2

| TyNat → false

| TyBool → false

| TyId(s) → (s=tyX)

in o tyT

The unification function is now a direct transcription of the pseudocode given

in Figure 22-2. As usual, it takes a file position and string as extra arguments

to be used in printing error messages when unification fails.

let unify fi ctx msg constr =

let rec u constr = match constr with

[] → []

A Solutions to Selected Exercises 545

| (tyS,TyId(tyX)) :: rest →

if tyS = TyId(tyX) then u rest

else if occursin tyX tyS then

error fi (msg ^ ": circular constraints")

else

List.append (u (substinconstr tyX tyS rest))

[(TyId(tyX),tyS)]

| (TyId(tyX),tyT) :: rest →

if tyT = TyId(tyX) then u rest

else if occursin tyX tyT then

error fi (msg ^ ": circular constraints")

else

List.append (u (substinconstr tyX tyT rest))

[(TyId(tyX),tyT)]

| (TyNat,TyNat) :: rest → u rest

| (TyBool,TyBool) :: rest → u rest

| (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) :: rest →

u ((tyS1,tyT1) :: (tyS2,tyT2) :: rest)

| (tyS,tyT)::rest →

error fi "Unsolvable constraints"

in

u constr

This pedagogical version of the unifier does not work very hard to print use-

ful error messages. In practice, “explaining” type errors can be one of the

hardest parts of engineering a production compiler for a language with type

reconstruction. See Wand (1986).

22.5.6 Solution: Extending the type reconstruction algorithm to handle records is

not straightforward, though it can be done. The main difficulty is that it is not

clear what constraints should be generated for a record projection. A naive

first attempt would be

Γ ` t : T |X C

Γ ` t.li : X |X∪{X} C ∪ {T = {li:X}}

but this is not satisfactory, since this rule says, in effect, that the field li can

be projected only from a record containing just the field li and no others.

An elegant solution was proposed by Wand (1987) and further developed

by Wand (1988, 1989b), Remy (1989, 1990), and others. We introduce a new

kind of variable, called a row variable, ranging not over types but over “rows”

of field labels and associated types. Using row variables, the constraint gen-

eration rule for field projection can be written

Γ ` t0 : T |X C

Γ ` t0.li : X |X∪{X,σ ,ρ} C ∪ {T = {ρ}, ρ = li:X⊕ σ}
(CT-Proj)

546 A Solutions to Selected Exercises

where σ and ρ are row variables and the operator ⊕ combines two rows

(assuming that their fields are disjoint). That is, the term t.li has type X if

t has a record type with fields ρ, where ρ contains the field li:X and some

other fields σ .

The constraints generated by this refined algorithm are more complicated

than the simple sets of equations between types with unification variables

of the original reconstruction algorithm, since the new constraint sets also

involve the associative and commutative operator ⊕. A simple form of equa-

tional unification is needed to find solutions to such constraint sets.

23.4.3 Solution: Here is the standard solution using an auxiliary append

append = λX. (fix (λapp:(List X) → (List X) → (List X).

λl1:List X. λl2:List X.

if isnil [X] l1 then l2

else cons [X] (head [X] l1)

(app (tail [X] l1) l2)));

ñ append : ∀X. List X → List X → List X

reverse =

λX.

(fix (λrev:(List X) → (List X).

λl: (List X).

if isnil [X] l

then nil [X]

else append [X] (rev (tail [X] l))

(cons [X] (head [X] l) (nil [X]))));

ñ reverse : ∀X. List X → List X

23.4.5 Solution:

and = λb:CBool. λc:CBool.

λX. λt:X. λf:X. b [X] (c [X] t f) f;

23.4.6 Solution:

iszro = λn:CNat. n [Bool] (λb:Bool. false) true;

23.4.8 Solution:

pairNat = λn1:CNat. λn2:CNat.

λX. λf:CNat→CNat→X. f n1 n2;

fstNat = λp:PairNat. p [CNat] (λn1:CNat. λn2:CNat. n1);

sndNat = λp:PairNat. p [CNat] (λn1:CNat. λn2:CNat. n2);

A Solutions to Selected Exercises 547

23.4.9 Solution:

zz = pairNat c0 c0;

f = λp:PairNat. pairNat (sndNat p) (cplus c1 (sndNat p));

prd = λm:CNat. fstNat (m [PairNat] f zz);

23.4.10 Solution:

vpred = λn:CNat. λX. λs:X→X.

λz:X.

(n [(X→X)→X]

(λp:(X→X)→X. λq:(X→X). q (p s))

(λx:X→X. z))

(λx:X. x);

ñ vpred : CNat → CNat

I’m grateful to Michael Levin for making me aware of this example.

23.4.11 Solution:

head = λX. λdefault:X. λl:List X.

l [X] (λhd:X. λtl:X. hd) default;

23.4.12 Solution: The insertion function is the trickiest part of this exercise. This

solution works by applying the given list l to a function that constructs two

new lists, one identical to the original and the other including e. For each

element hd of l (working from right to left), this function is passed hd and

the pair of lists already constructed for the elements to the right of hd. The

new pair of lists is built by comparing e with hd: if it is smaller or equal, then

it belongs at the beginning of the second resulting list; we therefore build the

second resulting list by adding e to the front of the first list we were passed

(the one that does not yet contain e). On the other hand, if e is greater than hd,

then it belongs somewhere in the middle of the second list, and we construct

a new second list by simply appending hd to the already-constructed second

list that we were passed.

insert =

λX. λleq:X→X→Bool. λl:List X. λe:X.

let res =

l [Pair (List X) (List X)]

(λhd:X. λacc: Pair (List X) (List X).

let rest = fst [List X] [List X] acc in

let newrest = cons [X] hd rest in

let restwithe = snd [List X] [List X] acc in

let newrestwithe =

548 A Solutions to Selected Exercises

if leq e hd

then cons [X] e (cons [X] hd rest)

else cons [X] hd restwithe in

pair [List X] [List X] newrest newrestwithe)

(pair [List X] [List X] (nil [X]) (cons [X] e (nil [X])))

in snd [List X] [List X] res;

ñ insert : ∀X. (X→X→Bool) → List X → X → List X

Next we need a comparison function for numbers. Since we’re using primitive

numbers, we need to use fix to write it. (We could avoid fix altogether by

using CNat here instead of Nat.)

leqnat =

fix (λf:Nat→Nat→Bool. λm:Nat. λn:Nat.

if iszero m then true

else if iszero n then false

else f (pred m) (pred n));

ñ leqnat : Nat → Nat → Bool

Finally, we construct a sorting function by inserting each element of the list,

in turn, into a new list:

sort = λX. λleq:X→X→Bool. λl:List X.

l [List X]

(λhd:X. λrest:List X. insert [X] leq rest hd)

(nil [X]);

ñ sort : ∀X. (X→X→Bool) → List X → List X

To test that sort is working correctly, we construct an out-of-order list,

l = cons [Nat] 9

(cons [Nat] 2 (cons [Nat] 6 (cons [Nat] 4 (nil [Nat]))));

sort it,

l = sort [Nat] leqnat l;

and read out the contents:

nth =

λX. λdefault:X.

fix (λf:(List X)→Nat→X. λl:List X. λn:Nat.

if iszero n

then head [X] default l

else f (tail [X] l) (pred n));

A Solutions to Selected Exercises 549

ñ nth : ∀X. X → List X → Nat → X

nth [Nat] 0 l 0;

ñ 2 : Nat

nth [Nat] 0 l 1;

ñ 4 : Nat

nth [Nat] 0 l 2;

ñ 6 : Nat

nth [Nat] 0 l 3;

ñ 9 : Nat

nth [Nat] 0 l 4;

ñ 0 : Nat

The demonstration that a well-typed sorting algorithm could be implemented

in System F was a tour de force by Reynolds (1985). His algorithm was a little

different from the one presented here.

23.5.1 Solution: The structure of the proof is almost exactly the same as for 9.3.9

(see page 107). For the type application rule E-TappTabs, we need one addi-

tional substitution lemma, paralleling Lemma 9.3.8 (see page 106).

If Γ , X, ∆ ` t : T, then Γ , [X, S]∆ ` [X, S]t : [X, S]T.

The extra context ∆ here is needed to obtain a strong enough induction hy-

pothesis; if it is omitted, the T-Abs case will fail.

23.5.2 Solution: Again, the structure of this proof is very similar to the proof of

progress for λ→, Theorem 9.3.5. The canonical forms lemma (9.3.4) is ex-

tended with one additional case

If v is a value of type ∀X.T12, then v = λX.t12.

which is used in the type application case of the main proof.

23.6.3 Solution: All of the parts are relatively straightforward inductive and/or

calculational arguments, except the last, where a bit more insight is needed to

see how to piece things together and obtain a contradiction. Pawel Urzyczyn

suggested the structure of this argument.

550 A Solutions to Selected Exercises

(1) Straightforward induction on t, using the inversion lemma for typing.

(2) We show, by induction on the number of outer type abstractions and ap-

plications, that

If t has the form λY. (r [B]) for some Y, B, and r (where r is not

necessarily exposed), and if erase(t) = m and Γ ` t : T, then there

is some type s of the form s = λX. (u [A]), with erase(s) = m and

Γ ` s : T, where furthermore u is exposed.

In the base case, there are no outer type abstractions or applications—i.e.,

r itself is exposed and we are finished.

In the induction case, the outer constructor of r is either a type abstraction

or a type application. If it is a type application, say r1 [R], we add R to the

sequence B and apply the induction hypothesis. If it is a type abstraction,

say λZ. r1, then there are two subcases to consider:

(a) If the sequence of applications B is empty, then we can add Z to the

sequence of abstractions Y and apply the induction hypothesis.

(b) If B is nonempty, then we may write t as

t = λY. ((λZ. r1) [B0] [B′])

where B = B0B
′. But this term contains an R-Beta2 redex; reducing this

redex leaves us with the term

t′ = λY. ([B0 , Z]r1 [B
′])

where [B0 , Z]r1 contains strictly fewer outer type abstractions and

applications than r. Furthermore, the subject reduction theorem tells

us that t′ has the same type as t. The desired result now follows by

applying the induction hypothesis.

(3) Immediate from the inversion lemma.

(4) Straightforward calculation from parts (1), (3), and (2) [twice].

(5) Immediate from part (2) and the inversion lemma.

(6) By induction on the size of T1. In the base case, where T1 is a variable, this

variable must come from X1X2, since otherwise we would have

[X1X2 , A](∀Y.T1) = ∀Y.W = ∀Z.(∀Y.W)→([X1 , B]T2),

which cannot be the case (there are no arrows on the left and at least one

on the right). The other cases follow directly from the induction hypothe-

sis.

A Solutions to Selected Exercises 551

(7) Suppose, for a contradiction, that omega is typable. Then, by parts (1) and

(3), there is some exposed term o = s u where

erase(s) = λx. x x erase(u) = λy. y y

Γ ` s : U→V Γ ` u : U.

By part (2), there exist terms s′ = λR. (s0 [E]) and u′ = λV. (u0 [F])

with s0 and u0 exposed and

erase(s0) = λx. x x erase(u0) = λy. y y

Γ ` s′ : U→V Γ ` u′ : U.

Since s′ has an arrow type, R must be empty. Similarly, since s0 and u0

are exposed, they must both begin with abstractions, so E and F are also

empty, and we have

o′ = s′ u′

= s0 (λV. u0)

= (λx:Tx. w) (λV. λy:Ty. v),

where erase(w) = x x and erase(v) = y y. By the inversion lemma, U = Tx

and

Γ , x:Tx ` w : W Γ , V, y:Ty ` v : P.

Applying part (4) to the first of these, either

(a) Tx = ∀X.Xi , or

(b) Tx = ∀X1X2.T1→T2, and, for some A and B,

[X1X2 , A]T1 = [X1 , B](∀Z.T1→T2).

By part (5), Tx must have the second form, so, by part (6), the leftmost leaf

of T1 is Xi ∈ X1X2.

Now, applying part (4) to the typing Γ , V, y:Ty ` v : P, we have either

(a) Ty = ∀Y.Yi , or

(b) Ty = ∀Y1Y2.S1→S2, and, for some C and C,

[Y1Y2 , C]S1 = [Y1 , D](∀Z′.S1→S2).

552 A Solutions to Selected Exercises

In the former case, we have immediately that the leftmost leaf of Ty is

Yi ∈ Y. In the latter case, we can use (6) to see that that, again, the leftmost

leaf of Ty is Yi ∈ Y1Y2.

But, from the shape of o′ and the inversion lemma, we have

∀V.Ty→V = Tx

= ∀X1X2.T1→T2,

so, in particular, Ty = T1. In other words, the leftmost leaf of T1 is the

same as that of Ty . In summary, then, we have Tx = ∀X1X2.(∀Y.S)→T2,

with both leftmost-leaf(S) = Xi ∈ X1X2 and leftmost-leaf(S) = Yi ∈ Y. Since

the variables X1X2 and Y are bound at different places, we have derived a

contradiction: our original assumption that omega is typable must be false.

23.7.1 Solution:

let r = λX. ref (λx:X. x) in

(r[Nat] := (λx:Nat. succ x);

(!(r[Bool])) true);

24.1.1 Solution: The package p6 provides a constant a and a function f, but the

only operation permitted by the types of these components is applying f to

a some number of times and then throwing away the result. The package p7

allows us to use f to create values of type X, but we can’t do anything with

these values. In p8, both components can be used, but now there is nothing

hidden—we might as well drop the existential packaging altogether.

24.2.1 Solution:

stackADT =

{*List Nat,

{new = nil [Nat],

push = λn:Nat. λs:List Nat. cons [Nat] n s,

top = λs:List Nat. head [Nat] s,

pop = λs:List Nat. tail [Nat] s,

isempty = isnil [Nat]}}

as {∃Stack, {new: Stack, push: Nat→Stack→Stack, top: Stack→Nat,

pop: Stack→Stack, isempty: Stack→Bool}};

ñ stackADT : {∃Stack,

{new:Stack,push:Nat→Stack→Stack,top:Stack→Nat,

pop:Stack→Stack,isempty:Stack→Bool}}

let {Stack,stack} = stackADT in

stack.top (stack.push 5 (stack.push 3 stack.new));

A Solutions to Selected Exercises 553

ñ 5 : Nat

24.2.2 Solution:

counterADT =

{*Ref Nat,

{new = λ_:Unit. ref 1,

get = λr:Ref Nat. !r,

inc = λr:Ref Nat. r := succ(!r)}}

as {∃Counter,

{new: Unit→Counter, get: Counter→Nat, inc: Counter→Unit}};

ñ counterADT : {∃Counter,

{new:Unit→Counter,get:Counter→Nat,

inc:Counter→Unit}}

24.2.3 Solution:

FlipFlop = {∃X, {state:X, methods: {read: X→Bool, toggle: X→X,

reset: X→X}}};

f = {*Counter,

{state = zeroCounter,

methods = {read = λs:Counter. iseven (sendget s),

toggle = λs:Counter. sendinc s,

reset = λs:Counter. zeroCounter}}}

as FlipFlop;

ñ f : FlipFlop

24.2.4 Solution:

c = {*Ref Nat,

{state = ref 5,

methods = {get = λx:Ref Nat. !x,

inc = λx:Ref Nat. (x := succ(!x); x)}}}

as Counter;

24.2.5 Solution: This type would allow us to implement set objects with union

methods, but it would prevent us from using them. To invoke the union

method of such an object, we need to pass it two values of the very same

representation type X. But these cannot come from two different set objects,

since to obtain the two states we would need to open each object, and this

would bind two distinct type variables; the state of the second set could not

be passed to the union operation of the first. (This is not just stubbornness

on the part of the typechecker: it is easy to see that it would be unsound

to pass the concrete representation of one set to the union operation of an-

other, since the representation of the second set may in general be arbitrarily

different from the first.) So this version of the NatSet type only allows us to

take the union of a set with itself!

554 A Solutions to Selected Exercises

24.3.2 Solution: At a minimum, we need to show that the typing and computation

rules of existentials are preserved by the translation—i.e., that if we write

[[—]] for the function that performs all of these translations, then Γ ` t : T

implies [[Γ]] ` [[t]] : [[T]] and t -→∗ t′ implies [[t]] -→∗ [[t′]]. These properties

are easy to check. We might also hope to find that the converses are true—

i.e., that an ill-typed term in the language with existentials is always mapped

to an ill-typed term by the translation, and a stuck term to a stuck term;

these properties, unfortunately, fail: for example, the translation maps the ill-

typed (and stuck) term ({*Nat, 0} as {∃X.X}) [Bool] to a well-typed (and

not stuck) one.

24.3.3 Solution: I am not aware of any place where this is written out. It seems that

it should be possible, but that the transformation will not be local syntactic

sugar—it will need to be applied to a whole program all at once.

25.2.1 Solution: The d-place shift of a type T above cutoff c, written ↑dc (T), is

defined as follows:

↑dc (k) =

{

k if k < c

k+ d if k ≥ c

↑dc (T1→T2) = ↑dc (T1)→ ↑
d
c (T2)

↑dc (∀.T1) = ∀. ↑dc+1 (t1)

↑dc ({∃,T1}) = {∃, ↑dc+1 (T1})

Write ↑d0 (T) for the d-place shift of all the variables in a type T, i.e., ↑d (T).

25.4.1 Solution: It makes space for the type variable X. The result of substituting

v12 into t2 is supposed to be well-scoped in a context of the form Γ ,X, whereas

the original v12 is defined relative to just Γ .

26.2.3 Solution: One place where the full F<: rule is required is in the object encod-

ing of Abadi, Cardelli, and Viswanathan (1996), also described in Abadi and

Cardelli (1996).

26.3.4 Solution:

spluszz = λn:SZero. λm:SZero.

λX. λS<:X. λZ<:X. λs:X→S. λz:Z.

n [X] [S] [Z] s (m [X] [S] [Z] s z);

spluspn = λn:SPos. λm:SNat.

λX. λS<:X. λZ<:X. λs:X→S. λz:Z.

n [X] [S] [X] s (m [X] [S] [Z] s z);

ñ spluspn : SPos → SNat → SPos

A Solutions to Selected Exercises 555

26.3.5 Solution:

SBool = ∀X. ∀T<:X. ∀F<:X. T→F→X;

STrue = ∀X. ∀T<:X. ∀F<:X. T→F→T;

SFalse = ∀X. ∀T<:X. ∀F<:X. T→F→F;

tru = λX. λT<:X. λF<:X. λt:T. λf:F. t;

ñ tru : STrue

fls = λX. λT<:X. λF<:X. λt:T. λf:F. f;

ñ fls : SFalse

notft = λb:SFalse. λX. λT<:X. λF<:X. λt:T. λf:F. b[X][F][T] f t;

ñ notft : SFalse → STrue

nottf = λb:STrue. λX. λT<:X. λF<:X. λt:T. λf:F. b[X][F][T] f t;

ñ nottf : STrue → SFalse

26.4.3 Solution: In the abstraction and type abstraction cases in parts (1) and (2),

and the quantifier case in (3) and (4).

26.4.5 Solution: Part (1) proceeds induction on subtyping derivations. All of the

cases are either immediate (S-Refl, S-Top) or straightforward applications of

the induction hypothesis (S-Trans, S-Arrow, S-All) except S-TVar, which is

more interesting. Suppose the final rule of the derivation of Γ , X<:Q, ∆ ` S <:

T is an instance of S-TVar, i.e., S is some variable Y and T is the upper bound

of Y in the context. There are two possibilities to consider. If X and Y are

different variables, then the assumption Y<:T can also be found in the context

Γ , X<:P, ∆, and the result is immediate. On the other hand, if X = Y, then

T = Q; to complete the argument, we need to show that Γ , X<:P, ∆ ` X <: Q. We

have by S-TVar that Γ , X<:P, ∆ ` X <: P. Moreover, by assumption, Γ ` P <: Q,

so by weakening (Lemma 26.4.2), Γ , X<:P, ∆ ` P <: Q. Pasting these two new

derivations together with S-Trans yields the desired result.

Part (2) is a routine induction on typing derivations, using part (1) for the

subtyping premise of the type application case.

26.4.11 Solution: All the proofs are by straightforward induction on subtyping de-

rivations. We show just the first, proceeding by case analysis on the final

rule in the derivation. The cases for S-Refl and S-Top are immediate. S-TVar

cannot happen (the left-hand side of the conclusion of S-TVar can only be

a variable, not an arrow); similarly, S-All cannot happen. If the final rule is

an instance of S-Arrow, the subderivations are the desired results. Finally,

556 A Solutions to Selected Exercises

suppose the last rule is an instance of S-Trans—i.e., we have Γ ` S1→S2 <: U

and Γ ` U <: T for some U. By the induction hypothesis, either U is Top (in

which case T is also Top by part (4) of the exercise and we are done) or else

U has the form U1→U2 with Γ ` U1 <: S1 and Γ ` S2 <: U2. In the latter case,

we apply the induction hypothesis again to the second subderivation of the

original S-Trans to learn that either T = Top (and we are done) or else T has

the form T1→T2 with Γ ` T1 <: U1 and Γ ` U2 <: T2. Two uses of transitivity

tell us that Γ ` T1 <: S1 and Γ ` S2 <: T2, from which the desired result

follows by S-Arrow.

