一切皆是映射(Mapping),映射即流(Stream),流即函数: $y=f(x)$(By 一个会写诗的程序员)
公式 | Latex代码 |
---|---|
$\sqrt x$ | $\sqrt(x)$ |
$\sqrt[3]{x}$ | $\sqrt[3]{x}$ |
$e^{x^2} \neq {e^x}^2$ | $e^{x^2} \neq {e^x}^2$ |
$a^{3}_{ij}$ | $a^{3}_{ij}$ |
$e^{-\alpha t}$ | $e^{-\alpha t}$ |
$a\ b$ | $a\ b$ |
$a\quad b$ | $a\quad b$ |
$ \geq$ | $ \geq$ |
$\leq $ | $\leq $ |
$\frac{1}{2} $ | $\frac{1}{2} $ |
$x_{2}$ | $x_{2}$ |
$x^{2}$ | $x^{2}$ |
$a \ne 0$ | $a \ne 0$ |
$ax^2 + bx + c = 0$ | $ax^2 + bx + c = 0$ |
$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$ | $x = {-b \pm \sqrt{b^2-4ac} \over 2a}$ |
$\overline{m+n}$ | $\overline{m+n}$ |
$\underline{m+n}$ | $\underline{m+n}$ |
$\underbrace{a + b + \cdots + z}_{26}$ |
$\underbrace{a + b + \cdots + z}_{26}$
|
$\overrightarrow{AB}$ |
$\overrightarrow{AB}$
|
$\vec{c}$ |
$\vec{c}$
|
$\frac{x^2}{k+1}$ |
$\frac{x^2}{k+1}$
|
$(x-y)^2\equiv(-x+y)^2\equiv x^2-2xy+y^2$ |
$(x-y)^2\equiv(-x+y)^2\equiv x^2-2xy+y^2$
|
$x'$ |
$x'$
|
$\dot{x} \ \ddot{x}$ |
$\dot{x} \ \ddot{x}$
|
$\sum_{k=1}^N k^2$ |
$\sum_{k=1}^N k^2$
|
$\prod_{i=1}^N x_i$ |
$\prod_{i=1}^N x_i$
|
$\lim_{n \to \infty}x_n$ |
$\lim_{n \to \infty}x_n$
|
$\int_{-N}^{N} e^x\, dx$ |
$\int_{-N}^{N} e^x\, dx$
|
$\iiint_{E}^{V} \, dx\,dy\,dz$ |
$\iiint_{E}^{V} \, dx\,dy\,dz$
|
$\oint_{C} x^3\, dx + 4y^2\, dy$ |
$\oint_{C} x^3\, dx + 4y^2\, dy$
|
$\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} =a$ |
$\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} =a$
|
$\dbinom{n}{r}=\binom{n}{n-r}=C^n_r=C^n_{n-r}$ |
$\dbinom{n}{r}=\binom{n}{n-r}=C^n_r=C^n_{n-r}$
|
$\begin{matrix} x & y \\ z & v \end{matrix}$ |
$\begin{matrix}
x & y \\
z & v
\end{matrix}$
|
$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$ |
$\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}$
|
$\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}$ |
$\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}$
|
$\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}$ |
$\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}$
|
$\begin{pmatrix} x & y \\ z & v \end{pmatrix}$ |
$\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}$
|
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$ |
$f(n) =
\begin{cases}
n/2, & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}$
|
$\begin{align} f(x) & = (m+n)^2 \\ & = m^2+2mn+n^2 \\ \end{align}$ |
$\begin{align}
f(x) & = (m+n)^2 \\
& = m^2+2mn+n^2 \\
\end{align}$
|
$\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$ |
$\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}$
|
$f(x) \,\! = \sum_{n=0}^\infty a_n x^n = a_0+a_1x+a_2x^2+\cdots$ |
$f(x) \,\!
= \sum_{n=0}^\infty a_n x^n
= a_0+a_1x+a_2x^2+\cdots$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|
$$ |
$$
|