26.5.1 Solution:

Γ ` S1 <: T1 Γ , X<:S1 ` S2 <: T2

Γ ` {∃X<:S1,S2} <: {∃X<:T1,T2}
(S-Some)

26.5.2 Solution: Without subtyping, there are just four:

{*Nat, {a=5,b=7}} as {∃X, {a:Nat,b:Nat}};

{*Nat, {a=5,b=7}} as {∃X, {a:X,b:Nat}};

{*Nat, {a=5,b=7}} as {∃X, {a:Nat,b:X}};

{*Nat, {a=5,b=7}} as {∃X, {a:X,b:X}};

With subtyping and bounded quantification, there are quite a few more—for

example:

{*Nat, {a=5,b=7}} as {∃X, {a:Nat}};

{*Nat, {a=5,b=7}} as {∃X, {b:X}};

{*Nat, {a=5,b=7}} as {∃X, {a:Top,b:X}};

{*Nat, {a=5,b=7}} as {∃X, Top};

{*Nat, {a=5,b=7}} as {∃X<:Nat, {a:X,b:X}};

{*Nat, {a=5,b=7}} as {∃X<:Nat, {a:Top,b:X}};

26.5.3 Solution: One way to accomplish this is to nest the reset counter ADT inside

of the counter ADT:

counterADT =

{*Nat,

{new = 1, get = λi:Nat. i, inc = λi:Nat. succ(i),

rcADT =

{*Nat,

{new = 1, get = λi:Nat. i, inc = λi:Nat. succ(i),

reset = λi:Nat. 1}}

as {∃ResetCounter<:Nat,

{new: ResetCounter, get: ResetCounter→Nat,

inc: ResetCounter→ResetCounter,

reset: ResetCounter→ResetCounter}} }}

A Solutions to Selected Exercises 557

as {∃Counter,

{new: Counter, get: Counter→Nat, inc: Counter→Counter,

rcADT:

{∃ResetCounter<:Counter,

{new: ResetCounter, get: ResetCounter→Nat,

inc: ResetCounter→ResetCounter,

reset: ResetCounter→ResetCounter}}}};

ñ counterADT : {∃Counter,

{new:Counter,get:Counter→Nat,inc:Counter→Counter,

rcADT:{∃ResetCounter<:Counter,

{new:ResetCounter,get:ResetCounter→Nat,

inc:ResetCounter→ResetCounter,

reset:ResetCounter→ResetCounter}}}}

When these packages are opened, the result is that the context in which

the remainder of the program is checked will contain type variable bind-

ings of the form Counter<:Top, counter:{...}, ResetCounter<:Counter,

resetCounter:{...}:

let {Counter,counter} = counterADT in

let {ResetCounter,resetCounter} = counter.rcADT in

counter.get

(counter.inc

(resetCounter.reset (resetCounter.inc resetCounter.new)));

ñ 2 : Nat

26.5.4 Solution: All we need to do is to add bounds in the obvious places to the

encoding from §24.3. At the level of types, we get:

{∃X<:S,T}
def
= ∀Y. (∀X<:S. T→Y) → Y.

The changes at the level of terms follow directly from this.

27.1 Solution: Here is one way:

setCounterClass =

λM<:SetCounter. λR<:CounterRep.

λself: Ref(R→M).

λr: R.

{get = λ_:Unit. !(r.x),

set = λi:Nat. r.x:=i,

inc = λ_:Unit. (!self r).set (succ((!self r).get unit))};

ñ setCounterClass : ∀M<:SetCounter.

∀R<:CounterRep.

(Ref (R→M)) → R → SetCounter

558 A Solutions to Selected Exercises

instrCounterClass =

λM<:InstrCounter.

λR<:InstrCounterRep.

λself: Ref(R→M).

λr: R.

let super = setCounterClass [M] [R] self in

{get = (super r).get,

set = λi:Nat. (r.a:=succ(!(r.a)); (super r).set i),

inc = (super r).inc,

accesses = λ_:Unit. !(r.a)};

ñ instrCounterClass : ∀M<:InstrCounter.

∀R<:InstrCounterRep.

(Ref (R→M)) → R → InstrCounter

newInstrCounter =

let m = ref (λr:InstrCounterRep. error as InstrCounter) in

let m’ =

instrCounterClass [InstrCounter] [InstrCounterRep] m in

(m := m’;

λ_:Unit. let r = {x=ref 1, a=ref 0} in m’ r);

ñ newInstrCounter : Unit → InstrCounter

28.2.3 Solution: In the T-TAbs case, we add a trivial use of S-Refl to supply the

extra premise for S-All. In the T-TApp case, the subtype inversion lemma (for

full F<:) tells us that N1 = ∀X<:N11.N12, with Γ ` T11 <: N11 and Γ , X<:T11 `

N12 <: T12. Using transitivity, we see that Γ ` T2 <: T11, which justifies using

TA-TApp to obtain Γ ñ̀ t1 [T2] : [X , T2]N12. We finish, as before, using

the preservation of subtyping under substitution (Lemma 26.4.8) to obtain

Γ ` [X, T2]N12 <: [X, T2]T12 = T.

28.5.1 Solution: Theorem 28.3.5 (in particular, the case for S-All) fails for full F<:.

28.5.6 Solution: Note, first, that bounded and unbounded quantifiers should not be

allowed to mix: there should be a subtyping rule for comparing two bounded

quantifiers and another for two unbounded quantifiers, but no rule for com-

paring a bounded to an unbounded quantifier. Otherwise we’d be right back

where we started!

For parts (1) and (2), see Katiyar and Sankar (1992) for details. For part (3),

the answer is no: adding record types with width subtyping to the restricted

system makes it undecidable again. The problem is that the empty record

type is a kind of maximal type (among record types), and it can be used to

cause divergence in the subtype checker using a modified version of Ghelli’s

A Solutions to Selected Exercises 559

example. If T = ∀X<:{}. ¬{a: ∀Y<:X. ¬Y}, then the input X0<:{a:T} `

X0 <: {a: ∀X1<:X0. ¬X1} will cause the subtype checker to diverge.

Martin Hofmann helped me work out this example. The same observation

was made by Katiyar and Sankar (1992).

28.6.3 Solution:

1. I count 9 common subtypes:

∀X<:Y′→Z. Y→Z′ ∀X<:Y′→Z. Top→Z′ ∀X<:Y′→Z. X

∀X<:Y′→Top. Y→Z′ ∀X<:Y′→Top. Top→Z′ ∀X<:Y′→Top. X

∀X<:Top. Y→Z′ ∀X<:Top. Top→Z′ ∀X<:Top. X.

2. Both ∀X<:Y′→Z. Y→Z′ and ∀X<:Y′→Z. X are lower bounds for S and T,

but these two types have no common supertype that is also a subtype of

S and T.

3. Consider S→Top and T→Top. (Or ∀X<:Y′→Z. Y→Z′ and ∀X<:Y′→Z. X.)

28.7.1 Solution: The functions RX,Γ and LX,Γ , mapping types to their least X-free

supertype and their largest X-free subtype, respectively, are defined in Fig-

ure A-2. (To avoid clutter, we elide the subscripts X and Γ .) The two definitions

have different side-conditions, since, whenever L appears, we have to check

whether it is defined (written L(T) ≠ fail), while R is always defined, thanks to

the presence of the Top type. The correctness of these definitions is proved

in Ghelli and Pierce (1998).

28.7.2 Solution: One easy way to show the undecidability of full bounded exis-

tentials (due to Ghelli and Pierce, 1998) is to give a translation [[—]] from

subtyping problems in full F<: into subtyping problems in the system with

only existentials such that Γ ` S <: T is provable in F<: iff [[Γ ` S <: T]]

is provable in the system with existentials. This encoding can be defined on

types by

[[X]] = X [[Top]] = Top

[[∀X<:T1.T2]] = ¬{∃X<:T1,¬[[T2]]} [[T1→T2]] = [[T1]]→[[T2]]

where ¬S = ∀X<:S.X. We extend it to contexts by [[X1<:T1, , . . . , Xn<:Tn]] =

X1<:[[T1]], . . . , Xn<:[[Tn]], and to subtyping statements by [[Γ ` S <: T]] =

[[Γ]] ` [[S]] <: [[T]].

29.1.1 Solution: ∀X.X→X is a proper type, with elements like λX.λx:X.x. These

terms are polymorphic functions that, when instantiated with a type T, yield

a function from T to T. By contrast, λX.X→X is a type operator—a function

560 A Solutions to Selected Exercises

R(∀Y<:S.T) =

∀Y<:S. R(T)

if X ∉ FVS

Top

if X ∈ FV(S)

R({∃Y<:S.T}) =

{∃Y<:S, R(T)}

if X ∉ FV(S)

Top

if X ∈ FV(S)

R(S→T) =

L(S)→R(T)

if L(S) ≠ fail

Top

if L(S) = fail

R(X) = T where X<:T ∈ Γ

R(Y) = Y when Y ≠ X

R(Top) = Top

L(∀Y<:S.T) =

∀Y<:S. L(T)

if L(T) ≠ fail

and X ∉ FV(S)

fail otherwise

L({∃Y<:S.T}) =

{∃Y<:S. L(T)}

if L(T) ≠ fail

and X ∉ FV(S)

fail otherwise

L(S→T) =

R(S)→ L(T)

if L(T) ≠ fail

fail

if L(T) = fail

L(X) = fail

L(Y) = Y when Y ≠ X

L(Top) = Top

Figure A-2: Minimal X-free supertype and maximal X-free subtype of a given type

that, when applied to a type T, yields the proper type T→T of functions from

T to T.

In other words, ∀X.X→X is a type whose elements are term-level functions

from types to terms; instantiating one of these (by applying it to a type,

written t [T]) yields an element of the arrow type T→T. On the other hand,

λX.X→X is itself a function (from types to types); instantiating it with a type

T (written (λX.X→X) T) yields the type T→T itself, not one of its elements.

For example, if fn has type ∀X.X→X and Op = λX.X→X, then fn [T] :

T→T = Op T.

29.1.2 Solution: Nat→Nat is a (proper) type of functions, not a function at the level

of types.

30.3 Solution: Lemma 30.3.1 is used in the T-Abs, T-TApp, and T-Eq cases. Lemma

30.3.2 is used in the T-Var case.

30.3.8 Solution: By induction on the total sizes of the given derivations, with a case

analysis on the final rules of both. If either derivation ends with QR-Refl,

then the other derivation is the desired result. If either derivation ends with

QR-Abs, QR-Arrow, or QR-All, then by the form of the rules, both deriva-

tions must end with the same rule, and the result follows by straightforward

A Solutions to Selected Exercises 561

use of the induction hypothesis. If both derivations end with QR-App, then

the result again follows by straightforward use of the induction hypothesis.

The remaining cases are more interesting.

If both derivations end with QR-AppAbs, then we have

S = (λX::K11.S12) S2 T = [X, T2]T12 U = [X, U2]U12,

with

S12 l T12 S2 l T2 S12 l U12 S2 l U2.

By the induction hypothesis, there are V12 and V2 such that

T12 l V12 T2 l V2 U12 l V12 U2 l V2.

Applying Lemma 30.3.7 twice, we obtain [X , T2]T12 l [X , V2]V12 and

[X, U2]U12 l [X, V2]V12—that is, Tl V and Ul V.

Finally, suppose one derivation (say, the first one) ends with QR-App and

the other with QR-AppAbs. In this case, we have

S = (λX::K11.S12) S2 T = (λX::K11.T
′
12) T′2 U = [X, U2]U12,

where again S12 l T12, S2 l T2, S12 l U12, and S2 l U2. Again, by the

induction hypothesis, there are V12 and V2 such that T12 l V12, T2 l V2,

U12 l V12, and U2 l V2. Applying rule QR-AppAbs to the first and second of

these and Lemma 30.3.7 to the third and fourth gives us Tl V and Ul V.

30.3.10 Solution: We first observe that we can reorganize any derivation of Sjl∗ T

so that neither symmetry nor transitivity is used in a subderivation of an

instance of the symmetry rule—that is, we can get from S to T by a sequence

of steps pasted together with QR-Trans, where each step consists of a single-

step reduction optionally followed by a single instance of symmetry. This

sequence can be visualized as follows.
·

�w� ��
����

��

��
�� ?

�'
??

??

??
??

??
??

·

�w� ��
����

��

��
��

?
�'

??
??

??
??

??
??

·

�w� �
��

�
��

��

��
��

T

S

?
�'

??
??

??
??

??
??

·

�w� ��
����

��

��
��

·

·

(arrows pointing from right to left are reductions ending with symmetry,

while left to right arrows are un-symmetrized reductions). We now use Lemma

30.3.8 repeatedly to add small diamonds to the bottom of this picture until

we reach a common reduct of S and T.

562 A Solutions to Selected Exercises

·

�w� ��
����

��

��
�� ?

�'
??

??

??
??

??
??

·

�w� ��
����

��

��
��

?
�'

??
??

??
??

??
??

·

�w� �
��

�
��

��

��
��

?
�'

T

�w�
S

?
�'

??
??

??
??

??
??

·

�w� ��
����

��

��
��

?
�'

·

�w� ?
�'

·

�w�
·

?
�'

·

�w� ?
�'

·

�w�
·

?
�'

·

�w�
·

The same argument can also be presented in a standard inductive form, with-

out appealing to pictures, but this will probably just make it harder to under-

stand without making it any more convincing.

30.3.17 Solution: If we add the first weird rule, the progress property will fail;

preservation, though, is fine. If we add the second rule, both progress and

preservation will fail.

30.3.20 Solution: Compare your solution with the sources for the fomega checker.

30.5.1 Solution: Instead of the type family FloatList n, we now have the para-

metric type family List T n, with the following operations:

nil : ∀X. FloatList X 0

cons : ∀X. Πn:Nat. X → FloatList X (succ n)

hd : ∀X. Πn:Nat. List X (succ n) → X

tl : ∀X. Πn:Nat. List X (succ n) → List X n

31.2.1 Solution:

Γ ` A <: Id B Yes

Γ ` Id A <: B Yes

Γ ` λX.X <: λX.Top Yes

Γ ` λX. ∀Y<:X. Y <: λX. ∀Y<:Top. Y No

Γ ` λX. ∀Y<:X. Y <: λX. ∀Y<:X. X Yes

Γ ` F B <: B Yes

Γ ` B <: F B No

Γ ` F B <: F B Yes

Γ ` ∀F<:(λY.Top→Y). F A <: ∀F<:(λY.Top→Y). Top→B Yes

Γ ` ∀F<:(λY.Top→Y). F A <: ∀F<:(λY.Top→Y). F B No

Γ ` Top[*⇒*] <: Top[*⇒*⇒*] No

A Solutions to Selected Exercises 563

32.5.1 Solution: The key observation is that Object M is an existential type: Object

is an abbreviation for the operator

λM::*⇒*. {∃X, {state:X, methods:M X}}

When we apply this to M we obtain a redex, which reduces to the existential

type

{∃X, {state:X, methods:M X}}.

Note that no subsumption—hence no information loss—is involved in this

transformation.

32.7.2 Solution: The minimal typing property fails for the calculus the way we have

defined it. Consider the term

{#x={a=5,b=7}}.

This can be given both of the types {#x:{a:Nat}} and {#x:{a:Nat,b:Nat}},

but these types are incomparable. One reasonable fix for this is to explicitly

annotate each invariant field in a record term with its intended type. This

effectively gives the programmer the responsibility of choosing between the

two types above.

32.5.2 Solution:

sendget =

λM<:CounterM. λo:Object M.

let {X, b} = o in b.methods.get(b.state);

sendreset =

λM<:ResetCounterM. λo:Object M.

let {X, b} = o in

{*X,

{state = b.methods.reset(b.state),

methods = b.methods}} as Object M;

32.9.1 Solution:

MyCounterM =

λR. {get: R→Nat, set:R→Nat→R, inc:R→R, accesses:R→Nat,

backup:R→R, reset:R→R};

MyCounterR = {#x:Nat,#count:Nat,#old:Nat};

myCounterClass =

λR<:MyCounterR.

564 A Solutions to Selected Exercises

λself: Unit→MyCounterM R.

λ_:Unit.

let super = instrCounterClass [R] self unit in

{get = super.get,

set = super.set,

inc = super.inc,

accesses = super.accesses,

reset = λs:R. s←x=s.old,

backup = λs:R. s←old=s.x}

as MyCounterM R;

mc = {*MyCounterR,

{state = {#x=0,#count=0,#old=0},

methods = fix (myCounterClass [MyCounterR]) unit}}

as Object MyCounterM;

sendget [MyCounterM]

(sendreset [MyCounterM] (sendinc [MyCounterM] mc));

“My dear Watson, try a little analysis yourself,” said he, with a touch of im-

patience. “You know my methods. Apply them, and it will be instructive to

compare results.” —A. Conan Doyle, The Sign of the Four (1890)

How to put it impeccably may be left as an exercise for the reader. I avail

myself here of a favorite ploy by which mathematicians spare themselves

sticky patches of exposition. —W. v. O. Quine (1987)

B Notational Conventions

B.1 Metavariable Names

In text In ML code Usage

p, q, r, s, t, u s, t terms

x, y, z x, y term variables

v, w v, w values

nv nv numeric values

l, j, k l record/variant field labels

µ store stores

M, N, P, Q, S, T, U, V tyS, tyT types

A, B, C tyA, tyB base types

Σ store typings

X, Y, Z tyX, tyY type variables

K, L kK, kL kinds

σ substitutions

Γ , ∆ ctx contexts

J arbitrary statements

D typing derivations

C subtyping derivations

fi file position information

i, j , k, l numeric subscripts

B.2 Rule Naming Conventions

Prefix Usage

B- big-step evaluation

CT- constraint typing

E- evaluation

566 B Notational Conventions

Prefix Usage

K- kinding

M- matching

P- pattern typing

Q- type equivalence

QR- parallel reduction of types

S- subtyping

SA- algorithmic subtyping

T- typing

TA- algorithmic typing

XA- exposure

B.3 Naming and Subscripting Conventions

The choice of metavariable names, numeric subscripts, and primes is guided

throughout the book by the following principles:

1. In syntax definitions, the bare metavariable t is used for all terms, T for

types, v for values, etc.

2. In typing rules, the main term (the one whose type is being calculated) is

always called t, and its subterms are named t1, t2, etc. (Occasionally—e.g.,

in reduction rules—we need names for subterms of subterms; for these we

use t11, t12, etc.)

3. In evaluation rules, the whole term being reduced is called t and the term

it reduces to is t′.

4. The type of a term t is called T. (Similarly, the type of a subterm t1 is T1,

etc.)

5. The same conventions are used when stating and proving theorems, except

that t is sometimes replaced by s (and T by S or R, etc.) to avoid name

clashes between definitions and theorems.

There are a few cases where these rules cannot all be satisfied at the same

time. In such cases, the earlier ones are given priority. (For example, in the

rule T-Proj1 in Figure 11-5, rule 4 is relaxed: the type of the subterm t1 is

T1×T2.) The rules are ignored completely in a very small number of cases (for

example, the record projection rule T-Proj in Figure 11-7) where following

them would yield unacceptably ugly or unreadable results.

References

Abadi, Martín. Secrecy by typing in security protocols. Journal of the ACM, 46(5):

749–786, September 1999. Summary in Theoretical Aspects of Computer Software

(TACS), Sendai, Japan, 1997; volume 1281 of Springer LNCS.

Abadi, Martín, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of

dependency. In ACM Symposium on Principles of Programming Languages (POPL),

San Antonio, Texas, pages 147–160, 1999.

Abadi, Martín and Luca Cardelli. On subtyping and matching. In European Conference

on Object-Oriented Programming (ECOOP), pages 145–167, 1995.

Abadi, Martín and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

Abadi, Martín, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymor-

phism. Theoretical Computer Science, 121(1–2):9–58, 6 December 1993. Summary

in ACM Symposium on Principles of Programming Languages (POPL), Charleston,

South Carolina, 1993.

Abadi, Martín, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit sub-

stitutions. Journal of Functional Programming, 1(4):375–416, 1991a. Summary in

ACM Symposium on Principles of Programming Languages (POPL), San Francisco,

California, 1990.

Abadi, Martín, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing

in a statically typed language. ACM Transactions on Programming Languages and

Systems, 13(2):237–268, April 1991b. Summary in ACM Symposium on Principles

of Programming Languages (POPL), Austin, Texas, 1989.

Abadi, Martín, Luca Cardelli, Benjamin Pierce, and Didier Rémy. Dynamic typing in

polymorphic languages. Journal of Functional Programming, 5(1):111–130, January

1995. Summary in ACM SIGPLAN Workshop on ML and its Applications, June 1992.

Abadi, Martín, Luca Cardelli, and Ramesh Viswanathan. An interpretation of objects

and object types. In ACM Symposium on Principles of Programming Languages

(POPL), St. Petersburg Beach, Florida, pages 396–409, 1996.

568 References

Abadi, Martín and Marcelo P. Fiore. Syntactic considerations on recursive types. In

Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, LICS

’96, pages 242–252. IEEE Computer Society Press, Los Alamitos, CA, July 1996.

Abelson, Harold and Gerald Sussman. Structure and Interpretation of Computer Pro-

grams. MIT Press, New York, 1985. Second edition, 1996.

Abramsky, Samson, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for

pcf. Information and Computation, 163(2):409–470, December 2000.

Aczel, Peter. An introduction to inductive definitions. In Jon Barwise, editor, Hand-

book of Mathematical Logic, number 90 in Studies in Logic and the Foundations of

Mathematics, pages 739–782. North Holland, 1977.

Aczel, Peter. Non-Well-Founded Sets. Stanford Center for the Study of Language and

Information, 1988. CSLI Lecture Notes number 14.

Agesen, Ole, Stephen N. Freund, and John C. Mitchell. Adding type parameterization

to the Java language. In ACM Symposium on Object Oriented Programming: Sys-

tems, Languages, and Applications (OOPSLA), pages 49–65, Atlanta, GA, October

1997.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, Reading, MA, USA, 1986.

Aiken, Alexander and Edward L. Wimmers. Type inclusion constraints and type infer-

ence. In ACM Symposium on Functional Programming Languages and Computer

Architecture (FPCA), pages 31–41, 1993.

Amadio, Roberto M. and Luca Cardelli. Subtyping recursive types. ACM Transac-

tions on Programming Languages and Systems, 15(4):575–631, 1993. Summary

in ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pp. 104–118; also DEC/Compaq Systems Research Center Research Report

number 62, August 1990.

Appel, Andrew W. Modern Compiler Implementation in ML. Cambridge University

Press, 1998.

Appel, Andrew W. and Marcelo J. R. Gonçalves. Hash-consing garbage collection.

Technical Report CS-TR-412-93, Princeton University, Computer Science Depart-

ment, 1993.

Arbib, Michael and Ernest Manes. Arrows, Structures, and Functors: The Categorical

Imperative. Academic Press, 1975.

Ariola, Zena M., Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler.

A call-by-need lambda calculus. In ACM Symposium on Principles of Programming

Languages (POPL), San Francisco, California, pages 233–246, January 1995.

Arnold, Ken and James Gosling. The Java Programming Language. Addison Wesley,

1996.

Arnold, Ken, Ann Wollrath, Bryan O’Sullivan, Robert Scheifler, and Jim Waldo. The

Jini specification. Addison-Wesley, Reading, MA, USA, 1999.

References 569

Asperti, Andrea and Giuseppe Longo. Categories, Types, and Structures: An Introduc-

tion to Category Theory for the Working Computer Scientist. MIT Press, 1991.

Aspinall, David. Subtyping with singleton types. In Computer Science Logic (CSL),

Kazimierz, Poland, pages 1–15. Springer-Verlag, 1994.

Aspinall, David and Adriana Compagnoni. Subtyping dependent types. Information

and Computation, 266(1–2):273–309, September 2001. Preliminary version in IEEE

Symposium on Logic in Computer Science (LICS), 1996.

Astesiano, Egidio. Inductive and operational semantics. In E. J. Neuhold and M. Paul,

editors, Formal Description of Programming Concepts, IFIP State-of-the-Art Re-

ports, pages 51–136. Springer-Verlag, 1991.

Augustsson, Lennart. A compiler for Lazy ML. In ACM Symposium on Lisp and Func-

tional Programming (LFP), Austin, Texas, pages 218–227, August 1984.

Augustsson, Lennart. Cayenne — a language with dependent types. In International

Conference on Functional Programming (ICFP), Baltimore, Maryland, USA, pages

239–250, 1998.

Baader, Franz and Tobias Nipkow. Term Rewriting and All That. Cambridge Univer-

sity Press, 1998.

Baader, Franz and Jörg Siekmann. Unification theory. In D. M. Gabbay, C. J. Hog-

ger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and

Logic Programming, volume 2, Deduction Methodologies, pages 41–125. Oxford

University Press, Oxford, UK, 1994.

Backus, John. Can programming be liberated from the von Neumann style? A func-

tional style and its algebra of programs. Communications of the ACM, 21(8):613–

641, August 1978. Reproduced in Selected Reprints on Dataflow and Reduction

Architectures, ed. S. S. Thakkar, IEEE, 1987, pp. 215–243, and in ACM Turing Award

Lectures: The First Twenty Years, ACM Press, 1987, pp. 63–130.

Backus, John. The history of Fortran I, II, and III. In Wexelblat, editor, History of

Programming Languages, pages 25–45. Academic Press, 1981.

Bainbridge, E. Stewart, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial

polymorphism. Theoretical Computer Science, 70(1):35–64, 1990. Corrigendum in

TCS 71(3), 431.

Baldan, Paolo, Giorgio Ghelli, and Alessandra Raffaetà. Basic theory of F-bounded

quantification. Information and Computation, 153(1):173–237, 1999.

Barendregt, Henk P. The Lambda Calculus. North Holland, revised edition, 1984.

Barendregt, Henk P. Functional programming and lambda calculus. In Jan van

Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B, chapter 7,

pages 321–364. Elsevier / MIT Press, 1990.

Barendregt, Henk P. Introduction to generalized type systems. Journal of Functional

Programming, 1(2):125–154, 1991.

570 References

Barendregt, Henk P. Lambda calculi with types. In Abramsky, Gabbay, and Maibaum,

editors, Handbook of Logic in Computer Science, volume II. Oxford University Press,

1992.

Barras, Bruno, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe

Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan

Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saibi, and Benjamin

Werner. The Coq proof assistant reference manual : Version 6.1. Technical Report

RT-0203, Inria (Institut National de Recherche en Informatique et en Automatique),

France, 1997.

Barwise, Jon and Lawrence Moss. Vicious Circles: On the Mathematics of Non-

wellfounded Phenomena. Cambridge University Press, 1996.

Berardi, Stefano. Towards a mathematical analysis of the Coquand-Huet calculus

of constructions and the other systems in Barendregt’s cube. Technical report,

Department of Computer Science, CMU, and Dipartimento Matematica, Universita

di Torino, 1988.

Berger, Ulrich. Program extraction from normalization proofs. In Marc Bezem and

Jan Friso Groote, editors, Typed Lambda Calculi and Applications, number 664

in Lecture Notes in Computer Science, pages 91–106, Utrecht, The Netherlands,

March 1993. Springer-Verlag.

Berger, Ulrich and Helmut Schwichtenberg. An inverse of the evaluation functional

for typed λ-calculus. In Gilles Kahn, editor, IEEE Symposium on Logic in Com-

puter Science (LICS), pages 203–211, Amsterdam, The Netherlands, July 1991. IEEE

Computer Society Press.

Birtwistle, Graham M., Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. Simula

Begin. Studentlitteratur (Lund, Sweden), Bratt Institut fuer neues Lernen (Goch,

FRG), Chartwell-Bratt Ltd (Kent, England), 1979.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor

Kiczales, and David A. Moon. Common Lisp Object System specification X3J13

document 88-002R. SIGPLAN Notices, 23, 1988.

Boehm, Hans-J. Partial polymorphic type inference is undecidable. In 26th Annual

Symposium on Foundations of Computer Science, pages 339–345. IEEE, October

1985.

Boehm, Hans-J. Type inference in the presence of type abstraction. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

Portland, Oregon, pages 192–206, June 1989.

Böhm, Corrado and Alessandro Berarducci. Automatic synthesis of typed Λ-

programs on term algebras. Theoretical Computer Science, 39(2–3):135–154, Au-

gust 1985.

Bono, Viviana and Kathleen Fisher. An imperative first-order calculus with object ex-

tension. In European Conference on Object-Oriented Programming (ECOOP), 1998.

References 571

Bono, Viviana, Amit J. Patel, and Vitaly Shmatikov. A core calculus of classes and

mixins. In European Conference on Object-Oriented Programming (ECOOP), volume

1628 of Lecture Notes in Computer Science, pages 43–66. Springer-Verlag, June

1999a.

Bono, Viviana, Amit J. Patel, Vitaly Shmatikov, and John C. Mitchell. A core calculus

of classes and objects. In Fifteenth Conference on the Mathematical Foundations of

Programming Semantics, April 1999b.

Bracha, Gilad, Martin Odersky, David Stoutamire, and Philip Wadler. Making the fu-

ture safe for the past: Adding genericity to the Java programming language. In

Craig Chambers, editor, ACM Symposium on Object Oriented Programming: Sys-

tems, Languages, and Applications (OOPSLA), ACM SIGPLAN Notices volume 33

number 10, pages 183–200, Vancouver, BC, October 1998.

Braithwaite, Richard B. The Foundations of Mathematics: Collected Papers of Frank P.

Ramsey. Routledge and Kegan Paul, London, 1931.

Brandt, Michael and Fritz Henglein. Coinductive axiomatization of recursive type

equality and subtyping. In Roger Hindley, editor, Proc. 3d Int’l Conf. on Typed

Lambda Calculi and Applications (TLCA), Nancy, France, April 2–4, 1997, volume

1210 of Lecture Notes in Computer Science (LNCS), pages 63–81. Springer-Verlag,

April 1997. Full version in Fundamenta Informaticae, Vol. 33, pp. 309–338, 1998.

Breazu-Tannen, Val, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance

as implicit coercion. Information and Computation, 93:172–221, 1991. Also in Carl

A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Pro-

gramming: Types, Semantics, and Language Design (MIT Press, 1994).

Bruce, Kim B. The equivalence of two semantic definitions for inheritance in object-

oriented languages. In Proceedings of Mathematical Foundations of Programming

Semantics, Pittsburgh, PA, March 1991.

Bruce, Kim B. A paradigmatic object-oriented programming language: Design, static

typing and semantics. Journal of Functional Programming, 4(2), April 1994.

Summary in ACM Symposium on Principles of Programming Languages (POPL),

Charleston, South Carolina, under the title “Safe type checking in a statically typed

object-oriented programming language”.

Bruce, Kim B. Foundations of Object-Oriented Languages: Types and Semantics. MIT

Press, 2002.

Bruce, Kim B., Luca Cardelli, Giuseppe Castagna, the Hopkins Objects Group

(Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens, and Benjamin

Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221–242,

1996.

Bruce, Kim B., Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.

Information and Computation, 155(1/2):108–133, November 1999. Special issue

of papers from Theoretical Aspects of Computer Software (TACS 1997). An earlier

version appeared as an invited lecture in the Third International Workshop on

Foundations of Object Oriented Languages (FOOL 3), July 1996.

572 References

Bruce, Kim B. and Giuseppe Longo. A modest model of records, inheritance, and

bounded quantification. Information and Computation, 87:196–240, 1990. Also

in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-

Oriented Programming: Types, Semantics, and Language Design (MIT Press, 1994).

An earlier version appeared in the proceedings of the IEEE Symposium on Logic in

Computer Science, 1988.

Bruce, Kim B. and John Mitchell. PER models of subtyping, recursive types and higher-

order polymorphism. In ACM Symposium on Principles of Programming Languages

(POPL), Albuquerque, New Mexico, January 1992.

Bruce, Kim B., Leaf Petersen, and Adrian Fiech. Subtyping is not a good “match” for

object-oriented languages. In European Conference on Object-Oriented Program-

ming (ECOOP), volume 1241 of Lecture Notes in Computer Science, pages 104–127.

Springer-Verlag, 1997.

Buneman, Peter and Benjamin Pierce. Union types for semistructured data. In Internet

Programming Languages. Springer-Verlag, September 1998. Proceedings of the

International Database Programming Languages Workshop. LNCS 1686.

Burstall, Rod and Butler Lampson. A kernel language for abstract data types and

modules. In G. Kahn, D. MacQueen, and G. Plotkin, editors, Semantics of Data

Types, volume 173 of Lecture Notes in Computer Science, pages 1–50. Springer-

Verlag, 1984.

Burstall, Rod M. Proving properties of programs by structural induction. The Com-

puter Journal, 12(1):41–48, 1969.

Canning, Peter, William Cook, Walt Hill, and Walter Olthoff. Interfaces for strongly-

typed object-oriented programming. In ACM Symposium on Object Oriented

Programming: Systems, Languages, and Applications (OOPSLA), pages 457–467,

1989a.

Canning, Peter, William Cook, Walter Hill, Walter Olthoff, and John Mitchell. F-

bounded quantification for object-oriented programming. In ACM Symposium

on Functional Programming Languages and Computer Architecture (FPCA), pages

273–280, September 1989b.

Canning, Peter, Walt Hill, and Walter Olthoff. A kernel language for object-oriented

programming. Technical Report STL-88-21, Hewlett-Packard Labs, 1988.

Cardelli, Luca. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and

G. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Com-

puter Science, pages 51–67. Springer-Verlag, 1984. Full version in Information and

Computation, 76(2/3):138–164, 1988.

Cardelli, Luca. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robi-

net, editors, Combinators and Functional Programming Languages, pages 21–47.

Springer-Verlag, 1986. Lecture Notes in Computer Science No. 242.

Cardelli, Luca. Basic polymorphic typechecking. Science of Computer Programming, 8

(2):147–172, April 1987. An earlier version appeared in the Polymorphism Newslet-

ter, January, 1985.

References 573

Cardelli, Luca. Structural subtyping and the notion of power type. In ACM Symposium

on Principles of Programming Languages (POPL), San Diego, California, pages 70–

79, January 1988a.

Cardelli, Luca. Typechecking dependent types and subtypes. In M. Boscarol, L. Car-

lucci Aiello, and G. Levi, editors, Foundations of Logic and Functional Programming,

Workshop Proceedings, Trento, Italy, (Dec. 1986), volume 306 of Lecture Notes in

Computer Science, pages 45–57. Springer-Verlag, 1988b.

Cardelli, Luca. Notes about Fω<:. Unpublished manuscript, October 1990.

Cardelli, Luca. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal

Description of Programming Concepts. Springer-Verlag, 1991. An earlier version

appeared as DEC/Compaq Systems Research Center Research Report #45, Febru-

ary 1989.

Cardelli, Luca. Extensible records in a pure calculus of subtyping. Research report 81,

DEC/Compaq Systems Research Center, January 1992. Also in Carl A. Gunter

and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:

Types, Semantics, and Language Design (MIT Press, 1994).

Cardelli, Luca. An implementation of F<:. Research report 97, DEC/Compaq Systems

Research Center, February 1993.

Cardelli, Luca. Type systems. In Allen B. Tucker, editor, Handbook of Computer

Science and Engineering. CRC Press, 1996.

Cardelli, Luca, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg

Nelson. Modula-3 report (revised). Research report 52, DEC/Compaq Systems Re-

search Center, November 1989.

Cardelli, Luca and Xavier Leroy. Abstract types and the dot notation. In Proceedings

of the IFIP TC2 Working Conference on Programming Concepts and Methods. North

Holland, 1990. Also appeared as DEC/Compaq SRC technical report 56.

Cardelli, Luca and Giuseppe Longo. A semantic basis for Quest. Journal of Func-

tional Programming, 1(4):417–458, October 1991. Summary in ACM Conference

on Lisp and Functional Programming, June 1990. Also available as DEC/Compaq

SRC Research Report 55, Feb. 1990.

Cardelli, Luca, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension

of System F with subtyping. Information and Computation, 109(1–2):4–56, 1994.

Summary in TACS ’91 (Sendai, Japan, pp. 750–770).

Cardelli, Luca and John Mitchell. Operations on records. Mathematical Structures in

Computer Science, 1:3–48, 1991. Also in Carl A. Gunter and John C. Mitchell, ed-

itors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and

Language Design (MIT Press, 1994); available as DEC/Compaq Systems Research

Center Research Report #48, August, 1989, and in the proceedings of MFPS ’89,

Springer LNCS volume 442.

Cardelli, Luca and Peter Wegner. On understanding types, data abstraction, and poly-

morphism. Computing Surveys, 17(4):471–522, December 1985.

574 References

Cardone, Felice. Relational semantics for recursive types and bounded quantification.

In Proceedings of the Sixteenth International Colloquium on Automata, Languages,

and Programming, volume 372 of Lecture Notes in Computer Science, pages 164–

178, Stresa, Italy, July 1989. Springer-Verlag.

Cardone, Felice and Mario Coppo. Type inference with recursive types: Syntax and

semantics. Information and Computation, 92(1):48–80, 1991.

Cartwright, Robert and Guy L. Steele, Jr. Compatible genericity with run-time types

for the Java programming language. In Craig Chambers, editor, ACM Symposium

on Object Oriented Programming: Systems, Languages, and Applications (OOPSLA),

Vancouver, British Columbia, SIGPLAN Notices 33(10), pages 201–215. ACM, Octo-

ber 1998.

Castagna, Giuseppe. Object-Oriented Programming: A Unified Foundation. Springer-

Verlag, 1997.

Castagna, Giuseppe, Giorgio Ghelli, and Giuseppe Longo. A calculus for over-

loaded functions with subtyping. Information and Computation, 117(1):115–135,

15 February 1995. preliminary version in LISP and Functional Programming,

July 1992 (pp. 182–192), and as Rapport de Recherche LIENS-92-4, Ecole Normale

Supérieure, Paris.

Chambers, Craig. Object-oriented multi-methods in Cecil. In European Conference on

Object-Oriented Programming (ECOOP), pages 33–56, 1992.

Chambers, Craig. The Cecil language: Specification and rationale. Technical report,

University of Washington, March 1993.

Chambers, Craig and Gary Leavens. Type-checking and modules for multi-methods.

In ACM Symposium on Object Oriented Programming: Systems, Languages, and

Applications (OOPSLA), October 1994. SIGPLAN Notices 29(10).

Chen, Gang and Giuseppe Longo. Subtyping parametric and dependent types. In Ka-

mareddine et al., editor, Type Theory and Term Rewriting, September 1996. Invited

lecture.

Chirimar, Jawahar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a com-

putational interpretation of linear logic. Journal of Functional Programming, 6(2):

195–244, March 1996.

Church, Alonzo. An unsolvable problem of elementary number theory. American

Journal of Mathematics, 58:354–363, 1936.

Church, Alonzo. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56–68, 1940.

Church, Alonzo. The Calculi of Lambda Conversion. Princeton University Press, 1941.

Clement, Dominique, Joelle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A

simple applicative language: Mini-ML. In ACM Conference on LISP and Functional

Programming, pages 13–27, 1986.

References 575

Clinger, William, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level

semantic algebra. In John Reynolds and Maurice Nivat, editors, Algebraic Methods

in Semantics, pages 237–250. Cambridge University Press, 1985.

Colazzo, Dario and Giorgio Ghelli. Subtyping recursive types in Kernel Fun. In 14th

Symposium on Logic in Computer Science (LICS’99), pages 137–146. IEEE, July 1999.

Compagnoni, Adriana and Healfdene Goguen. Decidability of higher-order

subtyping via logical relations, December 1997a. Manuscript, available at

ftp://www.dcs.ed.ac.uk/pub/hhg/hosdec.ps.gz.

Compagnoni, Adriana and Healfdene Goguen. Typed operational semantics for

higher order subtyping. Technical Report ECS-LFCS-97-361, University of Edin-

burgh, July 1997b.

Compagnoni, Adriana B. Decidability of higher-order subtyping with intersection

types. In Computer Science Logic, September 1994. Kazimierz, Poland. Springer

Lecture Notes in Computer Science 933, June 1995. Also available as University

of Edinburgh, LFCS technical report ECS-LFCS-94-281, titled “Subtyping in Fω
∧

is

decidable”.

Compagnoni, Adriana B. and Benjamin C. Pierce. Intersection types and multiple

inheritance. Mathematical Structures in Computer Science, 6(5):469–501, October

1996. Preliminary version available as University of Edinburgh technical report

ECS-LFCS-93-275 and Catholic University Nijmegen computer science technical re-

port 93-18, Aug. 1993, under the title “Multiple Inheritance via Intersection Types”.

Constable, Robert L. Types in computer science, philosophy, and logic. In Samuel R.

Buss, editor, Handbook of Proof Theory, volume 137 of Studies in logic and the

foundations of mathematics, pages 683–786. Elsevier, 1998.

Constable et al., Robert L. Implementing Mathematics with the NuPRL Proof Develop-

ment System. Prentice–Hall, Englewood Cliffs, NJ, 1986.

Cook, William. Object-oriented programming versus abstract data types. In J. W.

de Bakker et al., editors, Foundations of Object-Oriented Languages, volume 489 of

Lecture Notes in Computer Science, pages 151–178. Springer-Verlag, 1991.

Cook, William and Jens Palsberg. A denotational semantics of inheritance and its

correctness. In ACM Symposium on Object Oriented Programming: Systems, Lan-

guages, and Applications (OOPSLA), pages 433–444, 1989.

Cook, William R. A Denotational Semantics of Inheritance. PhD thesis, Brown Univer-

sity, 1989.

Cook, William R., Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping.

In ACM Symposium on Principles of Programming Languages (POPL), San Fran-

cisco, California, pages 125–135, January 1990. Also in Carl A. Gunter and John

C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,

Semantics, and Language Design (MIT Press, 1994).

Coppo, Mario and Mariangiola Dezani-Ciancaglini. A new type-assignment for λ-

terms. Archiv Math. Logik, 19:139–156, 1978.

576 References

Coppo, Mario, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional charac-

terization of some semantic equalities inside λ-calculus. In Hermann A. Maurer,

editor, Proceedings of the 6th Colloquium on Automata, Languages and Program-

ming, volume 71 of LNCS, pages 133–146, Graz, Austria, July 1979. Springer.

Coquand, Thierry. Une Théorie des Constructions. PhD thesis, University Paris VII,

January 1985.

Coquand, Thierry and Gérard Huet. The Calculus of Constructions. Information and

Computation, 76(2/3):95–120, February/March 1988.

Courcelle, Bruno. Fundamental properties of infinite trees. Theoretical Computer

Science, 25:95–169, 1983.

Cousineau, Guy and Michel Mauny. The Functional Approach to Programming. Cam-

bridge University Press, 1998.

Crary, Karl. Sound and complete elimination of singleton kinds. Technical Report

CMU-CS-00-104, Carnegie Mellon University, School of Computer Science, January

2000.

Crary, Karl, Robert Harper, and Derek Dreyer. A type system for higher-order mod-

ules. In ACM Symposium on Principles of Programming Languages (POPL), Port-

land, Oregon, 2002.

Crary, Karl, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

pages 50–63, May 1999.

Crary, Karl, Stephanie Weirich, and J. Gregory Morrisett. Intensional polymorphism

in type-erasure semantics. In International Conference on Functional Programming

(ICFP), Baltimore, Maryland, USA, pages 301–312, 1998.

Crole, Roy. Categories for Types. Cambridge University Press, 1994.

Curien, Pierre-Louis and Giorgio Ghelli. Subtyping + extensionality: Confluence of βη-

reductions in F≤. In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer

Software (Sendai, Japan), number 526 in Lecture Notes in Computer Science, pages

731–749. Springer-Verlag, September 1991.

Curien, Pierre-Louis and Giorgio Ghelli. Coherence of subsumption: Minimum typing

and type-checking in F≤. Mathematical Structures in Computer Science, 2:55–91,

1992. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of

Object-Oriented Programming: Types, Semantics, and Language Design (MIT Press,

1994).

Curry, Haskell B. and Robert Feys. Combinatory Logic, volume 1. North Holland,

1958. Second edition, 1968.

Damas, Luis and Robin Milner. Principal type schemes for functional programs. In

ACM Symposium on Principles of Programming Languages (POPL), Albuquerque,

New Mexico, pages 207–212, 1982.

References 577

Danvy, Olivier. Type-directed partial evaluation. In John Hatcliff, Torben Æ. Mo-

gensen, and Peter Thiemann, editors, Partial Evaluation – Practice and Theory;

Proceedings of the 1998 DIKU Summer School, number 1706 in Lecture Notes in

Computer Science, pages 367–411, Copenhagen, Denmark, July 1998. Springer-

Verlag.

Davey, Brian A. and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, 1990.

Davies, Rowan. A refinement-type checker for Standard ML. In International Confer-

ence on Algebraic Methodology and Software Technology, volume 1349 of Lecture

Notes in Computer Science. Springer-Verlag, 1997.

Davies, Rowan and Frank Pfenning. A modal analysis of staged computation. In ACM

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 258–270, 1996.

de Bruijn, Nicolas G. Lambda-calculus notation with nameless dummies: a tool for

automatic formula manipulation with application to the Church-Rosser theorem.

Indag. Math., 34(5):381–392, 1972.

de Bruijn, Nicolas G. A survey of the project AUTOMATH. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus,

and Formalism, pages 589–606. Academic Press, 1980.

De Millo, Richard A., Richard J. Lipton, and Alan J. Perlis. Social processes and proofs

of theorems and programs. Communications of the ACM, 22(5):271–280, May 1979.

An earlier version appeared in ACM Symposium on Principles of Programming Lan-

guages (POPL), Los Angeles, California, 1977 pp. 206–214.

Detlefs, David L., K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static

checking. Technical Report 159, Compaq Systems Research Center (SRC), 1998.

Also see http://research.compaq.com/SRC/esc/overview.html.

Donahue, James and Alan Demers. Data types are values. ACM Transactions on

Programming Languages and Systems, 7(3):426–445, July 1985.

Dowek, Gilles, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unification via

explicit substitutions: The case of higher-order patterns. In M. Maher, editor, Pro-

ceedings of the Joint International Conference and Symposium on Logic Program-

ming, pages 259–273, Bonn, Germany, September 1996. MIT Press.

Drossopoulou, Sophia, Susan Eisenbach, and Sarfraz Khurshid. Is the Java Type Sys-

tem Sound? Theory and Practice of Object Systems, 7(1):3–24, 1999. Summary in

European Conference on Object-Oriented Programming (ECOOP), 1997.

Duggan, Dominic and Adriana Compagnoni. Subtyping for object type constructors.

In Workshop on Foundations of Object-Oriented Languages (FOOL), informal pro-

ceedings, January 1999.

Dybvig, R. Kent. The Scheme Programming Language. Prentice-Hall, Inc., En-

glewood Cliffs, New Jersey, second edition, 1996. Available electronically at

http://www.scheme.com/tspl2d/.

578 References

Eidorff, Peter, Fritz Henglein, Christian Mossin, Henning Niss, Morten Heine B.

Sørensen, and Mads Tofte. AnnoDomini in practice: A type-theoretic approach

to the Year 2000 problem. In Jean-Yves Girard, editor, Proc. Symposium on Typed

Lambda Calculus and Applications (TLCA), volume 1581 of Lecture Notes in Com-

puter Science, pages 6–13, L’Aquila, Italy, April 1999. Springer-Verlag.

Eifrig, Jonathan, Scott Smith, and Valery Trifonov. Type inference for recursively con-

strained types and its application to OOP. In Proceedings of the 1995 Mathematical

Foundations of Programming Semantics Conference, volume 1 of Electronic Notes

in Theoretical Computer Science. Elsevier, 1995.

Feinberg, Neal, Sonya E. Keene, Robert O. Mathews, and P. Tucker Withington. The

Dylan Programming Book. Addison-Wesley Longman, Reading, Mass., 1997.

Felleisen, Matthias and Daniel P. Friedman. A Little Java, A Few Patterns. MIT Press,

Cambridge, Massachusetts, 1998.

Felty, Amy, Elsa Gunter, John Hannan, Dale Miller, Gopalan Nadathur, and Andre

Scedrov. Lambda prolog: An extended logic programming language. In E. Lusk; R.

Overbeek, editor, Proceedings on the 9th International Conference on Automated

Deduction, volume 310 of LNCS, pages 754–755, Berlin, May 1988. Springer.

Filinski, Andrzej. A semantic account of type-directed partial evaluation. In Gopalan

Nadathur, editor, Proceedings of the International Conference on Principles and

Practice of Declarative Programming, number 1702 in Lecture Notes in Computer

Science, pages 378–395, Paris, France, September 1999. Springer-Verlag. Extended

version available as technical report BRICS RS-99-17.

Filinski, Andrzej. Normalization by evaluation for the computational lambda-

calculus. In Samson Abramsky, editor, Typed Lambda Calculi and Applications, 5th

International Conference, TLCA 2001, number 2044 in Lecture Notes in Computer

Science, pages 151–165, Kraków, Poland, May 2001. Springer-Verlag.

Fisher, Kathleen. Classes = objects + data abstraction. In Kim Bruce and Giuseppe

Longo, editors, Workshop on Foundations of Object-Oriented Languages (FOOL),

informal proceedings, July 1996a. Invited talk. Also available as Stanford University

Technical Note STAN-CS-TN-96-31.

Fisher, Kathleen. Type Systems for object-oriented programming languages. PhD

thesis, Stanford University, 1996b. STAN-CS-TR-98-1602.

Fisher, Kathleen, Furio Honsell, and John C. Mitchell. A lambda calculus of objects

and method specialization. Nordic J. Computing (formerly BIT), 1:3–37, 1994. Sum-

mary in Proc. IEEE Symp. on Logic in Computer Science, 1993, 26–38.

Fisher, Kathleen and John Mitchell. The development of type systems for object-

oriented languages. Theory and Practice of Object Systems, 1(3):189–220, 1996.

Fisher, Kathleen and John C. Mitchell. On the relationship between classes, objects,

and data abstraction. Theory and Practice of Object Systems, 4(1):3–25, 1998.

Fisher, Kathleen and John H. Reppy. The design of a class mechanism for Moby.

In SIGPLAN Conference on Programming Language Design and Implementation

(PDLI), pages 37–49, 1999.

References 579

Flanagan, Cormac and Matthias Felleisen. Componential set-based analysis. ACM

SIGPLAN Notices, 32(5):235–248, May 1997.

Flatt, Matthew and Matthias Felleisen. Units: Cool modules for HOT languages. In

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), Montreal, Canada, pages 236–248, 1998.

Flatt, Matthew, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins.

In ACM Symposium on Principles of Programming Languages (POPL), San Diego,

California, January 1998a.

Flatt, Matthew, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s re-

duction semantics for classes and mixins. Technical Report TR97-293, Computer

Science Department, Rice University, February 1998b. Corrected June, 1999.

Freeman, Tim and Frank Pfenning. Refinement types for ML. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), Toronto,

Ontario, June 1991.

Frege, Gottlob. Begriffschrift, eine der arithmetischen nachgebildete Formelsprache

des reinen Denkens. Halle: L. Nebert, 1879. Available in several translations.

Friedman, Daniel P. and Matthias Felleisen. The Little Schemer. MIT Press, 1996.

Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes. Essentials of Program-

ming Languages. McGraw-Hill Book Co., New York, N.Y., second edition, 2001.

Friedman, Harvey. Equality between functionals. In Rohit Parikh, editor, Logic Col-

loquium, volume 453 of Lecture Notes in Mathematics, pages 22–37, Berlin, 1975.

Springer-Verlag.

Gallier, Jean. On Girard’s “Candidats de reductibilité”. In Piergiorgio Odifreddi, ed-

itor, Logic and Computer Science, number 31 in APIC Studies in Data Processing,

pages 123–203. Academic Press, 1990.

Gallier, Jean. Constructive logics. Part I: A tutorial on proof systems and typed λ-

calculi. Theoretical Computer Science, 110(2):249–339, March 1993.

Gandy, Robin O. The simple theory of types. In Logic Colloquium 76, volume 87 of

Studies in Logic and the Foundations of Mathematics, pages 173–181. North Hol-

land, 1976.

Gapeyev, Vladimir, Michael Levin, and Benjamin Pierce. Recursive subtyping revealed.

In International Conference on Functional Programming (ICFP), Montreal, Canada,

2000. To appear in Journal of Functional Programming.

Garrigue, Jaques and Hassan Aït-Kaci. The typed polymorphic label-selective lambda-

calculus. In ACM Symposium on Principles of Programming Languages (POPL),

Portland, Oregon, pages 35–47, 1994.

Garrigue, Jaques and Didier Rémy. Extending ML with semi-explicit polymorphism.

In Martín Abadi and Takayasu Ito, editors, International Symposium on Theoretical

Aspects of Computer Software (TACS), Sendai, Japan, pages 20–46. Springer-Verlag,

September 1997.

580 References

Ghelli, Giorgio. Proof Theoretic Studies about a Minimal Type System Integrating In-

clusion and Parametric Polymorphism. PhD thesis, Università di Pisa, March 1990.

Technical report TD–6/90, Dipartimento di Informatica, Università di Pisa.

Ghelli, Giorgio. Recursive types are not conservative over F≤. In M. Bezen and

J.F. Groote, editors, Typed Lambda Calculi and Applications (TLCA), Utrecht, The

Netherlands, number 664 in Lecture Notes in Computer Science, pages 146–162,

Berlin, March 1993. Springer-Verlag.

Ghelli, Giorgio. Divergence of F≤ type checking. Theoretical Computer Science, 139

(1,2):131–162, 1995.

Ghelli, Giorgio. Termination of system F-bounded: A complete proof. Information

and Computation, 139(1):39–56, 1997.

Ghelli, Giorgio and Benjamin Pierce. Bounded existentials and minimal typing. Theo-

retical Computer Science, 193:75–96, 1998.

Gifford, David, Pierre Jouvelot, John Lucassen, and Mark Sheldon. FX-87 Reference

Manual. Technical Report MIT/LCS/TR-407, Massachusetts Institute of Technol-

ogy, Laboratory for Computer Science, September 1987.

Girard, Jean-Yves. Interprétation fonctionnelle et élimination des coupures de l’arith-

métique d’ordre supérieur. Thèse d’état, Université Paris VII, 1972. Summary in

Proceedings of the Second Scandinavian Logic Symposium (J.E. Fenstad, editor),

North-Holland, 1971 (pp. 63–92).

Girard, Jean-Yves. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Girard, Jean-Yves, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

Glew, Neal. Type dispatch for named hierarchical types. In International Conference

on Functional Programming (ICFP), Paris, France, pages 172–182, 1999.

Gordon, Andrew. A tutorial on co-induction and functional programming. In Func-

tional Programming, Glasgow 1994, pages 78–95. Springer Workshops in Comput-

ing, 1995.

Gordon, Michael J. Adding eval to ML. Manuscript, circa 1980.

Gordon, Michael J., Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF.

Springer-Verlag LNCS 78, 1979.

Goto, Eiichi. Monocopy and associative algorithms in extended Lisp. Technical Report

TR 74-03, University of Tokyo, May 1974.

Goubault-Larrecq, Jean and Ian Mackie. Proof Theory and Automated Deduction (Ap-

plied Logic Series, V. 6). Kluwer, 1997.

Grattan-Guinness, Ivor. The search for mathematical roots, 1870–1940: Logics, set

theories and the foundations of mathematics from Cantor through Russell to Gödel.

Princeton University Press, 2001.

Gries, David, editor. Programming Methodology. Springer-Verlag, New York, 1978.

References 581

Gunter, Carl A. Semantics of Programming Languages: Structures and Techniques.

MIT Press, 1992.

Gunter, Carl A. and John C. Mitchell. Theoretical Aspects of Object-Oriented Program-

ming: Types, Semantics, and Language Design. MIT Press, 1994.

Hall, Cordelia V., Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type

classes in Haskell. ACM Transactions on Programming Languages and Systems, 18

(2):109–138, March 1996.

Halmos, Paul R. Naive Set Theory. Springer, New York, 1987.

Harper, Robert. A simplified account of polymorphic references. Information Pro-

cessing Letters, 51(4):201–206, August 1994. See also (Harper, 1996).

Harper, Robert. A note on: “A simplified account of polymorphic references” [Inform.

Process. Lett. 51 (1994), no. 4, 201–206; MR 95f:68142]. Information Processing

Letters, 57(1):15–16, January 1996. See (Harper, 1994).

Harper, Robert, Bruce Duba, and David MacQueen. First-class continuations in ML.

Journal of Functional Programming, 3(4), October 1993. Short version in POPL ’91.

Harper, Robert, Furio Honsell, and Gordon Plotkin. A framework for defining logics.

Journal of the ACM, 40(1):143–184, 1992. Summary in LICS’87.

Harper, Robert and Mark Lillibridge. A type-theoretic approach to higher-order mod-

ules with sharing. In ACM Symposium on Principles of Programming Languages

(POPL), Portland, Oregon, pages 123–137, January 1994.

Harper, Robert, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the

phase distinction. In ACM Symposium on Principles of Programming Languages

(POPL), San Francisco, California, pages 341–354, January 1990.

Harper, Robert and Greg Morrisett. Compiling polymorphism using intensional type

analysis. In ACM Symposium on Principles of Programming Languages (POPL), San

Francisco, California, pages 130–141, 1995.

Harper, Robert and Benjamin Pierce. A record calculus based on symmetric con-

catenation. In ACM Symposium on Principles of Programming Languages (POPL),

Orlando, Florida, pages 131–142, January 1991. Extended version available as

Carnegie Mellon Technical Report CMU-CS-90-157.

Harper, Robert and Christopher Stone. A type-theoretic interpretation of Standard

ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language

and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

Hasegawa, Ryu. Parametricity of extensionally collapsed term models of polymor-

phism and their categorical properties. In Takayasu Ito and Albert Meyer, editors,

Theoretical Aspects of Computer Software (TACS), Sendai, Japan, 1991.

Hayashi, Susumu. Singleton, union and intersection types for program extraction.

In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software

(Sendai, Japan), number 526 in Lecture Notes in Computer Science, pages 701–730.

Springer-Verlag, September 1991. Full version in Information and Computation,

109(1/2):174–210, 1994.

582 References

Henglein, Fritz. Type inference with polymorphic recursion. ACM Transactions on

Programming Languages and Systems, 15(2):253–289, 1993.

Henglein, Fritz. Dynamic typing: syntax and proof theory. Science of Computer Pro-

gramming, 22(3):197–230, June 1994. Selected papers of the Fourth European

Symposium on Programming (Rennes, 1992).

Henglein, Fritz and Harry G. Mairson. The complexity of type inference for higher-

order typed lambda-calculi. In ACM Symposium on Principles of Programming

Languages (POPL), Orlando, Florida, pages 119–130, January 1991.

Hennessy, Matthew. A Semantics of Programming Languages: An Elemen-

tary Introduction Using Operational Semantics. John Wiley and Sons,

1990. Currently out of print; available from http://www.cogs.susx.ac.uk/

users/matthewh/semnotes.ps.gz.

Hennessy, Matthew and James Riely. Resource access control in systems of mobile

agents. In Uwe Nestmann and Benjamin C. Pierce, editors, HLCL ’98: High-Level

Concurrent Languages (Nice, France, September 12, 1998), volume 16.3 of ENTCS,

pages 3–17. Elsevier Science Publishers, 1998. Full version available as CogSci

Report 2/98, University of Sussex, Brighton.

Hindley, J. Roger. The principal type-scheme of an object in combinatory logic. Trans-

actions of the American Mathematical Society, 146:29–60, 1969.

Hindley, J. Roger. Types with intersection, an introduction. Formal Aspects of Com-

puting, 4:470–486, 1992.

Hindley, J. Roger. Basic Simple Type Theory, volume 42 of Cambridge Tracts in The-

oretical Computer Science. Cambridge University Press, Cambridge, 1997.

Hindley, J. Roger and Jonathan P. Seldin. Introduction to Combinators and λ-Calculus,

volume 1 of London Mathematical Society Student Texts. Cambridge University

Press, 1986.

Hoang, My, John Mitchell, and Ramesh Viswanathan. Standard ML-NJ weak polymor-

phism and imperative constructs. In Proceedings, Eighth Annual IEEE Symposium

on Logic in Computer Science, pages 15–25. IEEE Computer Society Press, 1993.

Hodas, J. S. Lolli: An extension of λProlog with linear context management. In

D. Miller, editor, Workshop on the λProlog Programming Language, pages 159–168,

Philadelphia, Pennsylvania, August 1992.

Hofmann, Martin. Syntax and semantics of dependent types. In Semantics and Logic

of Computation. Cambridge University Press, 1997.

Hofmann, Martin and Benjamin Pierce. Positive subtyping. In ACM Symposium on

Principles of Programming Languages (POPL), San Francisco, California, pages 186–

197, January 1995a. Full version in Information and Computation, volume 126,

number 1, April 1996. Also available as University of Edinburgh technical report

ECS-LFCS-94-303, September 1994.

References 583

Hofmann, Martin and Benjamin Pierce. A unifying type-theoretic framework for ob-

jects. Journal of Functional Programming, 5(4):593–635, October 1995b. Previous

versions appeared in the Symposium on Theoretical Aspects of Computer Science,

1994, (pages 251–262) and, under the title “An Abstract View of Objects and Sub-

typing (Preliminary Report),” as University of Edinburgh, LFCS technical report

ECS-LFCS-92-226, 1992.

Hofmann, Martin and Benjamin C. Pierce. Type destructors. In Didier Rémy, edi-

tor, Informal proceedings of the Fourth International Workshop on Foundations of

Object-Oriented Languages (FOOL), January 1998. Full version to appear in Infor-

mation and Computation.

Hook, J.G. Understanding Russell – a first attempt. In Proc. Int. Symp. on Semantics of

Data Types, Sophia-Antipolis (France), Springer LNCS 173, pages 69–85. Springer-

Verlag, 1984.

Hopcroft, John E. and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

Hosoya, Haruo and Benjamin Pierce. Regular expression pattern matching. In ACM

Symposium on Principles of Programming Languages (POPL), London, England,

2001.

Hosoya, Haruo and Benjamin C. Pierce. How good is local type inference? Technical

Report MS-CIS-99-17, University of Pennsylvania, June 1999.

Hosoya, Haruo and Benjamin C. Pierce. XDuce: A typed XML processing language

(preliminary report). In International Workshop on the Web and Databases (WebDB),

May 2000.

Hosoya, Haruo, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types

for XML. ACM Transactions on Programming Languages and Systems (TOPLAS),

2001. To appear; short version in ICFP 2000.

Howard, William A. Hereditarily majorizable functionals of finite type. In Anne Sjerp

Troelstra, editor, Metamathematical Investigation of Intuitionistic Arithmetic and

Analysis, volume 344 of Lecture Notes in Mathematics, pages 454–461. Springer-

Verlag, Berlin, 1973. Appendix.

Howard, William A. The formulas-as-types notion of construction. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus, and Formalism, pages 479–490. Academic Press, New York, 1980. Reprint

of 1969 article.

Howe, Douglas. Automating Reasoning in an Implementation of Constructive Type

Theory. PhD thesis, Cornell University, 1988.

Hudak, Paul, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guz-

man, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and

J. Peterson. Report on the programming language Haskell, version 1.2. SIGPLAN

Notices, 27(5), May 1992.

584 References

Huet, Gérard. A unification algorithm for typed λ-calculus. Theoretical Computer

Science, 1:27–57, 1975.

Huet, Gérard. Résolution d’equations dans les langages d’ordre 1,2, ...,ω. Thèse de

Doctorat d’Etat, Université de Paris 7 (France), 1976.

Huet, Gérard, editor. Logical Foundations of Functional Programming. University of

Texas at Austin Year of Programming Series. Addison-Wesley, 1990.

Hyland, J. Martin E. and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III.

Information and Computation, 163(2):285–408, December 2000.

Igarashi, Atsushi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal

core calculus for Java and GJ. In ACM Symposium on Object Oriented Program-

ming: Systems, Languages, and Applications (OOPSLA), October 1999. Full version

to appear in ACM Transactions on Programming Languages and Systems (TOPLAS),

2001.

Igarashi, Atsushi and Benjamin C. Pierce. On inner classes. In European Conference

on Object-Oriented Programming (ECOOP), 2000. Also in informal proceedings of

the Seventh International Workshop on Foundations of Object-Oriented Languages

(FOOL). To appear in Information and Computation.

Igarashi, Atsushi, Benjamin C. Pierce, and Philip Wadler. A recipe for raw types. In

Workshop on Foundations of Object-Oriented Languages (FOOL), 2001.

Ishtiaq, Samin and Peter O’Hearn. Bi as an assertion language for mutable data struc-

tures. In ACM Symposium on Principles of Programming Languages (POPL), London,

England, 2001.

Jacobs, Bart. Categorical Logic and Type Theory. Number 141 in Studies in Logic and

the Foundations of Mathematics. North Holland, Elsevier, 1999.

Jagannathan, Suresh and Andrew Wright. Effective flow analysis for avoiding run-

time checks. In Proceedings of the Second International Static Analysis Symposium,

volume 983 of LNCS, pages 207–224. Springer-Verlag, 1995.

Jay, C. Barry and Milan Sekanina. Shape checking of array programs. In Computing:

The Australasian Theory Seminar (Proceedings), volume 19 of Australian Computer

Science Communications, pages 113–121, 1997.

Jim, Trevor. Rank-2 type systems and recursive definitions. Technical Report

MIT/LCS/TM-531, Massachusetts Institute of Technology, Laboratory for Com-

puter Science, November 1995.

Jim, Trevor. What are principal typings and what are they good for? In ACM, editor,

ACM Symposium on Principles of Programming Languages (POPL), St. Petersburg

Beach, Florida, pages 42–53, 1996.

Jim, Trevor and Jens Palsberg. Type inference in systems of recursive types with

subtyping. Manuscript, 1999.

Jones, Mark P. ML typing, explicit polymorphism, and qualified types, 1994a.

References 585

Jones, Mark P. Qualified Types: Theory and Practice. Cambridge University Press,

1994b.

Jones, Richard and Rafael D. Lins. Garbage Collection: Algorithms for Automatic Dy-

namic Memory Management. Wiley, 1996.

Jouvelot, Pierre and David Gifford. Algebraic reconstruction of types and effects.

In ACM Symposium on Principles of Programming Languages (POPL), Orlando,

Florida, pages 303–310, January 1991.

Jutting, L.S. van Benthem, James McKinna, and Robert Pollack. Checking algorithms

for Pure Type Systems. In Henk Barendregt and Tobias Nipkow, editors, Proceed-

ings of the International Workshop on Types for Proofs and Programs, pages 19–61,

Nijmegen, The Netherlands, May 1994. Springer-Verlag LNCS 806.

Kaes, Stefan. Parametric overloading in polymorphic programming languages. In

H. Ganzinger, editor, Proceedings of the European Symposium on Programming,

volume 300 of Lecture Notes in Computer Science, pages 131–144. Springer-Verlag,

1988.

Kahn, Gilles. Natural semantics. In Proceedings of the Symposium on Theoretical

Aspects of Computer Science (STACS), volume 247 of Lecture Notes in Computer

Science, pages 22–39. Springer-Verlag, 1987.

Kamin, Samuel N. Inheritance in Smalltalk-80: A denotational definition. In ACM

Symposium on Principles of Programming Languages (POPL), San Diego, California,

pages 80–87, January 1988.

Kamin, Samuel N. and Uday S. Reddy. Two semantic models of object-oriented lan-

guages. In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of

Object-Oriented Programming: Types, Semantics, and Language Design, pages 464–

495. MIT Press, 1994.

Katiyar, Dinesh, David Luckham, and John Mitchell. A type system for prototyping

languages. In ACM Symposium on Principles of Programming Languages (POPL),

Portland, Oregon, pages 138–150, January 1994.

Katiyar, Dinesh and Sriram Sankar. Completely bounded quantification is decidable.

In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications, June

1992.

Kelsey, Richard, William Clinger, and Jonathan Rees. Revised5 report on the algo-

rithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105,

1998. Also appears in ACM SIGPLAN Notices 33(9), September 1998.

Kennedy, Andrew. Dimension types. In Donald Sannella, editor, Programming Lan-

guages and Systems—ESOP’94, 5th European Symposium on Programming, volume

788 of Lecture Notes in Computer Science, pages 348–362, Edinburgh, U.K., 11–

13 April 1994. Springer.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. Prentice

Hall, Englewood Cliffs, second edition, 1988.

586 References

Kfoury, Assaf J., Harry Mairson, Franklyn Turbak, and Joe B. Wells. Relating typa-

bility and expressiveness in finite-rank intersection type systems. In International

Conference on Functional Programming (ICFP), Paris, France, volume 34.9 of ACM

Sigplan Notices, pages 90–101, N.Y., September 27–29 1999. ACM Press.

Kfoury, Assaf J. and Jerzy Tiuryn. Type reconstruction in finite-rank fragments of

the polymorphic λ-calculus. In Fifth Annual IEEE Symposium on Logic in Computer

Science, pages 2–11, Philadelphia, PA, June 1990. Full version in Information and

Computation, 98(2), 228–257, 1992.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is dexptime-

complete. In Proc. 15th Colloq. on Trees in Algebra and Programming, pages

206–220. Springer LNCS 431, 1990.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in the pres-

ence of polymorphic recursion. ACM Transactions on Programming Languages

and Systems, 15(2):290–311, April 1993a.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the semi-

unification problem. Information and Computation, 102(1):83–101, January 1993b.

Summary in STOC 1990.

Kfoury, Assaf J., Jerzy Tiuryn, and Pawel Urzyczyn. An analysis of ML typability.

Journal of the ACM, 41(2):368–398, March 1994.

Kfoury, Assaf J. and Joe B. Wells. Principality and decidable type inference for finite-

rank intersection types. In ACM Symposium on Principles of Programming Lan-

guages (POPL), San Antonio, Texas, pages 161–174, New York, NY, January 1999.

ACM.

Kiczales, Gregor, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, Cambridge, MA, 1991.

Kirchner, Claude and Jean-Pierre Jouannaud. Solving equations in abstract algebras:

a rule-based survey of unification. Research Report 561, Université de Paris Sud,

Orsay, France, April 1990.

Klop, Jan W. Combinatory Reduction Systems. Mathematical Centre Tracts 127. Math-

ematisch Centrum, Amsterdam, 1980.

Kobayashi, Naoki, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-

calculus. In ACM Symposium on Principles of Programming Languages (POPL),

St. Petersburg Beach, Florida, 1996. Full version in ACM Transactions on Program-

ming Languages and Systems, 21(5), pp. 914–947, September 1999.

Kozen, Dexter, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive sub-

typing. In ACM Symposium on Principles of Programming Languages (POPL),

Charleston, South Carolina, pages 419–428, 1993.

Laan, Twan Dismas Laurens. The Evolution of Type Theory in Logic and Mathematics.

PhD thesis, Techn. Univ. Eindhoven, 1997.

Landin, Peter J. The mechanical evaluation of expressions. Computer Journal, 6:

308–320, January 1964.

References 587

Landin, Peter J. A correspondence between ALGOL 60 and Church’s lambda-notation:

Parts I and II. Communications of the ACM, 8(2,3):89–101, 158–165, February and

March 1965.

Landin, Peter J. The next 700 programming languages. Communications of the ACM,

9(3):157–166, March 1966.

Lassez, Jean-Louis and Gordin Plotkin, editors. Computational Logic, Essays in Honor

of Alan Robinson. MIT Press, 1991.

Läufer, Konstantin. Polymorphic Type Inference and Abstract Data Types. PhD thesis,

New York University, 1992.

Läufer, Konstantin and Martin Odersky. Polymorphic type inference and abstract

data types. ACM Transactions on Programming Languages and Systems (TOPLAS),

16(5):1411–1430, September 1994. Summary in Phoenix Seminar and Workshop on

Declarative Programming, Nov. 1991.

League, Christopher, Zhong Shao, and Valery Trifonov. Representing Java classes in a

typed intermediate language. In International Conference on Functional Program-

ming (ICFP), Paris, France, September 1999.

League, Christopher, Valery Trifonov, and Zhong Shao. Type-preserving compila-

tion of Featherweight Java. In Foundations of Object-Oriented Languages (FOOL8),

London, January 2001.

Lee, Oukseh and Kwangkeun Yi. Proofs about a folklore let-polymorphic type infer-

ence algorithm. ACM Transactions on Programming Languages and Systems, 20

(4):707–723, July 1998.

Leivant, Daniel. Polymorphic type inference. In Proceedings of the 10th Annual ACM

Symposium on Principles of Programming Languages. ACM, 1983.

Lemmon, E. John, Carew A. Meredith, David Meredith, Arthur N. Prior, and Ivo

Thomas. Calculi of pure strict implication, 1957. Mimeographed version, 1957;

published in Philosophical Logic, ed. Davis, Hockney, and Wilson, D. Reidel Co.,

Netherlands, 1969, pp. 215–250.

Leroy, Xavier. Manifest types, modules and separate compilation. In ACM Symposium

on Principles of Programming Languages (POPL), Portland, Oregon, pages 109–122,

Portland, OR, January 1994.

Leroy, Xavier. The Objective Caml system: Documentation and user’s manual, 2000.

With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. Avail-

able from http://caml.inria.fr.

Leroy, Xavier and Michel Mauny. Dynamics in ML. In John Hughes, editor, ACM Sym-

posium on Functional Programming Languages and Computer Architecture (FPCA)

1991, volume 523 of Lecture Notes in Computer Science, pages 406–426. Springer-

Verlag, 1991.

Leroy, Xavier and François Pessaux. Type-based analysis of uncaught exceptions.

ACM Transactions on Programming Languages and Systems, 22(2):340–377, March

2000. Summary in ACM Symposium on Principles of Programming Languages

(POPL), San Antonio, Texas, 1999.

588 References

Leroy, Xavier and François Rouaix. Security properties of typed applets. In ACM

Symposium on Principles of Programming Languages (POPL), San Diego, California,

pages 391–403, January 1998.

Leroy, Xavier and Pierre Weis. Polymorphic type inference and assignment. In ACM

Symposium on Principles of Programming Languages (POPL), Orlando, Florida,

pages 291–302, 1991.

Lescanne, Pierre and Jocelyn Rouyer-Degli. Explicit substitutions with de Bruijn’s lev-

els. In J. Hsiang, editor, Proceedings of the 6th Conference on Rewriting Techniques

and Applications (RTA), Kaiserslautern (Germany), volume 914, pages 294–308,

1995.

Levin, Michael Y. and Benjamin C. Pierce. Tinkertype: A language for playing with for-

mal systems. Journal of Functional Programming, 2001. To appear. A preliminary

version appeared as an invited talk at the Logical Frameworks and Metalanguages

Workshop (LFM), June 2000.

Lillibridge, Mark. Translucent Sums: A Foundation for Higher-Order Module Systems.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA, May 1997.

Liskov, Barbara, Russell Atkinson, Toby Bloom, Elliott Moss, J. Craig Schaffert, Robert

Scheifler, and Alan Snyder. CLU Reference Manual. Springer-Verlag, 1981.

Liskov, Barbara, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. Abstraction

mechanisms in CLU. Communications of the ACM, 20(8):564–576, August 1977.

Also in S. Zdonik and D. Maier, eds., Readings in Object-Oriented Database Systems.

Luo, Zhaohui. Computation and Reasoning: A Type Theory for Computer Science.

Number 11 in International Series of Monographs on Computer Science. Oxford

University Press, 1994.

Luo, Zhaohui and Robert Pollack. The LEGO proof development system: A user’s

manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

Ma, QingMing. Parametricity as subtyping. In ACM Symposium on Principles of Pro-

gramming Languages (POPL), Albuquerque, New Mexico, January 1992.

Mackie, Ian. Lilac: A functional programming language based on linear logic. Journal

of Functional Programming, 4(4):395–433, October 1994.

MacQueen, David. Using dependent types to express modular structure. In ACM

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 277–286, January 1986.

MacQueen, David, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive poly-

morphic types. Information and Control, 71:95–130, 1986.

MacQueen, David B. Using dependent types to express modular structure. In ACM

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, 1986.

References 589

Magnusson, Lena and Bengt Nordström. The ALF proof editor and its proof engine.

In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs,

pages 213–237. Springer-Verlag LNCS 806, 1994.

Mairson, Harry G. Deciding ML typability is complete for deterministic exponential

time. In ACM Symposium on Principles of Programming Languages (POPL), San

Francisco, California, pages 382–401. ACM Press, New York, 1990.

Martin-Löf, Per. An intuitionistic theory of types: predicative part. In H. E. Rose and

J. C. Shepherdson, editors, Logic Colloquium, ’73, pages 73–118. North-Holland,

Amsterdam, 1973.

Martin-Löf, Per. Constructive mathematics and computer programming. In Logic,

Methodology and Philosophy of Science, VI. North Holland, Amsterdam, 1982.

Martin-Löf, Per. Intuitionistic Type Theory. Bibliopolis, 1984.

Martini, Simone. Bounded quantifiers have interval models. In Proceedings of the

ACM Conference on Lisp and Functional Programming, pages 174–183, Snowbird,

Utah, July 1988. ACM.

McCarthy, John. History of LISP. In R. L. Wexelblatt, editor, History of Programming

Languages, pages 173–197. Academic Press, New York, 1981.

McCarthy, John, S. R. Russell, D. Edwards, et al. LISP Programmer’s Manual. Mas-

sachusetts Institute of Technology, A.I. Lab., Cambridge, Massachusetts, November

1959. Handwritten Draft + Machine Typed.

McKinna, James and Robert Pollack. Pure Type Sytems formalized. In M. Bezem and

J. F. Groote, editors, Proceedings of the International Conference on Typed Lambda

Calculi and Applications, pages 289–305. Springer-Verlag LNCS 664, March 1993.

Meertens, Lambert. Incremental polymorphic type checking in B. In ACM Symposium

on Principles of Programming Languages (POPL), Austin, Texas, 1983.

Milner, Robin. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17:348–375, August 1978.

Milner, Robin. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.

Milner, Robin. Communication and Concurrency. Prentice Hall, 1989.

Milner, Robin. The polyadic π -calculus: a tutorial. Technical Report ECS–LFCS–91–

180, Laboratory for Foundations of Computer Science, Department of Computer

Science, University of Edinburgh, UK, October 1991. Appeared in Proceedings of the

International Summer School on Logic and Algebra of Specification, Marktoberdorf,

August 1991. Reprinted in Logic and Algebra of Specification, ed. F. L. Bauer, W.

Brauer, and H. Schwichtenberg, Springer-Verlag, 1993.

Milner, Robin. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, 1999.

Milner, Robin, Joachim Parrow, and David Walker. A calculus of mobile processes

(Parts I and II). Information and Computation, 100:1–77, 1992.

590 References

Milner, Robin and Mads Tofte. Co-induction in relational semantics. Theoretical Com-

puter Science, 87:209–220, 1991a.

Milner, Robin and Mads Tofte. Commentary on Standard ML. MIT Press, Cambridge,

Massachusetts, 1991b.

Milner, Robin, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

Standard ML (Revised). MIT Press, 1997.

Mitchell, John C. Coercion and type inference (summary). In ACM Symposium on

Principles of Programming Languages (POPL), Salt Lake City, Utah, pages 175–185,

January 1984a.

Mitchell, John C. Type inference and type containment. In Proc. Int. Symp. on Seman-

tics of Data Types, Sophia-Antipolis (France), pages 257–278, Berlin, June 1984b.

Springer LNCS 173. Full version in Information and Computation, vol. 76, no. 2/3,

1988, pp. 211–249. Reprinted in Logical Foundations of Functional Programming,

ed. G. Huet, Addison-Wesley (1990) 153–194.

Mitchell, John C. Representation independence and data abstraction (preliminary

version). In ACM Symposium on Principles of Programming Languages (POPL), St.

Petersburg Beach, Florida, pages 263–276, 1986.

Mitchell, John C. Toward a typed foundation for method specialization and in-

heritance. In ACM Symposium on Principles of Programming Languages (POPL),

San Francisco, California, pages 109–124, January 1990a. Also in Carl A. Gunter

and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:

Types, Semantics, and Language Design (MIT Press, 1994).

Mitchell, John C. Type systems for programming languages. In J. van Leeuwen, edi-

tor, Handbook of Theoretical Computer Science, Volume B, pages 365–458. North-

Holland, Amsterdam, 1990b.

Mitchell, John C. Foundations for Programming Languages. MIT Press, Cambridge,

Massachusetts, 1996.

Mitchell, John C. and Robert Harper. The essence of ML. In ACM Symposium on

Principles of Programming Languages (POPL), San Diego, California, January 1988.

Full version in ACM Transactions on Programming Languages and Systems, vol.

15, no. 2, 1993, pp. 211–252, under the title “On the type structure of Standard

ML”.

Mitchell, John C. and Albert R. Meyer. Second-order logical relations (extended ab-

stract). In Rohit Parikh, editor, Logic of Programs, volume 193 of Lecture Notes in

Computer Science, pages 225–236, Berlin, 1985. Springer-Verlag.

Mitchell, John C. and Gordon D. Plotkin. Abstract types have existential types. ACM

Trans. on Programming Languages and Systems, 10(3):470–502, 1988. Summary

in ACM Symposium on Principles of Programming Languages (POPL), New Orleans,

Louisiana, 1985.

References 591

Morris, James H. Lambda calculus models of programming languages. Technical Re-

port MIT-LCS//MIT/LCS/TR-57, Massachusetts Institute of Technology, Laboratory

for Computer Science, December 1968.

Morrisett, Greg, Matthias Felleisen, and Robert Harper. Abstract models of memory

management. In Proceedings of the Seventh International Conference on Functional

Programming Languages and Computer Architecture (FPCA’95), pages 66–77, La

Jolla, California, June 25–28, 1995. ACM SIGPLAN/SIGARCH and IFIP WG2.8, ACM

Press.

Morrisett, Greg, David Walker, Karl Crary, and Neal Glew. From System F to Typed

Assembly Language. In ACM Symposium on Principles of Programming Languages

(POPL), San Diego, California, pages 85–97, January 1998.

Mugridge, Warwick B., John Hamer, and John G. Hosking. Multi-methods in a

statically-typed programming language. In Pierre America, editor, ECOOP ’91: Eu-

ropean Conference on Object-Oriented Programming, volume 512 of Lecture Notes

in Computer Science, pages 307–324. Springer-Verlag, 1991.

Mycroft, Alan. Dynamic types in ML. Manuscript, 1983.

Mycroft, Alan. Polymorphic type schemes and recursive definitions. In M. Paul and

B. Robinet, editors, Proceedings of the International Symposium on Programming,

volume 167 of LNCS, pages 217–228, Toulouse, France, April 1984. Springer.

Myers, Andrew C., Joseph A. Bank, and Barbara Liskov. Parameterized types for Java.

In ACM Symposium on Principles of Programming Languages (POPL), Paris, France,

pages 132–145, January 1997.

Nadathur, Gopalan and Dale Miller. An overview of λProlog. In Robert A. Kowal-

ski and Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth

International Conference and Symposium, Volume 1, pages 810–827, MIT Press,

Cambridge, Massachusetts, August 1988.

Naur, Peter et al. Revised report on the algorithmic language Algol 60. Communica-

tions of the ACM, 6:1–17, January 1963.

Necula, George C. Proof-carrying code. In ACM Symposium on Principles of Program-

ming Languages (POPL), Paris, France, pages 106–119, 15–17 January 1997.

Necula, George C. and Peter Lee. Safe kernel extensions without run-time checking.

In 2nd Symposium on Operating Systems Design and Implementation (OSDI ’96),

October 28–31, 1996, Seattle, WA, pages 229–243, Berkeley, CA, USA, October 1996.

USENIX press.

Necula, George C. and Peter Lee. Safe, untrusted agents using proof-carrying code.

In G. Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture Notes in

Computer Science, pages 61–91. Springer-Verlag, 1998.

Nelson, Greg, editor. Systems Programming with Modula-3. Prentice-Hall, 1991.

Nipkow, Tobias and David von Oheimb. Javalight is type-safe — definitely. In ACM

Symposium on Principles of Programming Languages (POPL), San Diego, California,

pages 161–170, January 1998.

592 References

O’Callahan, Robert and Daniel Jackson. Lackwit: A program understanding tool based

on type inference. In Proceedings of the 1997 International Conference on Software

Engineering, pages 338–348. ACM Press, 1997.

Odersky, Martin. Functional nets. In Proc. European Symposium on Programming

(ESOP), pages 1–25. Springer-Verlag, 2000. Lecture Notes in Computer Science

1782.

Odersky, Martin and Konstantin Läufer. Putting type annotations to work. In ACM

Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,

Florida, pages 54–67, St. Petersburg, Florida, January 21–24, 1996. ACM Press.

Odersky, Martin, Martin Sulzmann, and Martin Wehr. Type inference with constrained

types. Theory and Practice of Object Systems, 5(1):35–55, 1999. Summary in Work-

shop on Foundations of Object-Oriented Languages (FOOL), informal proceedings,

1997.

Odersky, Martin and Philip Wadler. Pizza into Java: Translating theory into practice.

In ACM Symposium on Principles of Programming Languages (POPL), Paris, France,

pages 146–159, January 1997.

Odersky, Martin and Christoph Zenger. Nested types. In Workshop on Foundations of

Object-Oriented Languages (FOOL 8), January 2001.

Odersky, Martin, Christoph Zenger, and Matthias Zenger. Colored local type infer-

ence. ACM SIGPLAN Notices, 36(3):41–53, March 2001.

O’Hearn, Peter W., Makoto Takeyama, A. John Power, and Robert D. Tennent. Syntactic

control of interference revisited. In MFPS XI, conference on Mathematical Founda-

tions of Program Semantics, volume 1 of Electronic Notes in Theoretical Computer

Science. Elsevier, March 1995.

O’Toole, James W. and David K. Gifford. Type reconstruction with first-class poly-

morphic values. In ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), Portland, Oregon, pages 207–217, June 1989.

Palsberg, Jens and Christina Pavlopoulou. From polyvariant flow information to in-

tersection and union types. In ACM Symposium on Principles of Programming

Languages (POPL), San Diego, California, pages 197–208, 1998.

Palsberg, Jens and Michael I. Schwartzbach. Object-Oriented Type Systems. Wiley,

1994.

Park, David. Concurrency and automata on infinite sequences. In P. Deussen, editor,

Proceedings of the 5th GI-Conference on Theoretical Computer Science, volume 104

of Lecture Notes in Computer Science, pages 167–183. Springer-Verlag, Berlin, 1981.

Paulin-Mohring, Christine. Extracting Fω’s programs from proofs in the calculus

of constructions. In ACM Symposium on Principles of Programming Languages

(POPL), Austin, Texas, pages 89–104, January 1989.

Paulson, Laurence C. ML for the Working Programmer. Cambridge University Press,

New York, NY, second edition, 1996.

References 593

Perry, Nigel. The Implementation of Practical Functional Programming Languages.

PhD thesis, Imperial College, 1990.

Peyton Jones, Simon L. and David R. Lester. Implementing Functional Languages.

Prentice Hall, 1992.

Pfenning, Frank. Partial polymorphic type inference and higher-order unification. In

ACM Symposium on Lisp and Functional Programming (LFP), Snowbird, Utah, pages

153–163, July 1988. Also available as Ergo Report 88–048, School of Computer

Science, Carnegie Mellon University, Pittsburgh.

Pfenning, Frank. Elf: A language for logic definition and verified meta-programming.

In Fourth Annual Symposium on Logic in Computer Science, pages 313–322, Pacific

Grove, California, June 1989. IEEE Computer Society Press.

Pfenning, Frank. On the undecidability of partial polymorphic type reconstruction.

Fundamenta Informaticae, 19(1,2):185–199, 1993a. Preliminary version available

as Technical Report CMU-CS-92-105, School of Computer Science, Carnegie Mellon

University, January 1992.

Pfenning, Frank. Refinement types for logical frameworks. In Herman Geuvers, editor,

Informal Proceedings of the Workshop on Types for Proofs and Programs, pages

285–299, Nijmegen, The Netherlands, May 1993b.

Pfenning, Frank. Elf: A meta-language for deductive systems. In A. Bundy, editor,

Proceedings of the 12th International Conference on Automated Deduction, pages

811–815, Nancy, France, June 1994. Springer-Verlag LNAI 814.

Pfenning, Frank. The practice of logical frameworks. In Hélène Kirchner, editor,

Proceedings of the Colloquium on Trees in Algebra and Programming, pages 119–

134, Linköping, Sweden, April 1996. Springer-Verlag LNCS 1059. Invited talk.

Pfenning, Frank. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors,

Handbook of Automated Reasoning. Elsevier, 1999.

Pfenning, Frank. Computation and Deduction. Cambridge University Press, 2001.

Pfenning, Frank and Peter Lee. Metacircularity in the polymorphic λ-calculus. The-

oretical Computer Science, 89(1):137–159, 21 October 1991. Summary in TAP-

SOFT ’89, Proceedings of the International Joint Conference on Theory and Practice

in Software Development, Barcelona, Spain, pages 345–359, Springer-Verlag LNCS

352, March 1989.

Pierce, Benjamin C. Basic Category Theory for Computer Scientists. MIT Press, 1991a.

Pierce, Benjamin C. Programming with Intersection Types and Bounded Polymor-

phism. PhD thesis, Carnegie Mellon University, December 1991b. Available as

School of Computer Science technical report CMU-CS-91-205.

Pierce, Benjamin C. Bounded quantification is undecidable. Information and Compu-

tation, 112(1):131–165, July 1994. Also in Carl A. Gunter and John C. Mitchell, ed-

itors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and

Language Design (MIT Press, 1994). Summary in ACM Symposium on Principles of

Programming Languages (POPL), Albuquerque, New Mexico.

594 References

Pierce, Benjamin C. Even simpler type-theoretic foundations for OOP. Manuscript

(circulated electronically), March 1996.

Pierce, Benjamin C. Bounded quantification with bottom. Technical Report 492, Com-

puter Science Department, Indiana University, 1997a.

Pierce, Benjamin C. Intersection types and bounded polymorphism. Mathematical

Structures in Computer Science, 7(2):129–193, April 1997b. Summary in Typed

Lambda Calculi and Applications, March 1993, pp. 346–360.

Pierce, Benjamin C. and Davide Sangiorgi. Typing and subtyping for mobile processes.

In Logic in Computer Science, 1993. Full version in Mathematical Structures in

Computer Science , Vol. 6, No. 5, 1996.

Pierce, Benjamin C. and Martin Steffen. Higher-order subtyping. In IFIP Working

Conference on Programming Concepts, Methods and Calculi (PROCOMET), 1994.

Full version in Theoretical Computer Science, vol. 176, no. 1–2, pp. 235–282, 1997

(corrigendum in TCS vol. 184 (1997), p. 247).

Pierce, Benjamin C. and David N. Turner. Statically typed friendly functions via par-

tially abstract types. Technical Report ECS-LFCS-93-256, University of Edinburgh,

LFCS, April 1993. Also available as INRIA-Rocquencourt Rapport de Recherche No.

1899.

Pierce, Benjamin C. and David N. Turner. Simple type-theoretic foundations for

object-oriented programming. Journal of Functional Programming, 4(2):207–247,

April 1994. Summary in ACM Symposium on Principles of Programming Languages

(POPL), Charleston, South Carolina, 1993.

Pierce, Benjamin C. and David N. Turner. Local type argument synthesis with

bounded quantification. Technical Report 495, Computer Science Department, In-

diana University, January 1997.

Pierce, Benjamin C. and David N. Turner. Local type inference. In ACM Symposium

on Principles of Programming Languages (POPL), San Diego, California, 1998. Full

version in ACM Transactions on Programming Languages and Systems (TOPLAS),

22(1), January 2000, pp. 1–44.

Pierce, Benjamin C. and David N. Turner. Pict: A programming language based on

the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof,

Language and Interaction: Essays in Honour of Robin Milner, pages 455–494. MIT

Press, 2000.

Pitts, Andrew M. Polymorphism is set theoretic, constructively. In Pitt, Poigné, and

Rydeheard, editors, Category Theory and Computer Science, Edinburgh, pages 12–

39. Springer-Verlag, 1987. LNCS volume 283.

Pitts, Andrew M. Non-trivial power types can’t be subtypes of polymorphic types. In

Fourth Annual Symposium on Logic in Computer Science, Pacific Grove, California,

pages 6–13. IEEE, June 1989.

Pitts, Andrew M. Parametric polymorphism and operational equivalence. Mathemat-

ical Structures in Computer Science, 10:321–359, 2000.

References 595

Plasmeijer, Marinus J. CLEAN: a programming environment based on term graph

rewriting. Theoretical Computer Science, 194(1–2), March 1998.

Plotkin, Gordon. Call-by-name, call-by-value, and the λ-calculus. Theoretical Com-

puter Science, 1:125–159, 1975.

Plotkin, Gordon and Martín Abadi. A logic for parametric polymorphism. In M. Bezem

and J. F. Groote, editors, Typed Lambda Calculi and Applications (TLCA), Utrecht,

The Netherlands, number 664 in Lecture Notes in Computer Science, pages 361–

375. Springer-Verlag, March 1993.

Plotkin, Gordon, Martín Abadi, and Luca Cardelli. Subtyping and parametricity. In

Proceedings of the Ninth IEEE Symposium on Logic in Computer Science, pages 310–

319, 1994.

Plotkin, Gordon D. Lambda-definability and logical relations. Memorandum SAI–RM–

4, University of Edinburgh, Edinburgh, Scotland, October 1973.

Plotkin, Gordon D. LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.

Plotkin, Gordon D. Lambda-definability in the full type hierarchy. In Jonathan P.

Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, pages 363–373. Academic Press, London, 1980.

Plotkin, Gordon D. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark,

1981.

Poll, Erik. Width-subtyping and polymorphic record update. Manuscript, June 1996.

Pollack, Robert. Implicit syntax. Informal Proceedings of First Workshop on Logical

Frameworks, Antibes, May 1990.

Pollack, Robert. The Theory of LEGO: A Proof Checker for the Extended Calculus of

Constructions. PhD thesis, University of Edinburgh, 1994.

Pottier, François. Simplifying subtyping constraints. In International Conference on

Functional Programming (ICFP), Amsterdam, The Netherlands, 1997.

Pottinger, Garrell. A type assignment for the strongly normalizable λ-terms. In To

H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages

561–577. Academic Press, New York, 1980.

Quine, Willard V. Quiddities: An Intermittently Philosophical Dictionary. Harvard Uni-

versity Press, Cambridge, MA, 1987.

Ramsey, Frank P. The foundations of mathematics. Proceedings of the London Math-

ematical Society, Series 2, 25(5):338–384, 1925. Reprinted in (Braithwaite, 1931).

Ranta, Aarne. Type-Theoretical Grammar. Clarendon Press, Oxford, 1995.

Reade, Chris. Elements of Functional Programming. International Computer Science

Series. Addison-Wesley, Wokingham, England, 1989.

596 References

Reddy, Uday S. Objects as closures: Abstract semantics of object oriented languages.

In ACM Symposium on Lisp and Functional Programming (LFP), Snowbird, Utah,

pages 289–297, Snowbird, Utah, July 1988.

Relax. Document Description and Processing Languages — Regular Language De-

scription for XML (RELAX) — Part 1: RELAX Core. Technical Report DTR 22250-1,

ISO/IEC, October 2000.

Rémy, Didier. Typechecking records and variants in a natural extension of ML. In

ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas,

pages 242–249, January 1989. Long version in Carl A. Gunter and John C. Mitchell,

editors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics,

and Language Design (MIT Press, 1994).

Rémy, Didier. Algèbres Touffues. Application au Typage Polymorphe des Objets Enreg-

istrements dans les Langages Fonctionnels. PhD thesis, Université Paris VII, 1990.

Rémy, Didier. Extending ML type system with a sorted equational theory. Research

Report 1766, Institut National de Recherche en Informatique et Automatisme, Roc-

quencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1992a.

Rémy, Didier. Projective ML. In ACM Symposium on Lisp and Functional Programming

(LFP), pages 66–75, 1992b.

Rémy, Didier. Typing record concatenation for free. In ACM Symposium on Princi-

ples of Programming Languages (POPL), Albuquerque, New Mexico, January 1992.

Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-

Oriented Programming: Types, Semantics, and Language Design (MIT Press, 1994).

Rémy, Didier. Programming objects with ML-ART: An extension to ML with abstract

and record types. In Masami Hagiya and John C. Mitchell, editors, International

Symposium on Theoretical Aspects of Computer Software (TACS), pages 321–346,

Sendai, Japan, April 1994. Springer-Verlag.

Rémy, Didier. Des enregistrements aux objets. Mémoire d’habilitation à diriger des

recherches, Université de Paris 7, 1998. In English, except for introductory chapter;

includes (Rémy, 1989) and (Rémy, 1992b).

Rémy, Didier and Jérôme Vouillon. Objective ML: An effective object-oriented exten-

sion to ML. Theory And Practice of Object Systems, 4(1):27–50, 1998. Summary in

ACM Symposium on Principles of Programming Languages (POPL), Paris, France,

1997.

Reynolds, John. Three approaches to type structure. In Mathematical Foundations of

Software Development. Springer-Verlag, 1985. Lecture Notes in Computer Science

No. 185.

Reynolds, John C. Towards a theory of type structure. In Proc. Colloque sur la Pro-

grammation, pages 408–425, New York, 1974. Springer-Verlag LNCS 19.

Reynolds, John C. User-defined types and procedural data structures as complemen-

tary approaches to data abstraction. In Stephen A. Schuman, editor, New Directions

in Algorithmic Languages 1975, pages 157–168, Rocquencourt, France, 1975. IFIP

References 597

Working Group 2.1 on Algol, INRIA. Reprinted in (Gries, 1978, pages 309–317) and

(Gunter and Mitchell, 1994, pages 13–23).

Reynolds, John C. Syntactic control of interference. In ACM Symposium on Principles

of Programming Languages (POPL), Tucson, Arizona, pages 39–46, 1978. Reprinted

in O’Hearn and Tennent, ALGOL-like Languages, vol. 1, pages 273–286, Birkhäuser,

1997.

Reynolds, John C. Using category theory to design implicit conversions and generic

operators. In N. D. Jones, editor, Proceedings of the Aarhus Workshop on Semantics-

Directed Compiler Generation, number 94 in Lecture Notes in Computer Science.

Springer-Verlag, January 1980. Also in Carl A. Gunter and John C. Mitchell, edi-

tors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and

Language Design (MIT Press, 1994).

Reynolds, John C. The Craft of Programming. Prentice-Hall International, London,

1981.

Reynolds, John C. Types, abstraction, and parametric polymorphism. In R. E. A. Ma-

son, editor, Information Processing 83, pages 513–523, Amsterdam, 1983. Elsevier

Science Publishers B. V. (North-Holland).

Reynolds, John C. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen,

and G. D. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in

Computer Science, pages 145–156, Berlin, 1984. Springer-Verlag.

Reynolds, John C. Preliminary design of the programming language Forsythe. Tech-

nical Report CMU-CS-88-159, Carnegie Mellon University, June 1988. Reprinted in

O’Hearn and Tennent, ALGOL-like Languages, vol. 1, pages 173–233, Birkhäuser,

1997.

Reynolds, John C. Syntactic control of interference, part 2. Report CMU-CS-89-130,

Carnegie Mellon University, April 1989.

Reynolds, John C. Introduction to part II, polymorphic lambda calculus. In

Gérard Huet, editor, Logical Foundations of Functional Programming, pages 77–86.

Addison-Wesley, Reading, Massachusetts, 1990.

Reynolds, John C. The coherence of languages with intersection types. In T. Ito and

A. R. Meyer, editors, Theoretical Aspects of Computer Software (Sendai, Japan),

number 526 in Lecture Notes in Computer Science, pages 675–700. Springer-

Verlag, September 1991.

Reynolds, John C. Normalization and functor categories. In Olivier Danvy and Peter

Dybjer, editors, Preliminary Proceedings of the 1998 APPSEM Workshop on Normal-

ization by Evaluation, NBE ’98, (Chalmers, Sweden, May 8–9, 1998), number NS-98-1

in BRICS Note Series, Department of Computer Science, University of Aarhus, May

1998a.

Reynolds, John C. Theories of Programming Languages. Cambridge University Press,

1998b.

598 References

Reynolds, John C. and Gordon Plotkin. On functors expressible in the polymorphic

typed lambda calculus. Information and Computation, 105(1):1–29, 1993. Sum-

mary in (Huet, 1990).

Robinson, Edmund and Robert Tennent. Bounded quantification and record-update

problems. Message to Types electronic mail list, October 1988.

Robinson, J. Alan. Computational logic: The unification computation. Machine Intel-

ligence, 6:63–72, 1971.

Russell, Bertrand. Letter to Frege, 1902. Reprinted (in English) in J. van Heijenort, edi-

tor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931; Harvard

University Press, Cambridge, MA, 1967; pages 124–125.

Schaffert, Justin Craig. A formal definition of CLU. Master’s thesis, MIT, January

1978. MIT/LCS/TR-193.

Scheifler, Robert William. A denotational semantics of CLU. Master’s thesis, MIT, May

1978. MIT/LCS/TR-201.

Schmidt, David A. Denotational Semantics: A Methodology for Language Development.

Allyn and Bacon, 1986.

Schmidt, David A. The Structure of Typed Programming Languages. MIT Press, 1994.

Schönfinkel, Moses. Über die Bausteine der mathematischen Logik. Mathematische

Annalen, 92:305–316, 1924. Translated into English and republished as “On the

building blocks of mathematical logic” in (van Heijenoort, 1967, pp. 355–366).

Scott, Michael L. Programming Language Pragmatics. Morgan Kaufmann, 1999.

Severi, Paula and Erik Poll. Pure type systems with definitions. In Proceedings of

Logical Foundations of Computer Science (LFCS), pages 316–328. Springer-Verlag,

1994. LNCS volume 813.

Shalit, Andrew. The Dylan Reference Manual: The Definitive Guide to the New Object-

Oriented Dynamic Language. Addison-Wesley, Reading, Mass., 1997.

Shields, Mark. Static Types for Dynamic Documents. PhD thesis, Department of Com-

puter Science, Oregon Graduate Institute, February 2001.

Simmons, Harold. Derivation and Computation : Taking the Curry-Howard Correspon-

dence Seriously. Number 51 in Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2000.

Smith, Frederick, David Walker, and Greg Morrisett. Alias types. In Gert Smolka,

editor, Ninth European Symposium on Programming, volume 1782 of Lecture Notes

in Computer Science, pages 366–381. Springer-Verlag, April 2000.

Smith, Jan, Bengt Nordström, and Kent Petersson. Programming in Martin-Löf’s Type

Theory. An Introduction. Oxford University Press, 1990.

Solomon, Marvin. Type definitions with parameters. In ACM Symposium on Principles

of Programming Languages (POPL), Tucson, Arizona, pages 31–38, January 23–25,

1978.

References 599

Sommaruga, Giovanni. History and Philosophy of Constructive Type Theory, volume

290 of Synthese Library. Kluwer Academic Pub., 2000.

Somogyi, Zoltan, Fergus Henderson, and Thomas Conway. The execution algorithm

of Mercury, an efficient purely declarative logic programming language. Journal of

Logic Programming, 29(1–3):17–64, October–November 1996.

Sørensen, Morten Heine and Paweł Urzyczyn. Lectures on the Curry-Howard isomor-

phism. Technical Report 98/14 (= TOPPS note D-368), DIKU, Copenhagen, 1998.

Statman, Richard. Completeness, invariance and λ-definability. Journal of Symbolic

Logic, 47(1):17–26, 1982.

Statman, Richard. Equality between functionals, revisited. In Harvey Friedman’s Re-

search on the Foundations of Mathematics, pages 331–338. North-Holland, Amster-

dam, 1985a.

Statman, Richard. Logical relations and the typed λ-calculus. Information and Con-

trol, 65(2–3):85–97, May–June 1985b.

Steffen, Martin. Polarized Higher-Order Subtyping. PhD thesis, Universität Erlangen-

Nürnberg, 1998.

Stone, Christopher A. and Robert Harper. Deciding type equivalence in a language

with singleton kinds. In ACM Symposium on Principles of Programming Languages

(POPL), Boston, Massachusetts, pages 214–227, January 19–21, 2000.

Strachey, Christopher. Fundamental concepts in programming languages. Lecture

Notes, International Summer School in Computer Programming, Copenhagen, Au-

gust 1967. Reprinted in Higher-Order and Symbolic Computation, 13(1/2), pp.

1–49, 2000.

Stroustrup, Bjarne. The C++ Programming Language. Addison Wesley Longman,

Reading, MA, third edition, 1997.

Studer, Thomas. Constructive foundations for featherweight java. In R. Kahle,

P. Schroeder-Heister, and R. Stärk, editors, Proof Theory in Computer Science.

Springer-Verlag, 2001. Lecture Notes in Computer Science, volume 2183.

Sumii, Eijiro and Benjamin C. Pierce. Logical relations for encryption. In Computer

Security Foundations Workshop, June 2001.

Sussman, Gerald Jay and Guy Lewis Steele, Jr. Scheme: an interpreter for extended

lambda calculus. MIT AI Memo 349, Massachusetts Institute of Technology, Decem-

ber 1975. Reprinted, with a foreword, in Higher-Order and Symbolic Computation,

11(4), pp. 405–439, 1998.

Syme, Don. Proving Java type soundness. Technical Report 427, Computer Labora-

tory, University of Cambridge, June 1997.

Tait, William W. Intensional interpretations of functionals of finite type I. Journal of

Symbolic Logic, 32(2):198–212, June 1967.

Tait, William W. A realizability interpretation of the theory of species. In R. Parikh,

editor, Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 240–

251, Boston, 1975. Springer-Verlag.

600 References

Talpin, Jean-Pierre and Pierre Jouvelot. The type and effects discipline. In Proc. IEEE

Symp. on Logic in Computer Science, pages 162–173, 1992.

Tarditi, David, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper, and

Peter Lee. TIL : A type-directed optimizing compiler for ML. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), Philadephia,

Pennsylvania, pages 181–192, May 21–24 1996.

Tarski, Alfred. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5:285–309, 1955.

Tennent, Robert D. Principles of Programming Languages. Prentice-Hall, 1981.

Terlouw, J. Een nadere bewijstheoretische analyse van GSTTs. Manuscript, University

of Nijmegen, Netherlands, 1989.

Thatte, Satish R. Quasi-static typing (preliminary report). In ACM Symposium on

Principles of Programming Languages (POPL), San Francisco, California, pages 367–

381, 1990.

Thompson, Simon. Type Theory and Functional Programming. Addison Wesley, 1991.

Thompson, Simon. Haskell: The Craft of Functional Programming. Addison Wesley,

1999.

Tiuryn, Jerzy. Type inference problems: A survey. In B. Rovan, editor, Mathematical

Foundations of Computer Science 1990, Banskà Bystrica, Czechoslovakia, volume

452 of Lecture Notes in Computer Science, pages 105–120. Springer-Verlag, New

York, NY, 1990.

Tofte and Birkedal. A region inference algorithm. ACMTOPLAS: ACM Transactions

on Programming Languages and Systems, 20, 1998.

Tofte, Mads. Type inference for polymorphic references. Information and Computa-

tion, 89(1), November 1990.

Tofte, Mads and Jean-Pierre Talpin. Implementing the call-by-value lambda-calculus

using a stack of regions. In ACM Symposium on Principles of Programming Lan-

guages (POPL), Portland, Oregon, January 1994.

Tofte, Mads and Jean-Pierre Talpin. Region-based memory management. Information

and Computation, 132(2):109–176, 1 February 1997.

Trifonov, Valery and Scott Smith. Subtyping constrained types. In Proceedings of

the Third International Static Analysis Symposium, volume 1145 of LNCS, pages

349–365. Springer-Verlag, September 1996.

Turner, David N., Philip Wadler, and Christian Mossin. Once upon a type. In ACM Sym-

posium on Functional Programming Languages and Computer Architecture (FPCA),

San Diego, California, 1995.

Turner, Raymond. Constructive Foundations for Functional Languages. McGraw Hill,

1991.

Ullman, Jeffrey D. Elements of ML Programming. Prentice-Hall, ML97 edition, 1997.

References 601

Ungar, David and Randall B. Smith. Self: The power of simplicity. In ACM Symposium

on Object Oriented Programming: Systems, Languages, and Applications (OOPSLA),

pages 227–241, 1987.

U.S. Dept. of Defense. Reference Manual for the Ada Programming Language. GPO

008-000-00354-8, 1980.

van Benthem, Johan. Language in Action: Categories, Lambdas, and Dynamic Logic.

MIT Press, 1995.

van Benthem, Johan F. A. K. and Alice Ter Meulen, editors. Handbook of Logic and

Language. MIT Press, 1997.

van Heijenoort, Jan, editor. From Frege to Gödel. Harvard University Press, Cam-

bridge, Massachusetts, 1967.

van Wijngaarden, Adriaan, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoff, C. H.

Lindsey, L. G. L. T. Meertens, and R. G. Fisker. Revised report on the algorithmic

language ALGOL 68. Acta Informatica, 5(1–3):1–236, 1975.

Vouillon, Jérôme. Conception et réalisation d’une extension du langage ML avec des

objets. PhD thesis, Université Paris 7, October 2000.

Vouillon, Jérôme. Combining subsumption and binary methods: An object calculus

with views. In ACM Symposium on Principles of Programming Languages (POPL),

London, England, 2001.

Wadler, Philip. Theorems for free! In Functional Programming Languages and Com-

puter Architecture, pages 347–359. ACM Press, September 1989. Imperial College,

London.

Wadler, Philip. Linear types can change the world. In TC 2 Working Conference on

Programming Concepts and Methods (Preprint), pages 546–566, 1990.

Wadler, Philip. Is there a use for linear logic? In Proceedings of ACM Symposium

on Partial Evaluation and Semantics-Based Program Manipulation, pages 255–273,

1991.

Wadler, Philip. New languages, old logic. Dr. Dobbs Journal, December 2000.

Wadler, Philip. The Girard-Reynolds isomorphism. In Naoki Kobayashi and Benjamin

Pierce, editors, Theoretical Aspects of Computer Software (TACS), Sendai, Japan,

Lecture Notes in Computer Science. Springer-Verlag, 2001.

Wadler, Philip and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In

ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas,

pages 60–76, 1989.

Wadsworth, Christopher P. Semantics and pragmatics of the lambda-calculus. PhD

thesis, Programming Research Group, Oxford University, 1971.

Wand, Mitchell. Finding the source of type errors. 13th ACM SIGACT-SIGPLAN Sym-

posium on Principles of Programming Languages (POPL), pages 38–43, 1986.

Wand, Mitchell. Complete type inference for simple objects. In Proceedings of the

IEEE Symposium on Logic in Computer Science, Ithaca, NY, June 1987.

602 References

Wand, Mitchell. Corrigendum: Complete type inference for simple objects. In Pro-

ceedings of the IEEE Symposium on Logic in Computer Science, 1988.

Wand, Mitchell. Type inference for objects with instance variables and inheritance.

Technical Report NU-CCS-89-2, College of Computer Science, Northeastern Univer-

sity, February 1989a. Also in Carl A. Gunter and John C. Mitchell, editors, Theo-

retical Aspects of Object-Oriented Programming: Types, Semantics, and Language

Design (MIT Press, 1994).

Wand, Mitchell. Type inference for record concatenation and multiple inheritance. In

Fourth Annual IEEE Symposium on Logic in Computer Science, pages 92–97, Pacific

Grove, CA, June 1989b.

Weis, Pierre, María-Virginia Aponte, Alain Laville, Michel Mauny, and Ascánder

Suárez. The CAML reference manual, Version 2.6. Technical report, Projet Formel,

INRIA-ENS, 1989.

Wells, Joe B. Typability and type checking in the second-order λ-calculus are equiva-

lent and undecidable. In Proceedings of the Ninth Annual IEEE Symposium on Logic

in Computer Science (LICS), pages 176–185, 1994.

Whitehead, Alfred North and Bertrand Russell. Principia Mathematica. Cambridge

University Press, Cambridge, 1910. Three volumes (1910; 1912; 1913).

Wickline, Philip, Peter Lee, Frank Pfenning, and Rowan Davies. Modal types as stag-

ing specifications for run-time code generation. ACM Computing Surveys, 30(3es),

September 1998. Article 8.

Wille, Christoph. Presenting C#. SAMS Publishing, 2000.

Winskel, Glynn. The Formal Semantics of Programming Languages: An Introduction.

MIT Press, 1993.

Wirth, Niklaus. The programming language Pascal. Acta Informatica, 1(1):35–63,

1971.

Wright, Andrew K. Typing references by effect inference. In Bernd Krieg-Bruckner,

editor, ESOP ’92, 4th European Symposium on Programming, Rennes, France, vol-

ume 582 of Lecture Notes in Computer Science, pages 473–491. Springer-Verlag,

New York, N.Y., 1992.

Wright, Andrew K. Simple imperative polymorphism. Lisp and Symbolic Computation,

8(4):343–355, 1995.

Wright, Andrew K. and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, 15 November 1994.

Xi, Hongwei and Robert Harper. A dependently typed assembly language. In Interna-

tional Conference on Functional Programming (ICFP), Firenze, Italy, 2001.

Xi, Hongwei and Frank Pfenning. Eliminating array bound checking through depen-

dent types. In ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), Montreal, Canada, pages 249–257, 1998.

References 603

Xi, Hongwei and Frank Pfenning. Dependent types in practical programming. In ACM

Symposium on Principles of Programming Languages (POPL), San Antonio, Texas,

ACM SIGPLAN Notices, pages 214–227, 1999.

XML 1998. Extensible markup language (XMLTM), February 1998. XML 1.0, W3C Rec-

ommendation, http://www.w3.org/XML/.

XS 2000. XML Schema Part 0: Primer, W3C Working Draft. http://www.w3.org/TR/

xmlschema-0/, 2000.

Yelick, Kathy, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind

Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex

Aiken. Titanium: a high-performance Java dialect. Concurrency: Practice and

Experience, 10(11–13):825–836, September 1998. Special Issue: Java for High-

performance Network Computing.

Zwanenburg, Jan. Pure type systems with subtyping. In J.-Y. Girard, editor, Typed

Lambda Calculus and Applications (TLCA), pages 381–396. Springer-Verlag, 1999.

Lecture Notes in Computer Science, volume 1581.

The secret to creativity is knowing how to hide your sources. —Albert Einstein

Index

∈ alternate notation for type mem-

bership, 92

⇒ arrow kind, 441

⇓ big-step evaluation, 42

Π dependent function type, 463

:: derivation of, 203

↑ divergence, 16

dom(Γ) domain of Γ , 101

« “quick check” exercise, xviii

«« easy exercise, xviii

««« moderate exercise, xviii

«««« challenging exercise, xviii

3 exercise without solution, xviii

→ function type, 100

:: kind membership, 449

-→
∗ multi-step evaluation, 39

-→ one-step evaluation, 36

l parallel reduction of types, 454

L record labels, 129

R+ transitive closure of R, 17

R∗ reflexive, transitive closure, 17
ñ sample output from system, 25

\ set difference, 15

↑d () shifting, 79

σ ◦ γ substitution composition, 318

<: subtyping, 181

↓ termination, 16

≡ type equivalence, 447, 453

: type membership, 92

_ wildcard binder, 46, 121

α-conversion, 71

abbreviations, see also derived forms

parametric type-, 439

Abel, 409

abstract data types, 11, 226, 368–372

parametric, 450–453

partially abstract, 406

vs. objects, 374–377

abstract machine, 32

with store, 160

abstract syntax, 25, 53

tree, 53

abstraction

full, 143

functional, 52

type abstraction and ascription, 123

abstraction principle, 339

abstractions, protecting user-defined,

3, 5, 368–377

activation record, 174

ad-hoc polymorphism, 340

ADT, see abstract data type

Algol-60, 11

Algol-68, 11

Algorithm W (Damas and Milner), 337

algorithmic subtyping, 209–213, 417–

436

algorithmic typing, 213–218

aliasing, 155–157

compiler analysis of, 170

allocation of references, 154

allsome implementation, 381–387

606 Index

alpha-conversion, 71

Amadio-Cardelli algorithm for recur-

sive subtyping, 309–311

Amber, 311

rule, 311, 312

AnnoDomini, 9

annotations

and uniqueness of types, 135, 141

datatype constructors as, 355

implicit, 330–331

antisymmetric relation, 16

applications of type systems, 8–9

arith implementation, 23–49

arithmetic expressions

typed, 91–98

untyped, 23–44

arrays

bounds checking, 7

subtyping, 198–199

arrow types, 99–100

ascription, 121–123, 193, see also cast-

ing

and subtyping, 193–196

assembly language, typed, 11

assignment to references, 153, 154

associativity of operators, 53

atomic types, see base types

Automath, 11

automatic storage management, see garbage

collection

axiom, 27

axiomatic semantics, 33

β-reduction, 56

Barendregt convention, 75

Barendregt cube, 465

base types, 117–118

and subtyping, 200

behavioral equivalence, 64

beta-reduction, 56

big-step operational semantics, 32, 43

binary methods, 375–377

binary operations on abstract data, 375–

377

strong vs. weak, 375

binary relation, 15

binder, 55

binding (OCaml datatype of bindings),

85, 113–115

bisimulation, 284

BNF (Backus-Naur form), 24

booleans, 23–44, see also Church en-

codings

Bot type, 191–193

algorithmic issues, 220

with bounded quantification, 436

bot implementation, 220

bottom-up subexpressions of a recur-

sive type, 304

bound variables, 55, 69–72

bounded meet, 219

bounded quantification, 11, 389–409

and intersection types, 400, 409

existential types, 406–408, 435–436

higher-order, 467–473

joins and meets, 432–435

object encodings, 411–416

typechecking algorithms, 417–436

undecidability, 427–431

with Bot type, 436

bounded type operators, 467, 473

bounds checking, see arrays

boxed values, 201

boxed vs. unboxed argument passing,

341

C, 6, 45

C], 7, see also Java

C++, 6, 226, see also Java

c0, c1, c2, etc. (Church numerals), 60

calculus of constructions, 11, 465

call stack and exception handling, 173–

174

call-by-name evaluation, 57

call-by-need evaluation, 57

call-by-value evaluation, 57

call-by-value Y-combinator, 65

call/cc , see continuations

candidate, reducibility, 150

Index 607

canonical forms lemma, 96, 105, 190,

405, 458

capture-avoiding substitution, 70

cartesian product type, 126–127

casting, 193–196, 247–264, 357, see also

ascription

and abstraction, 194

and reflection, 196

as substitute for polymorphism, 195–

196

implementation, 196

categorial grammar, 9

category theory, 12

CCS, 34

Cecil, 226, 340

cell, see references

chain, 18

channel types, 200

and subtyping, 200

chapter dependencies, xv

Church encodings

booleans, 58–59

in System F, 347–353

numerals, 60–63

pairs, 60, 396–400

records, 396–400

subtyping, 396–400

Church-Rosser property, 455

Church-style presentation, 111

class, 227, 231

granularity of, 231

classification, type systems as formalisms

for, 2

Clean, 338

CLOS, 226, 340

closed set, 282

closed term, 55

closure, 17

property, 289

CLU, 11, 408

codomain of a relation, 16

coercion semantics for subtyping, 200–

206, 224

coherence, 204–206

coinduction, 281–313

defined, 282–284

collection classes, 195–196

colored local type inference, 355

combinator, 55

combinatory logic, 76

complete induction, 19

completely bounded quantification, 431

completeness, 212

composition of substitutions, 318

compositionality, 2

comprehension notation for sets, 15

computation rules, 35, 72

computational effects, 153

concrete rule, 27

concrete syntax, 53

confluence, see Church-Rosser property

congruence rules, 35, 72

conservativity of type analyses, 2, 92,

99–100

consistent set, 282

constraint types, 337

constraint-based typing rules, 321–326

constructive logic, 108

constructive type theory, 2, 11

constructors, see type operators

contexts, 76–78

ML implementation, 83–85, 113–115

naming, 77

typing, 101

continuations, 178, 377

contractiveness, 300

contravariant

position in a type, 185

type operator, 473

correctness by construction, 464

countable set, 15

counting subexpressions of µ-types, 304–

309

course syllabi, xvii

covariant

position in a type, 185

type operator, 473

cube, Barendregt, 465

608 Index

Curry-Howard correspondence, 2, 108–

109, 341, 429

Curry-style presentation, 111

currying, 58, 73

of type operators, 440

cut elimination, 109

Damas-Milner polymorphism, 331

dangling reference, 158

databases, 9, 142, 207

datatypes, 355, see also abstract data

types

constructors as type annotations, 355

parametric, 444–445

recursive, 277–278

vs. variant types, 140–142

de Bruijn

indices, 75–81, 83–88, 381–387

levels, 81

pronunciation, 76

terms, 76

decidability, see also undecidability

of Fω, 459–460

of kernel F<: subtyping, 423

declarative subtyping and typing rela-

tions, 210

decreasing chain, 18

definedness, 16

definitional equivalence of types, 441,

447

definitions

formalization of, 441

of programming languages, 7

delegation, 227, 264

denotational semantics, 33

dependencies between chapters, xv

dependent

function types, 463

kinds, 445

types, 7, 11, 462–466, 473

depth of a term, 29

depth subtyping, 183

dereferencing, 154

derivable statement, 36

derivations

evaluation, 36

induction on, 37

subtyping, 183–187

trees, 36, 102

typing, 94

derived forms, 51, 53, 119–121

desugaring, 121

determinacy of one-step evaluation, 37

diamond property, 455, 494

dimension analysis, 4

disjoint union, 142

divergent combinator, 65

divergeT , 145

documentation, types as, 5, 121

domain of a relation, 16

domain theory, 33

down-cast, see casting

Dylan, 226

Dynamic type, 142

dynamic dispatch, 226

dynamic type testing, see casting

dynamic typing, 2

Edinburgh Logical Framework, see LF

effects, 11, 153

efficiency, type systems and, 8

elaboration, 120

elimination rule, 108

encapsulation, 226

encodings, see object encodings

enumerated type, 138

environment, 88

type-, 101

equi-recursive types, 280, 281

equirec implementation, 281–313

equi-recursive types, 275, 281–313

equivalence, see type equivalence

equivalence, behavioral, 64

equivalence relation, 17

erasure, 109–110, 354–358

error, run-time, 42

error detection, use of types for, 4–5

evaluation, 34–43, 72–73

contexts, 261, 262

determinacy of, 37

Index 609

lazy, 57

ML implementation, 47–49, 87

multi-step, 39

normalization by, 152

of nameless terms, 80–81

strategy, 35

strict vs. non-strict, 57

type-directed partial, 152

untyped lambda-calculus, 55–58

vs. reduction (terminology), 34

exceptions, 171–178

handlers, 171, 174

in Java and ML, 174

subtyping vs. polymorphism in typ-

ing of, 192

exercises, difficulty ratings, xviii

existential objects, see objects, existen-

tial

existential types, 11, 363–379

and modules, 364

bounded, 406–408

existential unificands, 320

expansion, 98, 108

explicit substitutions, 76, 88

explicitly typed languages, 101

exponential behavior of ML type re-

construction, 334

exposure, type-, 417–418

expressions vs. terms (terminology), 24

extended calculus of constructions, 11

Extended Static Checking, 3

extensible records, see row variables

extensible variant type, 177

extensions of the simply typed lambda-

calculus, 117–146

external language, 53, 120

F, see System F

Fω, see System Fω
Fω<:, see System Fω<:
F<:, see System F<:
F-bounded quantification, 393, 408

F-closed set, 282

F-consistent set, 282

F1, F2, F3, etc., 461

factorial, 52

fail, 16

failure vs. undefinedness, 16

families (of terms, types), 462

Featherweight Java, 247–264

fields, see instance variables; records

finalizers, 515

finding type errors, 545

finite tree type, 285

finite-state generating function, 294

first-class polymorphism, 340

fixed point, 142–145

combinator, 65

of a generating function, 282

theorem (Tarski-Knaster), 283

typing, using recursive types, 273

FJ, see Featherweight Java

flattened data structures, 341

Float type, 117

fold function, 63

fomsub implementation, 467–473

formal methods, lightweight, 1

Forsythe, 11, 199

Fortran, 8, 11

fragments of System F, 358–359

fragments of System Fω, 461

free variable, 55, 69

fresh variable, 120

full abstraction, 143

full beta-reduction, 56

full F<:, 391

fullequirec implementation, 267–280

fullerror implementation, 171–178

fullfomsub implementation, 389–409,

467–473

fullfsub implementation, 389–409, 417–

436

fullfsubref implementation, 411–416

fullisorec implementation, 275–278

fullomega implementation, 439–466

fullpoly implementation, 339–379

fullrecon implementation, 317–338

fullref implementation, 153–170, 225–

245

610 Index

fullsimple implementation, 99–111,

117–146

fullsub implementation, 181–208

fulluntyped implementation, 51–73

fullupdate implementation, 475–489

<fun>, 118

function types, 99–100

functional languages, mostly, 153

functions, 16

higher-order, 58

multi-argument, 58

on types, see type operators

Funnel, 409

FX, 11

garbage collection, 45, 158–165, 514–

515

tag free, 341

general recursion, 142–145

generating function, 282

generating set, 290

generation lemma, see inversion lemma

generators, classes as, 229

generics, 341

gfp algorithm, 292, 295–298

GJ, 195, 248, 409

grammar, 24

graph reduction, 57

greatest fixed point of a generating func-

tion, 283

greatest lower bound, see joins and meets

greedy type inference, 355

hash consing, 222

Haskell, 6, 45

heap, 153

hidden representation type, 364

higher-order bounded quantifiers, 468

higher-order functions, 58

higher-order polymorphism, 449–466

history of type systems, 10

hungry functions, 270

hybrid object models, 377

identity, object, 245

identity function, 55

imperative objects, see objects, imper-

ative

implementations

allsome, 381–387

arith, 23–49

bot, 220

equirec, 281–313

fomsub, 467–473

fullequirec, 267–280

fullerror, 171–178

fullfomsub, 389–409, 467–473

fullfsub, 389–409, 417–436

fullfsubref, 411–416

fullisorec, 275–278

fullomega, 439–466

fullpoly, 339–379

fullrecon, 317–338

fullref, 153–170, 225–245

fullsimple, 99–111, 117–146

fullsub, 181–208

fulluntyped, 51–73

fullupdate, 475–489

joinexercise, 223

joinsub, 218–220

purefsub, 417–436

rcdsub, 181–224

recon, 317–338

reconbase, 330

simplebool, 113–116

tyarith, 91–98

untyped, 83–88

implicit type annotations, 330–331

implicitly typed languages, 101

impredicative polymorphism, 340, 360–

361

impure language features, 153

induction, 19

lexicographic, 19

logical relations proof technique, 150

mathematical foundations, 282–284

on derivations, 37

on natural numbers, 19

on terms, 29–32

Index 611

inductive definitions, 23–29

inference, see type reconstruction

inference rules, 26

mathematical foundations, 283

infinite types, 284–286

inheritance, 227

overrated, 245

injection into a sum type, 133

instance of an inference rule, 36

instance variables, 228, 230, 233–234

instanceof, 341

instantiation of a polymorphic func-

tion, 317–320, 342

intensional polymorphism, 340

interface, 226

interface types, 479

interfaces (in Java), 261

interference, syntactic control of, 170

intermediate language, 161

intermediate languages, typed, 11

internal language, 53, 120

internet, see web

intersection types, 11, 206–207, 359,

489

and bounded quantification, 400, 409

and normal forms, 206

introduction rule, 108

invariant, 33

inversion lemma

subtyping, 188

typing, 94, 104, 188, 457

iso-recursive types, 275, 280

subtyping, 311–312

Java, 6, 8–10, 45, 119, 137, 154, 174,

177, 178, 193, 195, 196, 198–199,

226, 232, 247–264, 341, 444

exception handling in, 174

parametric polymorphism, 195

reflection, 196

JINI, 9

joinexercise implementation, 223

joins and meets, 17

algorithms for calculating, 218–220

in System F<:, 432–435

joinsub implementation, 218–220

judgment, 36

KEA, 226

kernel F<:, 391

kinding, 439–447, 459

kinds

dependent, 445

power, 445

row, 445

singleton, 445

Knaster-Tarski fixed point theorem, 283

λ-calculus, see lambda-calculus

λNB, 63–66

λ→, see simply typed lambda-calculus

λω, see System λω

λ<:, see simply typed lambda-calculus

with subtyping

label, 129

lambda cube, 465

lambda-& calculus, 226, 340

lambda-calculi, typed, 2

lambda-calculus, 51, 52

enriched, 63–68

simply typed, see simply typed lambda-

calculus

untyped, see untyped lambda-calculus

lambda-term, 53

language definition, defined, 7

language design and type systems, 9–

10

language features, pure, 153

late binding, see objects, open recur-

sion

latent type system, 2

lazy evaluation, 57

least fixed point of a generating func-

tion, 283

least upper bound, see joins and meets

left-associativity of application, 54

let bindings, 124–125

let-polymorphism, 331–336, 340

exponential behavior, 334

levels, de Bruijn, 81

612 Index

lexical analysis, 53

lexicographic induction, 19

lexicographic order, 19

LF, 11, 465

lfp algorithm, 294

lightweight formal methods, 1

linear logic and type systems, 11, 109

linking, 367

lists, 146

Church encoding, 350–353, 500

defined using recursive types, 267–

270

polymorphic functions for, 345–347

subtyping, 197

local type inference, 355

location, 159

logic

and type systems, 108

origins, 11

type systems in, 2

logical framework, 465

logical relations, 149

µ, see least fixed point

µ notation for recursive types, 299–

304

marshaling, 252, 341

Martin-Löf type theory, see construc-

tive type theory

match function, 131

matching, pattern-, 130–131

matching relation on object types, 480

mathematics, formalization of, 11

meaning of terms, 32–34

meet, see joins and meets

membership checking for (co-)inductively

defined sets, 290–298

Mercury, 338

message, 226

meta-mathematics, 24

metalanguage, 24

metatheory, 24

metavariables, 24

naming conventions, 565

method, 226, 228

invocation, 226

multi-, see multi-method

override, 233, 264

Milner-Mycroft Calculus, 338

minimal types, 218, 418–420

minimal typing

theorem, 419

mini-ML, 337

ML, 6, 8, 9, 11, 174, 177

exception handling in, 174

history, 336–338

module system, 379

parametric datatypes, 445

polymorphism, 331–336

ML implementations

evaluation, 87

simply typed lambda-calculus, 113–

116

subtyping, 221–224

System F, 381–387

untyped arithmetic expressions, 45–

49

untyped lambda-calculus, 83–88

ML-style polymorphism, 340

modal logics, 109

model checking, 1, 284

Modula-3, 7

modularity, 3

module systems, 364, 379, 465

monads, 153

monitoring, run-time, 1

monotone function, 282

monotype, 359

most general unifier, 327

mostly functional languages, 153

multi-argument functions, 58

multi-method, 226, 340

multiple inheritance, 489

multiple representations (of object types),

226

multi-step evaluation, 39

mutually recursive

functions, 144

types, 253

Index 613

ν, see greatest fixed point

nameless form, see de Bruijn indices

naming context, 77

naming conventions for metavariables

and rules, 565–566

narrowing lemmas, 401, 425

National Science Foundation, xx

natural deduction, 26

natural semantics, 32, 34, 43

natural-number induction, 19

nested induction, 19

NextGen, 196

nominal type systems, 251–254, 312

normal forms, 38

and intersection types, 206

uniqueness of, 39

normal order, 56

normalization, 149–152

by evaluation, 152

strong, 152

normalization theorem, 39, 152, 353

numeric values, 40

NuPRL, 11

object calculus, 11, 51, 184, 248, 251

object language, 24

Objective Caml

see OCaml, xvii

objects, 228, 368

as recursive records, 272

bounded quantification and, 411–416

encodings vs. primitive objects, 262–

263

existential, 372–377, 475–489

hybrid object models, 377

identity, 245

imperative, 157, 225–245, 411–416

interface types, 479

Java-style, 247–264

matching relation on object types,

480

object-oriented programming, defined,

225–227

open recursion, 227, 235–244

purely functional, 372–377, 475–489

vs. abstract data types, 374–377

OCaml, xvii, 7, 45, 208, 231, 489

OCaml implementations, see ML imple-

mentations

occur check, 327, 338

omega, 65

open recursion, see objects, open re-

cursion

operational semantics, 32, see also eval-

uation

big-step, 43

small-step, 42

operator associativity, 53

operator precedence, 53

Option type, 137–138

order, well-founded, 18

ordered sets, basic definitions, 16–18

ordinary induction, 19

overloading, 340

finitary, 206

overriding of method definitions, 233

P(S) powerset of S, 15

package, existential, 364

pairs, 126–127

Church encodings, see Church en-

codings, pairs

parallel reduction, 454

parametric

abbreviation, 439

data type, 142, 444

polymorphism, 319, 340

parametricity, 359–360

parentheses and abstract syntax, 25,

52

parsing, 53

partial evaluation, 109

partial function, 16

partial order, 17

partially abstract types, 406

Pascal, 11

pattern matching, 130–131

PCF, 143

Pebble, 465

Penn translation, 204

614 Index

Perl, 6

permutation, 18

permutation lemma, 106

permutation rule for record subtyp-

ing, 184

performance issues, 201–202

pi-calculus, 51

Pict, 200, 356, 409

Pizza, 195

pointer, 154, see references

arithmetic, 159

pointwise subtyping of type operators,

468

polarity, 473

PolyJ, 195

polymorphic

functions for lists, 345–347

identity function, 342

recursion, 338

update, 482–485

polymorphism, 331

ad hoc, 340

data abstraction, 368–377

existential, see existential types

existential types, 363–379

exponential behavior of ML-style, 334

F-bounded, 393, 408

higher-order, 449–466

impredicativity and predicativity, 360–

361

intensional, 340

ML-style, 331–336

parametric, 339–361

parametricity, 359–360

predicative, 360

prenex, 359

rank-2, 359

safety problems with references, 335–

336

stratified, 360

subtype, see subtyping

universal, see universal types

varieties of, 340–341

polytype, 359

portability, types and, 7

positive subtyping, 489

Postscript, 6

power types, 445, 472

precedence of operators, 53

predecessor for Church numerals, 62

predicate, 15

predicative polymorphism, 360–361

prenex polymorphism, 359

preorder, 17

preservation of a predicate by a rela-

tion, 16

preservation of shapes under type re-

duction, 456

preservation of types during evalua-

tion, 95–98, 107, 168, 173, 189,

261, 353, 404, 457

preservation of typing under type sub-

stitution, 318

principal

type, 317, 329–330

types theorem, 329

typing, 337

unifier, 327

principal solution, 329

principle of safe substitution, 182

product type, 126–127

programming languages

Abel, 409

Algol-60, 11

Algol-68, 11

Amber, 311

C, 6, 45

C], 7

C++, 6, 226

Cecil, 226, 340

Clean, 338

CLOS, 226, 340

CLU, 11, 408

Dylan, 226

Featherweight Java, 247–264

Forsythe, 11, 199

Fortran, 8, 11

Funnel, 409

Index 615

FX, 11

GJ, 195, 248, 409

Haskell, 6, 45

Java, 6, 8–10, 45, 119, 137, 154, 174,

177, 178, 193, 195, 196, 198–199,

226, 232, 247–264, 341, 444

KEA, 226

Mercury, 338

ML, 6, 8, 9, 11, 174, 177, see also

OCaml, Standard ML

Modula-3, 7

NextGen, 196

Objective Caml, see OCaml

OCaml, xvii, 7, 208, 231, 489

Pascal, 11

Pebble, 465

Perl, 6

Pict, 200, 356, 409

Pizza, 195

PolyJ, 195

Postscript, 6

Quest, 11, 409

Scheme, 2, 6, 8, 45

Simula, 11, 207

Smalltalk, 226

Standard ML, xvii, 7, 45

Titanium, 8

XML, 9, 207, 313

progress theorem, 38, 95–98, 105, 169,

173, 190, 262, 353, 405, 458

projection (from pairs, tuples, records),

126–131

promotion, 418

proof, defined, 20

proof-carrying code, 9

proof theory, 2

proper types, 442

propositions as types, 109

pure λ→, 102

pure lambda-calculus, 51

pure language features, 153

pure type systems, xiv, 2, 444, 466

purefsub implementation, 417–436

qualified types, 338

quantification, see polymorphism

Quest, 11, 409

ramified theory of types, 2

range of a relation, 16

rank-2 polymorphism, 359

raw type, 248

rcdsub implementation, 181–224

reachableF , 294

recon implementation, 317–338

reconbase implementation, 330

reconstruction, see type reconstruction

record kinds, 445

records, 129–131

Cardelli-Mitchell calculus, 207

Church encoding, 396–400

concatenation, 207

row variables, 208, 337

recursion, 65–66, 142–145

fixed-point combinator, 65

polymorphic, 338

recursive types, 253, 267–280

Amadio-Cardelli algorithm, 309–311

and subtyping, 279

equi-recursive vs. iso-recursive, 275

history, 279–280

in ML, 277–278

in nominal systems, 253

metatheory, 281–313

µ notation, 299–304

subtyping, 281–290, 298–313

type reconstruction, 313, 338

recursive values from recursive types,

273

redex, 56

reduce function, 63

reducibility candidates, 150

reduction vs. evaluation (terminology),

34

references, 153–170

allocation, 154

and subtyping, 199–200

assignment, 154

dereferencing, 154

subtyping, 198

616 Index

type safety problems, 158

type safety problems with polymor-

phism, 335–336

refinement types, 207

reflection, 196, 252

and casting, 196

reflexive closure, 17

reflexive relation, 16

reflexivity of subtyping, 182

region inference, 8

regular trees, 298–299

relation, 15

logical, see logical relations

removenames, 78

representation independence, 371

representation of numbers by Church

numerals, 67

representation type (of an object), 230

restorenames, 78

row kinds, 445

row variables, 11, 208, 337, 489

rule

computation, 35, 72

congruence, 35, 72

naming conventions, 565

schema, 27

rule, inference, 27

rule schema, 27

rules

B-IfFalse, 43

B-IfTrue, 43

B-IszeroSucc, 43

B-IszeroZero, 43

B-PredSucc, 43

B-PredZero, 43

B-Succ, 43

B-Value, 43

CT-Abs, 322, 542

CT-AbsInf, 330

CT-App, 322, 542

CT-False, 322

CT-Fix, 543

CT-If, 322

CT-IsZero, 322

CT-LetPoly, 332

CT-Pred, 322

CT-Proj, 545

CT-Succ, 322

CT-True, 322

CT-Var, 322, 542

CT-Zero, 322

E-Abs, 502

E-App1, 72, 103, 160, 166, 186, 343,

392, 446, 450, 470, 502, 503

E-App2, 72, 103, 160, 166, 186, 343,

392, 446, 450, 470, 502

E-AppAbs, 72, 81, 103, 160, 166, 186,

342, 343, 392, 446, 450, 470, 502,

503

E-AppErr1, 172

E-AppErr2, 172

E-AppRaise1, 175

E-AppRaise2, 175

E-Ascribe, 122, 194

E-Ascribe1, 122

E-AscribeEager, 123

E-Assign, 161, 166

E-Assign1, 161, 166

E-Assign2, 161, 166

E-Case, 132, 136

E-CaseInl, 132, 135

E-CaseInr, 132, 135

E-CaseVariant, 136

E-Cast, 258

E-CastNew, 258

E-Cons1, 147

E-Cons2, 147

E-Deref, 161, 166

E-DerefLoc, 161, 166

E-Downcast, 195

E-Field, 258

E-Fix, 144

E-FixBeta, 144

E-Fld, 276

E-Funny1, 40

E-Funny2, 40

E-GC, 514

E-Head, 147

Index 617

E-HeadCons, 147

E-If, 34

E-If-Wrong, 42

E-IfFalse, 34

E-IfTrue, 34

E-Inl, 132, 135

E-Inr, 132, 135

E-Invk-Arg, 258

E-Invk-Recv, 258

E-InvkNew, 258

E-Isnil, 147

E-IsnilCons, 147

E-IsnilNil, 147

E-IsZero, 41

E-IsZero-Wrong, 42

E-IszeroSucc, 41

E-IszeroZero, 41

E-Let, 124, 131, 335

E-LetV, 124, 131, 332

E-New-Arg, 258

E-Pack, 366, 452

E-Pair1, 126

E-Pair2, 126

E-PairBeta1, 126

E-PairBeta2, 126

E-Pred, 41

E-Pred-Wrong, 42

E-PredSucc, 41, 48

E-PredZero, 41

E-Proj, 128, 129, 187

E-Proj1, 126

E-Proj2, 126

E-ProjNew, 258

E-ProjRcd, 129, 187, 201, 484

E-ProjTuple, 128

E-Raise, 175

E-RaiseRaise, 175

E-Rcd, 129, 187, 484

E-Ref, 162, 166

E-RefV, 162, 166

E-Seq, 120

E-SeqNext, 120

E-Succ, 41

E-Succ-Wrong, 42

E-Tail, 147

E-TailCons, 147

E-TApp, 343, 392, 450, 470

E-TappTabs, 342, 343, 385, 392, 450,

470

E-Try, 174, 175

E-TryError, 174

E-TryRaise, 175

E-TryV, 174, 175

E-Tuple, 128

E-Typetest1, 195

E-Typetest2, 195

E-Unfld, 276

E-UnfldFld, 276

E-Unpack, 366

E-UnpackPack, 366, 367, 452

E-UpdateV, 484

E-Variant, 136

E-Wildcard, 507

K-Abs, 446, 450, 470

K-All, 450, 470

K-App, 446, 450, 470

K-Arrow, 446, 450, 470

K-Some, 452

K-Top, 470

K-TVar, 446, 450, 470

M-Rcd, 131

M-Var, 131

P-Rcd, 509

P-Rcd’, 509

P-Var, 509

Q-Abs, 446, 451, 471

Q-All, 451, 471

Q-App, 446, 451, 471

Q-AppAbs, 441, 446, 451, 471

Q-Arrow, 446, 451, 471

Q-Refl, 446, 451, 471

Q-Some, 452

Q-Symm, 446, 451, 471

Q-Trans, 446, 451, 471

QR-Abs, 454

QR-All, 454

QR-App, 454

QR-AppAbs, 454

618 Index

QR-Arrow, 454

QR-Refl, 454

S-Abs, 468, 471

S-All, 392, 394, 395, 427, 471

S-Amber, 311

S-App, 468, 471

S-Array, 198

S-ArrayJava, 198

S-Arrow, 184, 186, 211, 392, 471

S-Assumption, 311

S-Bot, 192

S-Eq, 468, 471

S-Inter1, 206

S-Inter2, 206

S-Inter3, 206

S-Inter4, 206

S-List, 197

S-ProdDepth, 187

S-ProdWidth, 187

S-Rcd, 211

S-RcdDepth, 183, 187, 484

S-RcdPerm, 184, 187

S-RcdVariance, 484

S-RcdWidth, 183, 187, 484

S-Ref, 198

S-Refl, 182, 186, 211, 392

S-RefSink, 199

S-RefSource, 199

S-Sink, 199

S-Some, 406, 476, 556

S-Source, 199

S-Top, 185, 186, 211, 392, 471

S-Trans, 183, 186, 209, 211, 392,

471

S-TVar, 392, 394, 471

S-VariantDepth, 197

S-VariantPerm, 197

S-VariantWidth, 197

SA-All, 422, 424

SA-Arrow, 212, 422, 424

SA-Bot, 220

SA-Rcd, 212

SA-Refl-TVar, 422, 424

SA-Top, 212, 422, 424

SA-Trans-TVar, 422, 424

T-Abs, 101, 103, 167, 186, 343, 392,

447, 451, 471

T-App, 102, 103, 167, 181, 186, 343,

392, 447, 451, 471

T-Ascribe, 122, 194

T-Assign, 159, 165, 167, 199

T-Case, 132, 136

T-Cast, 530

T-Cons, 147

T-DCast, 259

T-Deref, 159, 165, 167, 199

T-Downcast, 194

T-Eq, 441, 447, 451

T-Error, 172

T-Exn, 175

T-False, 93

T-Field, 259

T-Fix, 144

T-Fld, 276

T-Head, 147

T-If, 93, 102, 218

T-Inl, 132, 135

T-Inr, 132, 135

T-Invk, 259

T-Isnil, 147

T-IsZero, 93

T-Let, 124, 332, 509

T-LetPoly, 332, 333

T-Loc, 164, 167

T-New, 259

T-Nil, 147

T-Pack, 365, 366, 406, 452

T-Pair, 126

T-Pred, 93

T-Proj, 128, 129, 187, 484

T-Proj1, 126

T-Proj2, 126

T-Rcd, 129, 187, 484

T-Ref, 159, 165, 167

T-SCast, 259

T-Seq, 120

T-Sub, 182, 186, 209, 392, 471

T-Succ, 93

Index 619

T-TAbs, 342, 343, 392, 395, 451, 471

T-Tail, 147

T-TApp, 342, 343, 392, 395, 451, 471

T-True, 93

T-Try, 174, 175

T-Tuple, 128

T-Typetest, 195

T-UCast, 259

T-Unfld, 276

T-Unit, 119, 167

T-Unpack, 366, 406, 435, 452

T-Update, 484

T-Var, 101, 103, 167, 186, 259, 343,

392, 447, 451, 471

T-Variant, 136, 197

T-Wildcard, 507

T-Zero, 93

TA-Abs, 217, 419

TA-App, 217, 419

TA-AppBot, 220

TA-If, 220, 526

TA-Proj, 217

TA-ProjBot, 220

TA-Rcd, 217

TA-TAbs, 419

TA-TApp, 419

TA-Unpack, 436

TA-Var, 217, 419

XA-Other, 418

XA-Promote, 418

run-time code generation, 109

run-time error, 42

trapped vs. untrapped, 7

run-time monitoring, 1

safety, 3, 6–8, 95–98

problems with references, 158

problems with references and poly-

morphism, 335–336

satisfaction of a constraint set by a

substitution, 321

saturated sets, 150

Scheme, 2, 6, 8, 45

units, 368

scope, 55

scoping of type variables, 393–394

second-order lambda-calculus, 341, 461

security, type systems and, 9

self, 227, 234–244, 486–488

semantics

alternative styles, 32–34

axiomatic, 33

denotational, 33

operational, 32

semi-unification, 338

semistructured databases, 207

sequences, basic notations, 18

sequencing notation, 119–121

and references, 155

sets, basic operations on, 15

sharing, 445, 465

shifting (of nameless terms), 78–80

ML implementation, 85–87

side effects, 153

simple theory of types, 2

simple types, 100

simplebool implementation, 113–116

simply typed lambda-calculus, 2, 11,

99–111

extensions, 117–146

ML implementation, 113–116

pure, 102

with type operators, 445

Simula, 11, 207

single-field variant, 138–140

singleton kinds, 441, 445, 465

size of a term, 29

small-step operational semantics, 32,

42

Smalltalk, 226

soundness, see safety

soundness and completeness, 212

of algorithmic subtyping, 423

of constraint typing, 325

Source and Sink constructors, 199

spurious subsumption, 253

Standard ML, xvii, 7, 45

statement, 36

static distance, 76

620 Index

static vs. dynamic typing, 2

store, 153

store typing, 162–165

stratified polymorphism, 360

streams, 270–271

strict vs. non-strict evaluation, 57

String type, 117

strong binary operations, 376

strong normalization, 152, 353

structural operational semantics, 32,

34

structural unfolding, 489

structural vs. nominal type systems,

251–254

stuck term, 41

stupid cast, 259–260

subclass, 227, 232

subexpressions of µ-types, 304–309

subject expansion, 98, 108

subject reduction, see preservation

subscripting conventions, 566

subset semantics of subtyping, 182,

201–202

substitution, 69–72, 75–81, 83–88

capture-avoiding, 70

ML implementation, 85–87

type-, 317

substitution lemma, 106, 168, 189, 453

substitution on types, 342

ML implementation, 382

subsumption, 181–182

postponement of, 214

subtraction of Church numerals, 62

subtype polymorphism, see subtyping

subtyping, 181–224, see also bounded

quantification

Top and Bot types, 191–193

algorithm, 209–213, 417–436

algorithmic, in nominal systems, 253

and ascription, 193–196

and base types, 200

and channel types, 200

and objects, 227

and references, 199–200

and type reconstruction, 338, 355

and variant types, 196–197

arrays, 198–199

coercion semantics, 200–206

depth, 183

higher-order, 11, 467–473

intersection types, 206–207

iso-recursive types, 311–312

joins and meets in System F<:, 432–

435

lists, 197

ML implementation, 221–224

objects, 229–230

positive, 489

power types, 472

record permutation, 184

recursive types, 279, 281–290, 298–

313

references, 198

reflexivity, 182

subset semantics, 182, 201–202

subtype relation, 182–187

transitivity, 183

type operators, 467–473

undecidability of System F<:, 427–

431

union types, 206–207

vs. other forms of polymorphism, 341

width, 183

sum types, 132–135

super, 234

supertype, 182

support, 290

surface syntax, 53

syllabi for courses, xvii

symmetric relation, 16

syntactic control of interference, 170

syntactic sugar, 121

syntax, 26–29, 52–55, 69

ML implementation, 46–47, 383–385

syntax-directedness, 209

System F, 11, 339–361

fragments, 358–359

history, 341

Index 621

ML implementation, 381–387

System Fω, 449–466

and higher-order logic, 109

fragments, 461

System Fω<:, 467–473

System F<:, 389–409

kernel and full variants, 391

System λω, 445–447

T , see terms

tag, type-, 2

tag-free garbage collection, 341

tagged representation of atomic val-

ues, 201

tagging

creating new types by, 133

tail recursion, 296

TAL, 11

Tarski-Knaster fixed point theorem, 283

termination measure, 39

terminology, reduction vs. evaluation,

34

terms, 24, 26

and expressions (terminology), 24

closed, 55

depth, 29

induction on, 29–32

inductive definition of (nameless form),

77

ML implementation, 46, 83–85

nameless form, see de Bruijn indices

size, 29

stuck, 41

theorem proving, types in, 9, 464

this, see self

thunk, 239

TinkerType, xx

Titanium, 8

Top type, 185, 191–193

top-down subexpressions of a recur-

sive type, 304

Top[K], 468

total function, 16

total order, 17

transitive closure, 17, 289

transitive relation, 16

transitivity and coinduction, 288–290

transitivity of subtyping, 183

translucent types, 11

trapped vs. untrapped errors, 7

tree, 538

abstract syntax, 25

derivation, 36

regular, 298–299

type, 285

treeof, 300

tuples, 126–129

two-counter machines, 430

tyarith implementation, 91–98

typability, 93, 109–110, 354–357

type abstraction, 342

type annotations, 3, 10, 111

type application, 342

type classes, 337, 338

type constructors, see type operators

type destructors, 489

type environment, 101

type equivalence, 447, 453–456

type erasure, 110, 354

type errors, 3

finding, 545

type exposure, 417–418

type inference, see type reconstruction

type names, 251

type operators, 100, 439–447

bounded, 473

co- and contravariant, 473

definition equivalence, 441

in nominal systems, 254

quantification over, 449–466

subtyping, 467–473

type reconstruction, 317–338, 354–357

colored local type inference, 355

greedy, 355

history, 336–338

local type inference, 355

recursive types, 313, 338

subtyping, 338, 355

type safety, see safety

622 Index

type scheme, 359

type substitution, 317

ML implementation, 382

type systems

and efficiency, 8

and portability, 7

and security, 9

and theorem provers, 9, 464

applications, 8–9

as formal methods, 1

category theory and, 12

defined, 1–4

history, 10

in mathematics and logic, 2

language design and, 9–10

role in computer science, 1–4

type tags, 2, 196, 252

type theory, see type systems

constructive, 2

type variables, 319–320

type-assignment systems, 101

type-directed partial evaluation, 152

type-erasure semantics, 357

type-passing semantics, 357

typecase, 341

typed arithmetic expressions, 91–98

typed assembly language, 11

typed intermediate languages, 11

typed lambda-calculi, 2

types, 92

typing context, 101

typing derivations, 94

desugaring of, 125

semantics defined on, 111, 200–206

typing relation, 92–95, 100–103

algorithm, 213–218

ML implementation, 113–116

properties, 104–108

undecidability

of full type reconstruction for Sys-

tem F, 354

of partial type reconstruction for Sys-

tem F, 354

of subtyping for System F<:, 427–

431

undefinedness vs. failure, 16

unification, 321, 326–329

union types, 142, 206–207

disjoint, 142

uniqueness of normal forms, 39

uniqueness of types, 94, 104, 511

and annotations, 135, 141

and sums, 134–135

Unit type, 118–119

unit value, 118–119

units (in Scheme), 368

universal domain, 273

universal set, 282

universal types, 339–361

unsafe declarations, 7

untyped implementation, 83–88

untyped arithmetic expressions, 23–44

untyped lambda-calculus, 11, 51–73

representation using recursive types,

273–275

up-cast, see casting

update, polymorphic, 482–485

value, 34, 57

numeric, 40

value restriction, 336, 358

variable capture, 70

variables

bound, 55, 69–72

free, 55

variant types, 132–142

and subtyping, 196–197

extensible, 177

single-field, 138–140

vs. datatypes, 140–142

weak binary operations, 375

weak head reduction, 460

weak pointers, 515

weak type variable, 336

weakening lemma, 106

web resources, xx

well-formed context, 459

Index 623

well-founded

order, 18

set, 18

well-typed term, 93

width subtyping, 183

wildcard bindings, 119–121

witness type, 364

wrong, 42, 73

XML, 9, 207, 313

Y combinator, 65

Year 2000 problem, 9

Z combinator, 65

